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ABSTRACT 

Our purpose was to develop a computer-aided diagnostic (CAD) scheme for detection of flat lesions (also known as 
superficial elevated or depressed lesions) in CT colonography (CTC), which utilized 3D massive-training artificial 
neural networks (MTANNs) for false-positive (FP) reduction. Our CAD scheme consisted of colon segmentation, polyp 
candidate detection, linear discriminant analysis, and MTANNs. To detect flat lesions, we developed a precise shape 
analysis in the polyp detection step to accommodate the analysis to include a flat shape. With our MTANN CAD 
scheme, 68% (19/28) of flat lesions, including six lesions “missed” by radiologists in a multicenter clinical trial, were 
detected correctly, with 10 (249/25) FPs per patient. 

Keywords: flat neoplasm, superficial elevated lesions, virtual colonoscopy, computer-aided diagnosis, missed polyps, 
massive training, artificial neural networks 

1. INTRODUCTION 
Colorectal cancer is the second leading cause of cancer deaths in the U.S. CT colonography (CTC) is a technique for 
detecting colorectal neoplasms by use of a CT scan of the colon. The diagnostic performance of CTC in detecting polyps 
(i.e., precursors of cancer), however, remains uncertain because of a propensity for perceptual errors. Computer-aided 
detection (CAD) of polyps has the potential to overcome this difficulty with CTC. A major challenge in CAD 
development is the detection of flat lesions (also known as flat polyps, superficial elevated or depressed 
lesions/neoplasms), because existing CAD schemes are designed for detecting the common bulbous polyp shape. Flat 
lesions in the colon are a major source of false-negative interpretations in CTC [1]; thus, detection of flat lesions by 
CAD is very important. Because flat lesions are also a source of false negatives in “reference-standard” optical 
colonoscopy [1], the detection of flat lesions would impact on colorectal cancer mortality. Some flat lesions are known 
to be histologically aggressive; therefore, the detection of such lesions is critical clinically [1,2]. One study showed that 
flat polyps contributed to 54% of superficial carcinomas [3]. 

Our purpose was to develop a CAD scheme for detection of flat lesions in CTC, which utilized 3D massive-training 
artificial neural networks (MTANNs) for false-positive (FP) reduction. 

2. METHODS 
2.1 Initial Polyp-Detection Scheme 

Our initial polyp-detection scheme consists of 1) colon segmentation based on CT value-based analysis and colon 
tracing, 2) detection of polyp candidates based on precise shape analysis on the segmented colon, 3) calculation of 3D 
pattern features of the polyp candidates, and 4) linear discriminant analysis (LDA) for classification of the polyp 
candidates as polyps or non-polyps based on the pattern features. 

2.2 Detection of Flat Lesions 

To detect flat lesions, we developed a precise shape analysis in the polyp detection step to accommodate the analysis to 
include a flat shape. To characterize a polypoid and flat shape, we employed the precise shape (PS) index and 
curvedness [4]. The PS index determines to which of the following nine topologic shapes: spherical cap, dome, ridge, 
saddle ridge, saddle, saddle rut, rut, trough, o spherical cup, the object belongs. A common bulbous polyp can be 
identified as a spherical cap in the PS index space, but flat lesions cannot. Flat lesions would range from dome to ridge 
in the PS index space. For detecting both bulbous polyps and flat lesions, we used spherical cap, dome, and ridge in the 
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PS index space. Because the PS index is independent of the scale of objects, we used curvedness (R), which represents 

the scale of objects. Curvedness is defined as 
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larger than that of bulbous polyps, we broadened the curvedness range to include the flat-lesion scale. By use of the 
above precise shape analysis based on the shape and scale space (PS, R), both bulbous polyps and flat lesions can be 
detected. We applied a fuzzy c-means clustering algorithm to the detected polyp candidates to group them. For 
determining the boundary of the polyp candidates, we applied the volume-growing technique based on the shape and 
scale space (PS, R) to the grouped candidates. We used the same concept of the precise shape analysis in volume-
growing to cover both bulbous polyps and flat lesions. Because of the broadening of the shape and scale in the 
morphologic analysis, we expect to obtain a larger variety of FP detections, such as stool, with flat shape and blunted 
folds. We reduce such a variety of FPs by using a “mixture of expert” 3D MTANNs. 

