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ABSTRACT 

Most data streams usually are multi-dimensional, high-speed, and contain massive volumes of continuous information. 
They are seen in daily applications, such as telephone calls, retail sales, data center performance, and oil production 
operations.  Analysts want insight into the behavior of this data. They want to catch the exceptions in flight to reveal the 
causes of the anomalies and to take immediate action. To guide the user in finding the anomalies in the large data stream 
quickly, we derive a new automated neighborhood threshold marking technique, called AnomalyMarker. This technique 
is built on cell-based data streams and user-defined thresholds. We extend the scope of the data points around the 
threshold to include the surrounding areas. The idea is to define a focus area (marked area) which enables users to (1) 
visually group the interesting data points related to the anomalies (i.e., problems that occur persistently or occasionally) 
for observing their behavior; (2) discover the factors related to the anomaly by visualizing the correlations between the 
problem attribute with the attributes of the nearby data items from the entire multi-dimensional data stream. Mining 
results are instantaneously presented in graphical representations (i.e., tooltip) for the user to zoom into the problem 
regions.  Different algorithms are introduced which try to optimize the size and extent of the anomaly markers. We have 
applied this technique with success to detect data stream anomalies in large real-world enterprise server performance and 
data center energy management.   

Keywords: Large Data Streams, Multi-Dimensional, Visual Correlation Queries, Anomaly Markers. 

1. INTRODUCTION 

A continuous data stream is a sequence of data items that is ordered by time. They are usually collected in real-time. 
Most data streams are high speed and multi-dimensional with massive volumes of information. Data streams contain 
highly valuable information and occur in many different applications, such as telephone calls, financial data (stock data 
or credit card transactions), oil production operational data, energy management data, server performance data, and 
network monitoring. Business analysts and administrators need to analyze the data streams to understand their business 
and service performance. They want to quickly identify patterns, trends, and exceptions in a single view instead of from 
many windows. The administrator also wants to catch anomalies in flight to reveal the causes and to take immediate 
action before the system consumes too many resources. Examples of anomalies are: an extremely busy data warehouse 
server, an overheated temperature sensor in a data center, and a low oil production well.  

Novel methods are needed to enable the users to get an overview of large data streams and the ability to analyze patterns 
and trends. To guide the user to quickly identify anomalies we need to address the following issues: 

 How to provide a single view for users to visualize interesting information from large complex data streams? 

 How to extend the marked anomaly area to include interesting data items in the nearby time series for analyzing 
their behavior (i.e., does the problem occur persistently or occasionally)?  

 How to find the root-cause of an anomaly? What are the related factors from the streams? 

2. RELATED WORK 

2.1 State of the Art 

Visual analytics on large data streams is an emerging technology. Most visual analytics techniques are still limited to the 
presentation of a few hundred or thousand items and display screens are filled up quickly with the incoming data stream. 
One early approach to deal with this problem with high-density displays is Eick’s SeeSoft [1]. Eick allowed users to 
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analyze up to 50,000 lines of code simultaneously by mapping each line of code into a thin row allowing the users to 
find interesting patterns. Later Eick addressed high-density display issues in his Visual Scalability paper [2]. 

Afterwards, Ben Schneider man’s Time Searchers [3, 4, and 5] developed three well-known interactive visual 
exploration techniques for large time-series. In TimeSearcher 1, users with the use of the Time box are able to define a 
pattern and search for similar patterns throughout the data. TimeSearcher 2 extends TimeSearcher 1 by allowing a 
visualization of long time series (>10,000 data points). TimeSearcher 2 provides the ability to view multivariate time 
series data by showing up to ten simultaneous plots on the same screen. TimeSearcher 3 adds the ability of forecasting. 
The forecast is represented graphically as a river plot showing statistical information about similar patterns.  All three 
visualization techniques begin with an overview and allow the user to zoom into the areas of interest.  The TimeSearcher 
applications for large time series data are financial and medical systems.    

