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ABSTRACT

Communication of American Sign Language (ASL) over mobile phones would be very beneficial to the Deaf
community. ASL video encoded to achieve the rates provided by current cellular networks must be heavily
compressed and appropriate assessment techniques are required to analyze the intelligibility of the compressed
video. As an extension to a purely spatial measure of intelligibility, this paper quantifies the effect of temporal
compression artifacts on sign language intelligibility. These artifacts can be the result of motion-compensation
errors that distract the observer or frame rate reductions. They reduce the the perception of smooth motion
and disrupt the temporal coherence of the video. Motion-compensation errors that affect temporal coherence
are identified by measuring the block-level correlation between co-located macroblocks in adjacent frames. The
impact of frame rate reductions was quantified through experimental testing. A subjective study was performed
in which fluent ASL participants rated the intelligibility of sequences encoded at a range of 5 different frame rates
and with 3 different levels of distortion. The subjective data is used to parameterize an objective intelligibility
measure which is highly correlated with subjective ratings at multiple frame rates.

1. INTRODUCTION

Real-time, two-way transmission of American Sign Language (ASL) video over cellular networks has the potential
to significantly benefit members of the Deaf community. Unfortunately, current generation US networks are
limited in their capacity. Current GPRS networks provide as little as 15 kbps uplink and 30 kbps downlink.
At such low bitrates, ASL videos encoded using techniques designed to maximize fidelity yield sign language
sequences that are unintelligible.»? Objective assessment techniques are required to evaluate the utility of
compressed ASL video in terms of the intelligibility of the sequence.

Understanding how information is communicated in American Sign Language is essential for informing objec-
tive techniques that will assess intelligibility. In his pioneering work, Stokoe? laid the foundation for the linguistic
structure of sign language. He identified three basic units, called primes, that form a sign: the tab (where the
sign occurs), the dez (the configuration of the hands), and the sig (the movement that occurs).

This work was expanded by Liddell and Johnson* to include the notion of a coherent sequence of the basic
units as a fundamental element in sign linguistics, more commonly known as the hold-movement-hold model.
In this model, a sign is characterized by an initial articulation of the hands (tab and dez), a movement period
during which either the handshape and/or the location change, and a final hold of the new articulation. Not all
movements are linguistically relevant. Liddell and Johnson define movement epenthesis as the transition from
the final hold of one sign to the initial hold of the following sign. The movement epenthesis contains no linguistic
information but is simply necessary to physically position the hands correctly.

In addition to manual gestures, a substantial amount of contextual information is added to a conversation by
using nonmanual signs in the face.>% A signer’s gaze can indicate pronomial references or quotations. Raising
or furrowing one’s eyebrows indicates a question or a negation, respectively. Nonmanual signs are also essential
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for forming relative clauses. The contextual detail added through nonmanual signs suggests that accurate
interpretation of facial expression is essential for understanding ASL.

The linguistic information in ASL is contained spatially in the hand configurations and facial expressions and
temporally in the linguistically relevant movements, such as the changing of a handshape or location. Quantifying
the effect of spatial distortions in the signer’s face and hands has been addressed in the authors’ previous work.”
This work aims to quantify the effect of temporal artifacts on sign language intelligibility.

Temporal artifacts can reduce the perceived temporal coherence of the video. Temporal coherence in a video
sequence is the consistency of the objects between frames that allows for the perception of smooth motion. Evi-
dence suggests that the human visual system (HVS) extrapolates the current visual stimulus to predict location
of objects in the next perceived moment.® In compressed digital video, distortions can cause inconsistencies be-
tween the perceived motion and the expectations of the HVS. For example, motion compensated video encoders
can create prediction errors in which a moving object leaves a trail of residual pieces of itself as it moves across
the frame. This results in spatial distortions which are temporally correlated with relevant objects in the video.

Viewers track relevant, moving objects and are more sensitive to distortions in and around these objects.’
These types of distortions reduce the observer’s ability to identify coherent motion and can affect the perceived
quality of the video. If the distortions are in regions important for ASL communication (e.g. a signer’s hands),
then the overall intelligibility may also be reduced. Seshadrinathan et al. use an estimate of the optical flow of a
video sequence to model such temporal distortions and demonstrate improvements in video quality assessment.®

Reductions in frame rate can also disrupt temporal coherence. In ASL video, frame rate reductions can
obscure the linguistically relevant movements and will significantly affect intelligibility. Several studies have been
performed to understand the effect of reduced frame rate on ASL comprehension. Parish et al. described an ASL
sequence as a series of events.!! For example, in an ASL sequence, an event may be moving a signing hand from
one position in space to another. Parish generated reduced frame rate sequences of individual signs that were
either subsampled at a constant rate or subsampled by selecting frames corresponding to event boundaries. This
work demonstrated that by preserving event boundaries, observers were more likely to identify signs correctly.
Harkins et al. also found that for individual signs, reductions in frame rate had little impact on the observer’s
intelligibility; recognition accuracy was greater than 91% at 6 fps.!? However, these intelligibility experiments
were performed for individual signs.