2.3 Architecture of a 3D Massive-Training ANN (3D MTANN) 

To process 3D CTC volume data, we developed a 3D MTANN [5] (Fig. 1) by extending the structure of a 2D MTANN 
[6-10]. The 3D MTANN consists of a linear-output ANN model [11-13] which is capable of operating on voxel data 
directly. The 3D MTANN is trained with input CTC volumes and the corresponding “teaching” volumes for 
enhancement of polyps and suppression of non-polyps. The input to the 3D MTANN is the voxel values I(x,y,z) in a sub-
volume VS extracted from an input volume. The output of the 3D MTANN is a continuous value, represented by  
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where NN{•} is the output of the linear-output ANN. The entire output volume is obtained by scanning of an input CTC 
volume with the 3D MTANN in 3D space.  

2.4 Training of a 3D MTANN 

For enhancement of polyps and suppression of non-polyps in CTC volumes, the teaching volume contains a 3D 
Gaussian distribution with standard deviation σT.  This distribution represents the “likelihood of being a polyp” for a 
polyp and zero for a non-polyp: 
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A 3D Gaussian distribution is used to approximate an average shape of polyps.  The expert 3D MTANN involves 
training with a large number of subvolume-voxel pairs; we call it a massive-subvolumes training scheme.  For enriching 
the training samples, a training volume, VT, extracted from the input CTC volume is divided voxel by voxel into a large 
number of overlapping sub-volumes.  Single voxels are extracted from the corresponding teaching volume as teaching 
values.  The expert 3D MTANN is massively trained by use of each of a large number of the input sub-volumes together 
with each of the corresponding teaching single voxels; hence the term “massive-training ANN.”  The error to be 
minimized by training of the nth expert 3D MTANN is given by 
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where c is a training case number, On,c is the output of the nth expert MTANN for the cth case, Tn,c is the teaching value 
for the nth expert MTANN for the cth case, and Pn is the number of total training voxels in the training volume for the 
nth expert 3D MTANN, VTn.  The expert 3D MTANN is trained by a linear-output back-propagation algorithm [11].  
After training, the expert 3D MTANN is expected to output the highest value when a polyp is located at the center of the 
sub-volume of the expert 3D MTANN, a lower value as the distance from the sub-volume center increases, and zero 
when the input sub-volume contains a non-polyp.   

For combining output voxels from the trained expert 3D MTANNs, we developed a 3D scoring method, as shown in Fig. 
2.  A score for a given polyp candidate from the nth expert 3D MTANN is defined as 
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is a 3D Gaussian weighting function with standard deviation σn, and with its center corresponding to the center of the 
volume for evaluation, VE, and On(x,y,z) is the output volume of the nth trained expert 3D MTANN, where its center 
corresponds to the center of VE.  The use of the 3D Gaussian weighting function allows us to combine the responses 
(outputs) of a trained expert 3D MTANN as a 3D distribution.  A 3D Gaussian function is used for scoring, because the 
output of a trained expert 3D MTANN is expected to be similar to the 3D Gaussian distribution used in the teaching 
volume.  This score represents the weighted sum of the estimates for the likelihood that the volume (polyp candidate) 
contains a polyp near the center, i.e., a higher score would indicate a polyp, and a lower score would indicate a non-
polyp. 

2.5 Mixture of Expert MTANN Architecture 

To distinguish between polyps and various sources of FPs, we developed a “mixture of expert” 3D MTANNs [14] (Fig. 
3). The mixture of expert MTANNs consisted of seven 3D MTANNs. Each of the seven MTANNs was trained 
independently with a different type of FPs and common typical polyps. The 3D MTANNs were combined with a mixing 
ANN such that all major sources of FPs such as stool with bubbles, colonic walls, bulbous-shape folds, stool with flat 
shape and blunted folds, and solid stool could be removed. 