The scalability of time series displays may be maximized by resorting to the pixel level. In [9], a recursive scheme which 
maps sets of time series to color-coded raster pixel displays is introduced. In [6], Yost and North describe the results 
from their visualization scalability study. It shows that by using a combination of perceptual abilities and navigation, 
users were able to effectively visualize more data on a large display. In [10], Munzner sacrifices visual details for display 
capacity. In our own previous work [7, 11, 12], we address the problem of space-filling visualizations of many moderate 
length time series using cell-based multi-resolution techniques.  

2.2 Our Contribution 

Following the above methods, our research provides overview and detailed views of the performance of the data streams. 
In addition, for the stream visualization, we introduce three important visualization techniques: (1) avoiding overlapping; 
(2) detecting whether anomalies are persistent or occasional; and (3) performing some correlation analysis to detect root 
causes or related factors. To avoid overlapping, instead of using a conventional line chart (Fig. 1), we use a cell based-
time data stream (Fig. 2) to show 7,701 observation values in a single view. Users can easily navigate through the cells 
and drilldown for the details.  

One important question is how an anomaly develops over time. Is it persistent or occasional? For example, in a data 
center containing hundreds of servers, the administrator wants to know if server utilization for some of the servers 
becomes enormously high and whether that situation persists for some time. In so, the administrator might want to do 
better load balancing among the servers. One common method is to mark each individual threshold (small rectangles in 
Fig. 2), but this is insufficient for the analysts to detect the persistency of the anomaly.  Once the users identify the 
anomalies, they want to find any correlations between the problem attributes and the attributes of the entire multi-
dimensional data stream which might impact the anomaly. The solutions to both problems are described in Sections 3 
and 4. 

Fig. 2:  A new-cell based time series data stream using individual threshold marking 

Visualize 28 days worth of network monitor probes from one server resulting in 7,701 observation values shown in Fig. 1. Each 
observation is represented by a color-cell. The color of a cell represents the value of an observation. Cells are arranged from bottom to 
top (column) and left to right. This color-cell data stream visualization is able to display each observation without losing information. 
Each data item which exceeds the user-defined threshold is marked by a small rectangle to guide the user to detect anomalies in the 
streams.   
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Fig. 1:  A conventional time series data stream with overplotting 
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-  Each data stream contains all the cells (data points) 
from 5:00 to 14:55.  
- Each cell represents a data point showing Server 
Busy% at 5-minute intervals.   
- Cells are arranged from bottom to top and left to 
right according to the time values.  
- The color of a cell is the value of server busy%. 

Fig. 3B: A data stream time series 
at SYS 3, Server 3 

Fig. 3A:  A cell-based time series visual analytics 
 showing a large enterprise data warehouse server performance  

(8 SYS x 16 Server, total 128 data streams) 
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3. OUR APPROACH 

To detect anomalies from the real-time large multi-dimensional data streams, the approach consists of three iterative 
steps:  

Step 1:  Continuously layout the incoming data stream in a cell-based high-resolution display.  
Step 2: Mark the incoming data points which exceed the user-defined threshold. Then optimize the scope of the 

marked area to include nearby marked areas using our AnomalyMarker algorithm. 
                  Step 3: Enable users to perform visual query [8] to find the relationship of problem attributes with the other 

attributes in the stream; then present the mining results (i.e., persistency and correlations) from the marked 
areas in an interactive visual representation (i.e., tooltips) for finding the impact factors.  

3.1 Cell-Based Visualization of Data Streams 

Fig. 3A illustrates an enterprise data warehouse server performance data stream. There are 8 systems (SYS 1 to SYS 8). 
Each system has 16 servers (0 to 15). Each server has a cell-based time series. Each cell represents a record showing 
server busy% at 5 minute intervals. The new data streams will be read in and added to the end of the time series (right 
side of each time series).  In Fig. 3A, users can visually compare 128 time series (each block) to analyze changes, 
patterns, and exceptions at a glance. Measurement time is from 5:00 to 14:55. The 128 parallel servers have very similar 
busy patterns. The workload has been evenly distributed among servers except for a few servers which show more red 
(e.g., Server 8 in SYS 1; Server 3 in SYS 3). In Fig. 3A, the administrator is able to instantaneously identify that Server 
3 in SYS 3 has the highest busy % (red).    