In the same study, Harkins et al. found that for fully formed sentences, recognition accuracy dropped
significantly at frame rates below 10 fps. Cherniavsky et al. performed a study that varied the frame rate of
fingerspelling segments versus signing segments of an ASL conversation.!® Fingerspelling in ASL occurs when
each letter of a word is explicitly spelled and is typically used for proper nouns and other words with no associated
sign. In this study, periods of signing were presented at frame rates of 5, 10, and 15 fps. Periods of fingerspelling
were presented with increased frame rates, e.g. when signing was 5 fps, fingerspelling was either 5, 10, or 15 fps.
The results suggest that the overall intelligibility of a sequence depends more on the frame rate during signing
than during fingerspelling.

The previous work demonstrates that conversational ASL is less robust to reductions in temporal resolution
than individual signs. This implies that relevant events contained in subtle facial expressions are no longer
perceptible at low frame rates. Hooper et al. analyzed the effects of frame rate on learner comprehension
and drew similar conclusions.'* In a full sign language conversation, as frame rate is decreased, contextual
information in facial expressions tends to be lost more quickly than the information contained in larger hand
movements.

This work aims to quantify the reduction in intelligibility caused by disruptions to the temporal coherence
of sign language in two ways. Spatial distortions that inhibit an observer’s ability to track the relevant motion
in ASL video are identified and incorporated into an objective intelligibility measure. A subjective experiment
is performed to quantify the relationship between intelligibility and frame rate reductions for conversational
ASL video and to determine if this relationship is consistent for multiple levels of spatial fidelity. The results
of this subjective experiment are incorporated into the objective intelligibility measure, resulting in a single
measure which unifies temporal disruptions caused by both compression artifacts and frame rate reductions.
This objective measure exhibits high correlation with experimental subjective intelligibility data.
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This paper is organized as follows. Section 2 describes an intelligibility measure developed in the authors’
previous work, which is based only on spatial distortions in the signer’s face and hands. Section 3 presents a
method for identifying and quantifying motion-compensated compression artifacts that reduce the appearance of
smooth, coherent motion and improving the intelligibility measure. Section 4 details the experiment performed
and presents a model for the impact of frame rate on intelligibility.

2. A SPATIAL INTELLIGIBILITY MEASURE

The intelligibility of ASL depends both on the spatial fidelity of the signer’s face and hands and on the accurate
representation of the linguistically relevant motion. In a previous study, an objective measure of intelligibility
was developed based solely on the quality in the signer’s face and hands.”

The sign language videos used in this previous study were recorded at a resolution of 320x240 pixels and a
frame rate of 30 fps. The video coding was done using x264, an open-source, standards-compliant implementation
of the H.264/AVC codec. Three different coding parameters were adjusted to create the compressed video:
bitrate, frame rate, and region-of-interest (ROI) rate allocation. Three bitrates (15 kbps, 20 kbps, and 25 kbps)
and two frame rates (10 fps and 15 fps) were selected for this study.

Taking into account the importance of details in a signer’s face, the ROI rate allocation scheme allows for
an increase in the signal fidelity of that region. A fixed region was defined for an entire video sequence around
the signer’s face, and that region is coded using a lower quantization parameter (QP). For the study, three QP
offsets were applied: 0, -6, and -12. Because the sequences were encoded at a fixed bitrate, there is a trade-off
between the bits allocated to the face region and the bits allocated to the rest of the frame; as fidelity around
the face increases, the fidelity in the rest of the frame decreases.

It is important to note that the test sequences used in this study did not exhibit substantial disruptions in
temporal coherence. While two frame rates were evaluated, they were treated as separate data sets and the
spatial intelligibility measure was evaluated on each set independently. Furthermore, the ROI coding scheme
scheme improves the quality around the face but still allocates sufficient rate to other non-face regions.