2.6 Database of CTC 

Our independent database consists of 50 CTC scans obtained from a multicenter clinical trial in which 15 leading 
medical institutions participated nationwide [15]. Each patient was scanned in both supine and prone positions with a 
multi-detector-row CT system with collimations of 1.0-2.5 mm and reconstruction intervals of 1.0-2.5 mm. Each CT 
slice has a spatial resolution of 0.5-0.7 mm/pixel. A radiologist experienced in CTC (>1000 cases read) determined the 
locations of polyps with reference to colonoscopy reports. In the clinical trial, 155 patients had clinically significant 
polyps. We examined the patients with polyps and identified 28 flat lesions in 25 patients. Flat lesions were determined 
under either “height” (< 3 mm high) or “ratio” (height < 1/2 long axis) criteria. Among them, 11 (38%) were false 
negatives in CTC [16]. Lesion sizes ranged from 6-18 mm with an average of 9 mm based on optical colonoscopy 
measurements. 
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Fig. 1.  Architecture and training of a single 3D MTANN consisting of a linear-output multilayer ANN model (i.e., the 

activation function of the output unit is a linear function instead of a sigmoid function) and a massive-sub-volume 
training scheme. The input CTC volume including a polyp (which could be a flat lesion) or a non-polyp is divided 
voxel by voxel into a large number of overlapping 3D sub-volumes. All voxel values in each of the sub-volumes are 
entered as input to the 3D MTANN, whereas a voxel value at each voxel from the teaching volume is used as the 
teaching value. 
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Fig. 2.  Schematic illustration of a scoring method for combining output voxels from a trained expert 3D MTANN to obtain 

a case-based score. 
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Fig. 3.  A mixture of expert 3D MTANNs for distinguishing polyps including flat lesions from various types of FPs. The 

outputs of the expert 3D MTANNs are combined with a mixing ANN so that the mixture of expert 3D MTANNs can 
remove various types of non-polyps. 

 

 

3. RESULTS 
Our initial polyp-detection scheme without LDA yielded 71% (20/28) by-polyp sensitivity with 25 (512/25) FPs per 
patient for the 28 flat lesions including 11 lesions “missed” by reporting radiologists in the original clinical trial. With 
LDA, 105 FPs were removed with loss of one true positive (TP), thus yielding 68% (19/28) by-polyp sensitivity with 
16.3 (407/25) FPs per patient. We applied the trained expert 3D MTANNs for further reduction of the FPs. The 3D 
MTANNs were able to remove 39% (158/407) of the FPs without removal of any TPs. Thus, our CAD scheme achieved 
a by-polyp sensitivity of 68% (19/25) with 10 (249/25) FPs per patient, including six of 11 flat lesions “missed” by 
reporting radiologists in the original trial. Our MTANN CAD scheme detected 67% (12/18) and 70% (7/10) of flat 
lesions ranging from 6-9 mm and those 10 mm or larger, respectively, including six lesions “missed” by reporting 
radiologists in the original trial, with 10 (249/25) FPs per patient. Figure 4 shows examples of flat lesions, which are 
very small or on a fold (these are major causes of human misses). Some flat lesions are known to be histologically 
aggressive; therefore, detection of such lesions is critical clinically, but they are difficult to detect because of their 
uncommon morphology. Our CAD scheme detected these “difficult” flat lesions correctly. It should be noted that these 
two cases were “missed” by reporting radiologists in the original trial; thus, detection of these lesions may be considered 
“very difficult.” 
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(a) (b)  
Fig. 4.  Illustrations of flat lesions which exhibit uncommon flat morphology. (a) A flat lesion on a fold (10 mm; adenoma) 

in the cecum was detected correctly by our CAD scheme (indicated by an arrow). (b) A small flat lesion (6 mm; 
adenoma) in the cecum was detected correctly by our CAD scheme. 

4. DISCUSSION 
To detect flat lesions, we developed a precise shape analysis to distinguish 3D shapes of objects precisely.  This precise 
shape analysis contributed to a high detection sensitivity of flat lesions.  Because of similarity between flat lesions and 
haustral folds, a larger number of FPs was produced.  To distinguish flat lesions from various types of FPs including 
haustral folds, we developed a mixture of expert 3D MTANNs.  The results demonstrated that the mixture of expert 3D 
MTANNs removed FPs including haustral folds substantially while maintaining the sensitivity of flat lesions.  In 
addition, our flat-lesion database included lesions “missed” by reporting radiologists in the original trial.  This study 
addresses the issue of a CAD scheme applied to flat lesions which existing CAD schemes as well as radiologists are 
likely to fail to detect. 

5. CONCLUSION 
With our CAD scheme utilizing 3D MTANNs, 68% (19/28) of flat lesions, including six lesions “missed” by reporting 
radiologists in the original trial, were detected correctly, with a reasonable number of FPs. Our scheme would be useful 
for detecting flat lesions which are a major source of false negatives, thus potentially improving radiologists’ sensitivity 
in their detection of polyps in CTC. 
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