 

 

 

 

 

 

 

3.2 Enlarged Anomaly Marker 

To detect anomalies in data streams, this paper introduces a new technique, called AnomalyMarker.  This technique first 
marks the data points exceeding a user-provided threshold and then combines adjacent data points and previously 
marked areas into larger marked areas. This is different from just marking each data point which exceeds the threshold 
as shown in Fig. 2 in that it enlarges the scope of data points for (1) visualizing the anomaly persistency, and (2) 
visualizing the anomaly correlations with the other attributes for root-cause discovery (described in section 3.3). 

To enlarge the individual threshold marked areas, we use the above SYS 3, Server 3 (Fig. 3B) real-world data stream to 
illustrate the following three-step process in Fig. 4:  
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Step 1: Combine vertically adjacent marked cells 
such as cells A1-A4, A5-A6, A7-A10, A12-A14, and 
A16-A17 to enlarge marked areas. A11, A15, and 
A18 are single cell marked areas.  

SYS 3, Server 3 

Combine 

Step 2: Combine horizontally adjacent cells including 
the time continuous cells in between markers, such as: 
combine A11 to the marked area A7-A10 including 
cells between A10 and A11. Combine A15 to the 
marked area A12-A14 including cells between A14 and 
A15.   

A4 

A3 

A2 

A1 

A6 

A5 

A10 

A9 

A8 

A7 

A11 

A17 

A16 

A14 

A13 

A12 

A15 

A18 

A4 

A3 

A2 

A1 

A6 

A5 

A10 

A9 

A8 

A7 

A11 

A17 

A16

A14 

A13 

A12 

A15

A18 

SYS 3, Server 3 

Fig. 4: Three-Step Combining Process to Enlarge Marked Anomaly Areas  

Combine 

Step 3: Combine all horizontally adjacent marked areas, 
such as A7-A11, A12-A15, A16-A17, and the single marked 
cell A18.  

The resulting graph shows the final three marked areas: 
   
         marked area 1:  A1-A4     (occasional anomalies) 
         marked area 2:  A5-A6     (occasional anomalies) 
         marked area 3:  A7-A18   (persistent anomalies) 

 

Note:  
Persistent anomalies:  multiple anomalies happened in a short 

period of time. 
Occasional anomalies: anomalies happened once a while.  
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As a result of combining the anomaly marked areas, administrators are able to identify the enlarged area (e.g., marked 
area 3) has the most anomalies and happened persistently in a short period of time. The cause of these persistent 
anomalies could seriously impact operations in the data warehouse.  However, the anomalies in the marked area 2 (two 
consecutive occurrences) are occasional and could be ignored. 
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3.3 Automated Visual Correlation Query 

Streaming data is multi-dimensional with many different factors and analysts often want to know how these factors 
impact each other.  An enlarged marked area provides a focus area for users to analyze the correlation between the 
problem attribute and other attributes from the entire data stream. Intelligent visual analytic queries have been introduced 
in our previous work [8].  Instead of using a rubber-banding technique to select the focus area, we use a marked area for 
correlation analysis. When the user moves the mouse over the marked area, the anomaly attribute (e.g., Server Busy%) 
will be compared automatically with the other attributes (i.e., Disk Usage, Memory Usage, etc.) in the same time period, 
as shown in Fig. 5A. The mining result will be instantaneously presented in an interactive tooltip as shown in Fig. 5B 
with a computed correlation coefficient [8].  