At a fixed frame rate and in the absence of severe temporal artifacts, subjective intelligibility can be predicted
from the objective intelligibility measure as described in Equations 1 and 2, where D" atial is the weighted sum
of mean-squared-error in the face and hands for an individual frame and Ispqtia1 is the objective intelligibility of
an entire sequence, averaged over N frames. The face and hand pixels in each frame are identified by applying
a classifier cascade for face detection'® and skin color segmentation for hand detection.”

DPl — WpDp + Wy Dy (1)

2552

D;patial (n)

N
1
Lspatial = N Zl 101og; (2)

The optimal weights, in terms of correlation with subjective data, are Wr = 0.6 and W = 0.4. These values
are consistent with the linguistic structure of ASL. Facial details add a significant amount of information to the
conversation and ASL observers fixate on this region. Distortions in the face have a greater impact on the overall
intelligibility. However, because this measure is based purely on the spatial distortions in the signer’s face and
hands, it cannot account for compression artifacts that reduce temporal coherence, e.g. temporally correlated
distortions or reductions in frame rate. In the following two sections, this intelligibility measure will be extended
to incorporate the effects of these temporal artifacts.
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3. INCORPORATING TEMPORAL COHERENCE INTO AN OBJECTIVE
INTELLIGIBILITY MEASURE

The perception of coherent motion in sign language video can be hindered by certain types of spatial compression
artifacts. These artifacts are a consequence of applying the purely spatial measure of intelligibility to a motion-
compensated video encoder. The distortion model in Equation 1 was applied to a rate-distortion optimization
procedure within the H.264 standard.! In this encoder, the macroblocks of each frame in an input ASL sequence
are labeled as face, hand, or background. Because the distortion measure in Equation 1 does not include any
background distortions, macroblocks labeled as background will be encoded at the lowest possible rate. As a
result, background macroblocks will have very large distortions when compared to face and hand macroblocks.

Modern video coders, such as MPEG-2 and H.26x, use motion compensation to exploit temporal redundancies.
To achieve very low rates, coded macroblocks (blocks of 16x16 pixels) in a frame can simply be skipped, i.e.,
not coded at all. The co-located macroblock in the previous frame is copied to the current frame. In the sign
language optimized encoder, nearly all background macroblocks are skipped in order to encode them with as
little rate as possible. However, if a particular macroblock contains a face or hand in one frame and contains only
background in the next frame, encoding the background in this way creates distortions that negatively affect
the temporal coherence of a sequence. When these background macroblocks are skipped, residual pieces of the
face and hand remain in the macroblock. An example of a frame with many residual face and hand macroblocks
is provided in Figure 1(b). These residuals will remain in the frame until the macroblock is once again labeled
as face or hand. Fluent ASL observers commented that these types of artifacts made it difficult to follow the
hand trajectory and to focus on the signs. Because these distorted macroblocks are temporally correlated with
relevant objects, they interrupt the temporal coherence of relevant motion in the ASL sequence.

The intelligibility measure in Equation 1 is unable to account for these problems because it does not measure
distortions in background blocks. Properly integrating a temporal factor into the intelligibility measure presents a
challenge. The distortions in background blocks that particularly disrupt temporal coherence must be accounted
for without over-emphasizing the importance of distortions in less relevant regions of the frame. This is done by
identifying only those blocks that contain residual face and hand artifacts.

In addition to face, hand, and background macroblocks, a fourth macroblock type is defined. A co-located
block that contains a face or hand in frame n — 1 and contains only background in frame n is labeled as NewBG.
Unlike the number of face and hand blocks, the number of NewBG blocks in a given frame will vary with frame
rate. At lower frame rates, the time difference between frames is larger and the hand moves a farther distance.
As a result, there will be more NewBG blocks in each frame. For example, at 60 fps, the NewBG blocks occupy
only 1% of the frame on average while at 6 fps they occupy 6% of the frame. If these NewBG blocks are not
allocated sufficient rate, they will contain substantial artifacts.

The reduction in intelligibility caused by these artifacts is quantified by measuring the distortion only in
NewBG blocks which contain residual face and hand artifacts. NewBG blocks that do not contain face and hand
artifacts are treated as all the other background blocks. Distortions in these blocks do not contribute to the overall
intelligibility value. In order to differentiate these two cases, the blockwise correlation coefficient is computed for
each NewBG block. The correlation is measured between the two co-located blocks in the compressed frames n
and n — 1. If the new background block was coded, the correlation will be low. If the current block was simply
copied from the previous frame and contains residual hand or face artifacts, the correlation will be close to 1.
The H.264 encoding standard applies a deblocking filter to the coded video at macroblock boundaries. If the
deblocking filter is not used, the correlation between skipped, co-located blocks will be exactly equal to 1. It was
empirically verified that a threshold of 0.9 was able to account for the changes caused by the deblocking filter.
The correlation coefficient is used to differentiate between NewBG blocks that were skipped and NewBG blocks
that were coded.

The distortions that impact temporal coherence are quantified by D™ oral as in Equation 3, where

Dyewpayr and DyewBa,, are the mean-squared-error in NewBG blocks that were previously face or hand blocks,
which have a blockwise correlation greater than 0.9. Wr and Wy are the same weights that are applied in Equa-
tion 1. As previously described, these weights are supported by the structure of ASL and distortions around the
signer’s face will have a greater perceived impact. This yields a new measure of objective intelligibility which
includes the correlated distortions in background blocks, as described in Equations 4 and 5.
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(a) New background blocks coded. I = 31.8 dB (b) Background blocks not coded. I = 26.6 dB

Figure 1. Comparison of three types of background qualities. Intelligibility is unaffected when background distortions
are small or are uncorrelated with co-located blocks in the previous frame. Intelligibility is reduced when compression
artifacts disrupt the temporal coherence of motion.

Dw;emporal — WFDNewBGF + WHDNewBGH (3)
DI _ D;patial + D;Cmporal (4)
N
1 2552
N; 510 Dy (n) (5)

Intuitively, new background blocks with high correlation will have a stronger impact on overall intelligibility.
Blocks with large distortions but very low correlation will not effect intelligibility, allowing for large distortions
in the background as long as they are not caused by residual pieces of the face or hands. This is illustrated in
Figure 1. Figure 1(a) has both low distortion and low correlation in new background blocks. Figure 1(b) has
very high distortion and high correlation, resulting in a large reduction in intelligibility.

4. QUANTIFYING INTELLIGIBILITY REDUCTIONS CAUSED BY REDUCED
FRAME RATE

In addition to spatial compression artifacts that affect the perception of motion, reductions in the overall frame
rate of a video sequence can have a significant impact on intelligibility. A study was performed in order to
quantify how changes in temporal resolution affect an observer’s ability to understand sign language stories
and to determine if these changes are consistent at different bitrates. The results of this study are used to
parameterize a model for the change in intelligibility as a function of frame rate. This model is verified on a
separate test data set.

4.1 Experiment Methodology

A study was designed to quantify subjective intelligibility of ASL videos at varying levels of quality and at a
range of frame rates. Videos were displayed to participants on an HTC Apache pocket PC with a screen size of
2.8” diagonally and resolution of 240x320 pixels, in order to simulate a mobile sign language conversation. The
display on the mobile device was set to the maximum brightness. Participants were given permission to hold
the device or set it on a table and were not constrained to a fixed viewing distance. A total of 18 individuals
participated in this study. All the participants were fluent in ASL.
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Table 1. Average bitrate at each combination of encoding parameters. Because the objective intelligibility measure of

each frame was held constant, increasing the frame rate results in an increase in bitrate.

Frame Rates
Intelligibility 6 | 75 | 10 [ 15 [ 20
32 dB (High) | 19.8 kbps | 23.1 kbps | 27.8 kbps | 35.8 kbps | 42.3 kbps
28 dB (Medium) | 10.6 kbps | 12.4 kbps | 15.1 kbps | 19.5 kbps | 23.1 kbps
26 dB (Low) | 7.8 kbps | 9.1 kbps | 11.1 kbps | 14.4 kbps | 17.1 kbps

(a) High Intelligibility: 32 dB

(b) Medium Intelligibility: 28 dB

(c) Low Intelligibility: 26 dB

Figure 2. Sample frame taken from videos at each of the three levels of objective intelligibility.

A collection of 16 stories were filmed at the University of Washington at a resolution of 1280x 720 pixels and
a frame rate of 60 progressive fps. The videos were cropped and downsampled in order to match the resolution
of the testing device. On average, the stories were approximately 50 seconds long. All the stories were filmed
and displayed in color.

The videos used in the study were encoded according to the H.264 standard using a modified version of the
x264 open source encoder. The encoder was modified to use Equation 5 within a rate-distortion optimization
setting. The encoder selects quantization step sizes and encoding modes for each macroblock in order to maximize
objective intelligibility.!