Fig. 5B illustrates that server busy% is highly correlated with the attribute DIS (Disk Usage) during the time 10:00 to 
14:05.   The Busy% data points (black) and the corresponding disk usage data points (blue) change at the same pace. 
Users are able to interact with the data points in the line chart (Fig. 5B) to analyze the details.  With the correlation 
visual analysis tooltip, analysts are able to interactively spot and identify the source of a problem. The calculation time in 
the example takes about 361 milliseconds. Developing these insights by a manual search would have taken much longer 
time, since the administrator would have had to search through many pages of tables or charts. 

 

 

 

 

 

- Busy% line chart in black to show 12 data points which exceed 
the Busy% > 90 (persistent anomalies). 

- A blue line chart with the corresponding 11 high  DIS data points. 
-  Show high correlations between Busy% and DIS (Disk Usage) 

with the same change pace. 

 Display the correlation query mining result in a tooltip 

- mouse over a server busy marked area 
from 10:00 to 14:05 

- get the corresponding data points in the 
other attributes (e.g., disk usage, 
memory usage, etc.)  

Fig. 5A: A data stream time series at Sys 3, 
Server 3 with different attributes (e.g., Server 
Busy%, Disk Usage, and Memory Usage) at 
the same time period in the streams. 

 

(Disk Usage) 

From 10:00 to 14:05 

Busy%>90 

visually compare the 
correlation between 

Busy% and other 
attributes in the data 

streams  
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Disk Usage (DIS) 

start 10:00 
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Perform 
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Fig. 5B: An anomaly marker visual analysis showing 
some correlations between Server Busy% and Disk 
Usage (High Disk Usage could result in Server 
Busy) 
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4. ANOMALY MARKER ALGORITHMS 

In this section, we introduce three variants of our anomaly marker algorithms. Fig. 4 illustrates the process of enlarging 
the anomaly marked areas using a server performance data stream example. The algorithms work as follows: In the first 
step, we mark all cells that are above the MarkingThreshhold. If there are any such cells (checked by the function 
MoreMarkersAvailable), in the second step we get the first two cells (in the time sequence) above the threshold and 
combine it with its direct neighbors. Direct neighbors are cells in the time sequence that are directly neighboring cells in 
the time-sorted order.  In the third step, indirectly neighboring cells are combined. This can be done in three different 
ways leading to three variants of the algorithm. 

 The first variant of our algorithms uses a visual criterion to combine indirect neighbors: Marked areas are combined if 
the marked areas intersect. The new marker width spans the total size of the two markers including the sequence in 
between. A problem of the first variant is that even two isolated marked cells which happen to be in the same row of 
neighboring columns may cause the two columns to be united into one large marked area (see Fig. 6B in the top left of 
variant 1 for an example). The second variant of the algorithm therefore only combines the marked cells if there is a 
minimum percentage (%MarkedCells) of cells above the MarkingThreshold within the combined marker 
(CombinedMarker(MA1,MA2)). This leads to more natural results (see Fig. 6B variant 2) but the cells above the 
threshold may still be multiple isolated events which is different from the situation where many cells within the marker 
are close to the threshold (see Fig. 6B variant 2).  Our third variant therefore combines the marked areas if the average 
value of the cells with the combined marker (AvgValueOfCells) is close enough (%Value) to the MarkingThreshold (see 
Fig. 6B variant 3). Note that MarkingThreshold, %MarkedCells and %Value are variables that the user can control 
interactively depending on the data and application. As shown in Figures 6A and 6B, the third variant of our Anomaly 
Marker Algorithm provides nice results, even for problematic cases. Please note that depending on %Value, different 
results are obtained. In Fig. 6A variant 3, a smaller value for %Value will lead to two markers instead of one. A problem 
of the two more elaborate variants of our algorithm, however, is that depending on the parameter settings two 
neighboring markers may touch (such as the two markers in the upper left corner in Fig. 6B variant 2 and 3) . This 
however is rarely visually confusing since the marked areas are clearly separated by non relevant cells. Confusing results 
may only occur for inappropriate parameter settings (such as too low values for %MarkedCells or %Value). 