The videos were encoded at three different values of spatial intelligibility, as defined in Equation 5. Specifically,
values of 32, 28, and 26 dB were used in the study. An objective score of 32 dB corresponds to a video that would
be rated as easy to understand. A score of 26 dB corresponds to a video that would be difficult to understand. In
order to accurately quantify the effect of frame rate on intelligibility, the intelligibility measure was held constant
for each frame in a sequence, regardless of the encoding frame rate. Therefore, changes in subjective ratings
can be attributed solely to changes in frame rate. A multi-pass encoding approach was used to ensure that each
frame in the video sequence had the same objective intelligibility value. As a result, the videos are encoded at a
variable bit rate rather than a constant bit rate.

For this study, 5 different frame rates were selected: 20, 15, 10, 7.5, and 6 fps. All the frame rates chosen
were integer fractions of the original 60 fps recordings: 3, 4, 6, 8, and 10 respectively. The highest possible frame
rate was limited by the playback capabilities of the testing device. The cell phone used for the study could not
consistently play videos above 20 fps without dropping frames. As demonstrated by both Foulds'® and Harkins
et al.,'? individual signs can be identified with high accuracy at frame rates as low as 6 fps.

Each video was prepared at all 5 frame rates and encoded at one of the three levels of intelligibility. Videos were
assigned to each level such that an observer’s total viewing time for each level of intelligibility was approximately
the same. The average bitrate of the sequences at each combination of encoding parameters is given in Table
1. Figure 2 provides a sample frame taken from a video at each level of intelligibility and illustrates the visual
differences in quality.

During the study, participants first watched two training videos representative of the highest and lowest
quality they would see throughout the study. Participants then watched a unique video at each combination of
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Table 2. A measure of the goodness of the fit (R?) for each frame rate and the parameters corresponding to the linear fits.
R? is relatively unaffected by fixing the slope and fitting only over the intercepts. Fixing the slope provides a consistent
model of subjective versus objective intelligibility at every frame rate.

’ | Frames per Second | 6 | 7.5 | 10 [ 15 [ 20 |

Model parameters and correlation R?>] 086 | 0.78 [ 0.67 | 0.63 [ 0.77
coefficient for independent linear Slope (m) | 0.210 | 0.308 | 0.264 | 0.287 | 0.292
fits at each frame rate Intercept (b) | -6.53 | -9.15 | -7.42 | -8.00 | -7.97
Model parameters and correlation R>[ 079 | 077 | 0.67 | 0.63 | 0.77
coefficient for linear fits with slope Fixed Slope (m) | 0.272 | 0.272 | 0.272 | 0.272 | 0.272
fixed across frame rates Intercept (b) | -8.28 | -8.11 | -7.64 | -7.61 | -7.40

frame rate and spatial intelligibility, resulting in a total of 17 observations. Following each video, participants
were asked “How easy or how difficult was it to understand the video?” and responded on a 5-point scale.

4.2 Modeling Objective Intelligibility as a Function of Frame Rate

Individual participants’ responses are converted to z-scores and the linear fit between subjective responses and
the objective intelligibility measure from Equation 5 is calculated for each frame rate independently. The average
linear correlation across the frame rates is 0.86. The value of R? (which is interpreted as the goodness of the fit)
and the model parameters of the linear fits are summarized in Table 2.

The slope of the fits is relatively consistent at each frame rate. Fixing the slope to be the mean of the slopes
of each individual fit (i.e., 0.272) and performing the regression only by varying the intercept results in very
little reduction in the goodness of the fit. Since fixing the slope has little impact on the correlation, it is fair to
assume that a fixed slope model is equally plausible. Such a model is intuitively pleasing, as it implies that the
relationship between the objective intelligibility measure and subjective intelligibility ratings is consistent across
frame rates. The loss of linguistically important motion as frame rate is reduced can be modeled by an offset of
the intelligibility measure, as in Equation 6, where I is taken from Equation 5,

I(framerate) = I — f(framerate) (6)

At very high frame rates, this offset is likely to be very low and intelligibility will be a function of only the
distortion types computed by I. At extremely low frame rates, this offset is likely to be very high and intelligibility
will be low regardless of the frame level quality.

The amount of information loss is a function of frame rate and is parameterized by the subjective data. The
linear fit between subjective and objective intelligibility can be written as

Intellyp; = m(I — f(framerate)) +b (7)
mI 4+ b—mf(framerate) (8)

where m = 0.272 is the slope and b = —7.40 is the intercept at 20 fps taken from Table 2. The slope and
intercept are fixed in order to model the difference in intelligibility between frame rates. At frame rates higher
than 20 fps, all the relevant motion in ASL is being accurately captured. By definition, f(framerate) is equal

to 0 at 20 fps. The reduction in intelligibility at each of the test frame rate lower than 20 is computed using the
b(20)=b(framerate)
pn .

An inverted sigmoid model is fit to this experimental data. A sigmoid is selected to model f(framerate)
because the gains (or reductions) in intelligibility converge as frame rate increases (or decreases). For frame
rates below 6 fps, the subjective ratings are unlikely to get any worse; videos at these frame rates are completely
unintelligible. Similarly, there will be little gain in intelligibility by increasing the frame rate beyond 20 fps. The
value of the intelligibility offset is modeled as

intercepts in Table 2 as

f(framerate) = aq * (1 - 6_6a2+a3f> ; (9)
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(a) Sigmoidal fit of frame rate reduction to intelligibility.  (b) Objective intelligibility versus subjective ratings for
R? = 0.93 for this model. Error bars indicate the 95%  complete data set.
confidence intervals.

Figure 3. The offset calculated from the sigmoidal fit in (a) is applied to the measured objective intelligibility. The linear
fit on the entire data set (all frame rates) achieves a correlation coefficient of 0.853, as illustrated in (b).

where a1 controls the upper asymptote, as and ag control the convergence locations and growth rate, and f is
the frame rate in frames-per-second.

The resulting fit achieves R? = 0.93 and is plotted in Figure 4.2(a), with values of a; = 3.2, ay = 4.6,
az = —0.55. While the point at 15 fps is the largest outlier, it is still within the 95% confidence interval.
New objective intelligibility values are computed using the formula I — f(framerate) and are compared with
the subjective intelligibility scores over all the frame rates simultaneously. The frame rate modified objective
measure achieves a linear correlation coefficient of 0.85 with the subjective responses, as illustrated in Figure
4.2(b).

4.3 Verification Using an Independent Test Set

The data from the experiment described in Section 2 is used as a test set to verify the effectiveness of the proposed
model at predicting intelligibility consistently at different frame rates. In the test data set, the objective measure
of intelligibility in Equation 5 is highly correlated with subjective ratings within a single frame rate. Furthermore,
the slope of the linear relationship between objective and subjective intelligibility was virtually identical for the
10 and 15 fps data sets. This result is consistent with the findings presented in Table 2. Figure 4(a) illustrates
the linear relationship for the 10 and 15 fps data sets separately.

The frame rate offset function is applied to the test set data in order to unify the multiple frame rates. The
resulting unified data set achieves a Pearson correlation coefficient of 0.88. Figure 4(b) illustrates the linear
relationship of the complete data set. The high correlation on both the test set and the original data set used to
parameterize the model indicate that the proposed sigmoidal model effectively characterizes the impact of frame
rate on intelligibility.

5. CONCLUSION

An objective measure of intelligibility for American Sign Language video was presented, which analyzes both
distortions in the signer’s face and hands and distortions which reduce the temporal coherence of the video.
Disruptions to the temporal coherence are quantified in two ways. First, background macroblocks that are
highly correlated with co-located face and hand macroblocks in previous frames have a significant impact on the
perception of smooth motion. These macroblocks are identified using the block-level correlation. Intelligibility is
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Figure 4. The frame rate offset model in Figure 3(a) is applied to a test data set consisting of videos at 10 and 15 fps. The
independent linear fits for each frame rate is illustrated in (a). The model successfully combines intelligibility at different
frame rates, as demonstrated by the high correlation coefficient in (b).

measured independent of frame rate as the log of the weighted summation of the mean squared error in correlated
background macroblocks and in the signer’s face and hands.

Second, a subjective experiment was designed in order to quantify the loss of information due to reductions
in frame rate. The objective intelligibility measure is offset by an amount that is dependent on the frame
rate of the sequence. The frame rate offset function is modeled by a sigmoidal function, and, by incorporating
this frame rate offset, the objective intelligibility measure achieves a Pearson linear correlation of 0.85 on the
training experimental data set and 0.87 on an independent test data set. The effect of variable frame rates
and intermittent frame drops are currently being explored. According to the linguistic structure of ASL, not
all frames will contain the same level of information. For example, if the dropped frames contain a relevant
facial expression, intelligibility will be more affected than when the dropped frames contain only manual signs.
Work is being done to automatically detect the linguistically relevant frames in order to improve the objective
intelligibility measure.
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