Anomaly Marker Algorithm (Variant 1): 

FOR ALL Cells C DO    // Mark Cells 

      IF  Value(C)> MarkingThreshold  THEN  Mark(C)  ENDFOR; 

If MoreMarkersAvailable   // Only continue if Markers are available 

THEN  GetFirst(MA); 

If MoreMarkersAvailable THEN GetNext(NextMA); 

   REPEAT    // Combine direct neighbors 

WHILE DirectNeighborInSequence(MA, NextMA) DO 

    tmpMarker = CombinedMarker(MA,NextMA);  

            Add(tmpMarker); Remove(MA); Remove(NextMA); 

    MA = tmpMarker; 

 If MoreMarkersAvailable THEN GetNext(NextMA); 

   ENDWHILE; 

   MA = NextMA; 

   If MoreMarkersAvailable THEN GetNext(NextMA);    

UNTIL  NOT(MoreMarkersAvailable);   
REPEAT   // Combine indirect neighbors 

   FOR ALL Marked Areas MA1 and MA2 (neighbors in the time sequence) DO 

IF INTERSECT(MA1,MA2) THEN 

     Add(CombinedMarker(MA1,MA2); Remove(MA1); Remove(MA2); 

    ENDIF;  

   ENDFOR; 

 UNTIL  no markers are changed;   
ENDIF 
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Anomaly Marker Algorithm (Variant 3): 

. . .  // Mark Cells (as in algorithm 1) 

. . .  // Combine direct neighbors (as in algorithm 1) 

 
REPEAT 

      FOR ALL Marked Areas MA1, MA2 (neighbors in the time sequence) DO 

    tmpMarker = (CombinedMarker(MA1, MA2);  

                  IF AvgValueOfCells(tmpMarker) > %Value*MarkingThreshold   

                          THEN  

      Add(tmpMarker); Remove(MA1); Remove(MA2);   

    ENDIF; 

   ENDFOR; 

UNTIL no markers are changed; 

Anomaly Marker Algorithm (Variant 2): 

. . .  // Mark Cells (as in algorithm 1) 

. . .  // Combine direct neighbors (as in algorithm 1) 

REPEAT   // Combine indirect neighbors 

   FOR ALL Marked Areas MA1 and MA2 (neighbors in the time sequence) DO 

    tmpMarker = (CombinedMarker(MA1, MA2); 

If #MarkedCells(tmpMarker)/#Cells(tmpMarker) > %MarkedCells  

     THEN  

      Add(tmpMarker); Remove(MA1); Remove(MA2);   

    ENDIF;  

   ENDFOR; 

 UNTIL  no markers are changed;   
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Fig. 7 An overplotted time series line chart 
 (100 racks)  

 

5. A DATA CENTER TEMPERATURE MONITORING APPLICATION 

We have used the AnomalyMarker to detect anomalies in streaming data with success in many different real-world 
applications, such as enterprise data warehouse server performance analysis 
(as shown in Figures 3, 4, and 5) and data center sensor temperature 
monitoring.   

Today’s data centers are becoming the computational hub of the next 
generation of IT services. A typical smart data center usually has more than 
100 racks. Each rack has five sensors (T1, T2, T3, T4, and T5). The cooling 
air flows from T1 to T2, T3, T4, and T5. Within a rack, the temperature 
sensors (T1-T5) should be always kept in an ascending sequence, such as 
T1<T2<T3... The normal temperature should be below 38oC. Any 
temperature above 38oC will be considered an exception. With the advent 
of dynamic smart cooling and rack level sensing in today’s data center, the 
need for visual data exploration is growing. The common questions which 
data center administrators want to answer are: 

 What significant thermal events happened in the last few hours? 
 Which racks are overheated? What is the root-cause? 

Variant 2 

Fig. 6A: Anomaly Marker Algorithms – Example 1 

Fig. 6B: Anomaly Marker Algorithms – Example 2 

Variant 1 Variant 3 
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Fig. 8: Visual analytics of rack temperature anomalies 
in a data center 
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zoom Fig. 8A:  A single view of 100 racks (x-axis) data streams from hour 11-13 (y-axis) 
 Each rack has five sensors (T1-T5) displayed in a stacked window  

(Find: Rack EB1307 with Sensor T5 has the highest temperatures at hour 12) 

temperature 

rack id 

Fig. 8E:  Correlation Mining Results  
Showing: 
- Sensor temperatures T5 and T2 in the 

marked area change at the same pace. 
- T2>T5 (temperature out of sequence)   
- T5 has a negative correlation with T3.   
- T5’s high temperature could be 

impacted by T2. 
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Fig. 8D: Mouse over to perform visual correlation 
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Fig. 8B 
Rack EB1307 

Fig. 8C:  Combine the small marked areas 
12:00 12:30 

12:5912:44 

Fig. 7 shows an overplotted time series line chart using a conventional method. Administrators have difficulties in 
identifying which racks are overheated and what are the impact factors. To catch the overheated racks from a large 
multi-dimensional (e.g., sensors T1, T2, T3…) data stream, we need to employ a cell-based visual method to layout the 
entire data center racks, sensors, and  time series in a single view as shown in Fig. 8A. The x-axis contains 100 rack 
names. The y-axis is the measurement time (from hours 11 to 13 on 5/10) at 1-minute intervals. Each hour contains a 60 
time series (0-59 minute). The color represents the sensor temperature. From Fig. 8A, an administrator is able to 
recognize quickly that the data center was fairly hot in the hour 12 (most burgundy and some red), especially on the 
Rack EB1307.  To identify the root cause of the overheating, we apply the AnomalyMarker algorithm to facilitate the 
finding of the temperature anomaly areas (illustrated in Fig. 8B to Fig. 8E).  Fig. 8B shows the zoomed EB1307 data 
stream at the hour 12.  Fig. 8C shows the 90o rotation of the data stream with marked anomalies. Fig. 8D shows the 
enlarged marked areas after combining the nearby anomalies. Fig. 8E shows the mining correlation results after the 
administrator moves the pointer to the marked area to perform visual queries. The administrator can interact with the 
data points in the line chart (Fig. 8E) and find that T5 has a persistent high temperature above the threshold (>38oC) over 
a long period of time from 12:30 to 12:44. Also, the T5 temperatures are highly correlated with those of T2, a coefficient 
(0.89). But T5 has lower temperatures than T2, which indicates that the sensor temperatures are out of sequence. 
Another interesting observation is that the temperatures of T3 (green line chart) have the opposite correlation to those of 
T5. From these factors, the administrator is able to take immediate action to reduce the heat, such as adjusting the sensor 
T2 and T3 temperatures on rack EB1307. 
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6. CONCLUSION 

In this paper, we present an automated data analytics method, AnomalyMarker, to detect outliers or user-defined 
thresholds in large multi-dimensional data streams. This is a new concept that provides automated data detection 
methods and built-in data mining mechanisms to intelligently combine interactive visualizations with correlation analytic 
techniques. Depending on the applications and the size of the data stream, the anomaly combining algorithms optimize 
the size of the marked areas and return the most relevant markers to the analyst.  This framework can easily be extended 
by additional correlation and similarity metrics. The data points in the marked area are interactive for users to zoom-in 
on information to reveal the relationship across different attributes. We apply this technique to mine data relationships 
and root-causes of enterprise server performance and data center sensor temperatures. From the recent feedback of 
system administrators, this technique can be used to monitor and detect the anomalies of incoming data streams and to 
observe the initial and ending conditions, correlations, and persistency. Future research will include the automated 
selection of the best suited threshold and anomaly persistency for a given data stream.  
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