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Multi Channel MRI Segmentation With Graph Cuts Using

Spectral Gradient And Multidimensional Gaussian Mixture

ModelJérémy Le
oeur∗†‡Jean-Christophe Ferré§∗†‡D. Louis Collins¶Sean Morrissey‖∗†‡Christian Barillot∗†‡ABSTRACTA new segmentation framework is presented taking advantage of multimodal image signature of the di�erentbrain tissues (healthy and/or pathologi
al). This is a
hieved by merging three di�erent modalities of gray-levelMRI sequen
es into a single RGB-like MRI, hen
e 
reating a unique 3-dimensional signature for ea
h tissue byutilising the 
omplementary information of ea
h MRI sequen
e.Using the s
ale-spa
e spe
tral gradient operator, we 
an obtain a spatial gradient robust to intensity inho-mogeneity. Even though it is based on psy
ho-visual 
olor theory, it 
an be very e�
iently applied to the RGB
olored images. More over, it is not in�uen
ed by the 
hannel assigment of ea
h MRI.Its optimisation by the graph 
uts paradigm provides a powerful and a

urate tool to segment either healthyor pathologi
al tissues in a short time (average time about ninety se
onds for a brain-tissues 
lassi�
ation).As it is a semi-automati
 method, we run experiments to quantify the amount of seeds needed to perform a
orre
t segmentation (di
e similarity s
ore above 0.85). Depending on the di�erent sets of MRI sequen
es used,this amount of seeds (expressed as a relative number in pour
entage of the number of voxels of the ground truth)is between 6 to 16%.We tested this algorithm on brainweb for validation purpose (healthy tissue 
lassi�
ation and MS lesionssegmentation) and also on 
lini
al data for tumours and MS lesions de
te
tion and tissues 
lassi�
ation.1. INTRODUCTIONTaking advantage of the various proto
ols that a
quire multiple modality images is a 
urrent issue (typi
ally T1,T2, PD, DTI or Flair sequen
es in MR neuroimaging). The data are be
oming more and more multi-
hanneldata and their unique and 
omplementary information should be merged together before segmentation to get ridof the in
onsisten
ies one 
an en
ounter when segmenting ea
h modality separately. Today, reliable registrationmethods, using di�erent resolution and time, are available, nevertheless, a simple, robust, fast and reliablesegmentation approa
h still does not exist for su
h kind of problem.Multi
hannel segmentation usually relies on 
lustering or 
lassi�
ation. In the 
urrent work, we propose anew and original s
ale-spa
e approa
h for segmenting organs and tissues from multidimensional images. Wepropose a te
hnique that 
an perform a joint segmentation of three MRI volumes at a time. The aim of this
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te
hnique is to be able to quantify lo
al and/or global variations that are useful indi
ators of diseases states andevolution.As the intensity distribution of the interesting tissues follows a Gaussian law in ea
h modality, by mergingthree volumes into a single �
olor� MRI - ea
h volume be
oming a 
olor 
hannel - the 
olor distribution, thus
reated, follows also a multidimensional Gaussian law. Ea
h tissue being 
hara
terized by a 3-dimensionalsignature, dis
riminating ea
h tissue from one another is easier. The main idea, presented here, to segment avolume is to use a s
ale-spa
e 
olor invariant edge dete
tor - i.e. the spe
tral gradient - in a graph 
ut framework.Among all the various energy minimization te
hniques for segmentation, Greig et al.1 proposed a methodbased on partioning a graph by a minimum 
ut / maximum �ow algorithm inherited from Ford.2 Then, Boykovet al.3, 4 enhan
ed this approa
h by improving its 
omputational e�
ien
y, their method is now referred as GraphCut.In the following se
tions, we will �rst present the spe
tral gradient and how it 
an be embedded in graph 
utsoptimization. Then, we will show validation and results on synheti
 and 
lini
al data su
h as Multiple S
lerosislesions and brain tumors. Finally, we will dis
uss on the 
ontributions and future improvements to be made.2. METHODSThe framework we've designed is as follow : from three grey-level MRI sequen
es, we build a 
olor MRI byassigning ea
h red, green or blue 
hannel to a sequen
e. Then we 
ompute the spe
tral gradient and use it ina graph 
ut framework whi
h requires seeds as input. In the end of this framework, we obtain the segmentedstru
tures (e.g. brain, MS lesions, tumors). Figure 1 summarizes this framework.
Figure 1. Our frameworkAs it 
an be seen on the �gure above, the graph 
ut takes two di�erent inputs : the Spe
tral Gradient - aboundary term - and the sour
e and sink, a regional term whi
h 
onstitutes the intera
tive part of the algo-rithm. In the following sub-se
tions, we will explain the general framework of the Graph Cut, the mathemati
alobservations used to 
ompute the segmentation and, �nally, how we've 
ombined them all to a
hieve our goal.2.1 Introdu
tion to Graph CutA

ording to the s
heme by Boykov et al.,5, 6 the segmentation problemati
 is des
ribed by a dire
tional �owgraph G = 〈V , E〉 whi
h represents the image. The node set is de�ned by two parti
ular nodes 
alled terminalnodes - also known as �sour
e� and �sink� - whi
h respe
tively represents the 
lass �obje
t� and �ba
kground�.The other nodes 
orrespond to the 3D volume voxels and the dire
ted weighted edges 
onne
ting the nodessomehow en
ode the similarity between the two 
onsidered voxels. This method is semi-automati
 as the userneed to sele
t two sets of voxels of the image, the obje
t set vo 
ontaining voxels of the obje
t and the ba
kgroundset vb 
ontainin voxels of the ba
kground.Let the set P 
ontain all the voxels p of the image, the set N be all the pair {p, q} of the neighboringelements of P and V = (V1, V2, ..., V|P|) be a binary ve
tor where ea
h Vp 
an be one of the two labels �obje
t�



or �ba
kground�. Therefore, the ve
tor V de�nes a segmentation. The energy we want to minimize by the graph
ut has the form given by :
E(V) = α ·

∑

p∈P

Rp(Vp) +
∑

{p,q}∈N
Vp 6=Vq

B{p,q} (1)The term Rp(·), 
ommonly referred as the regional term, expresses how the voxel p �ts into given models ofthe obje
t and ba
kground. The term B{p,q}, known as the boundary term, re�e
ts the similarity of the voxels pand q. Hen
e, it is large when p and q are similar and 
lose to zero when they are very di�erent. The 
oe�
ient
α is used to adjust the importan
e of the region and boundary terms.The edge 
onne
ting a pair of neighboring woxel is 
alled n-link and its 
ost 
an be based on various metri
ssu
h as lo
al intensity gradient, Lapal
ian zero-
rosing, gradient dire
tion or other 
riteria with the restri
tionthat this 
ost 
annot be negative. It's the border term B{p,q} of equation 1. The simplest implementation of theweight 
ost of an edge between neighboring woxels p and q is then w{p,q} = K · exp(− |Ip−Iq|

σ2 ) where Ip and Iqare the intensities at voxel p and q. This weight fun
tion for
es the segmentation boundaries at pla
es with highintensity gradient.All the vo nodes are 
onne
ted to the sour
e and all ba
kground seeds (vb) are 
onne
ted to the sink, thosetwo sets of links are 
alled t-link (terminal links). Those t-links are the regional term Rp(Vp) of equation 1.Thesimplest implementation involves in�nite 
ost to all t-links between the seeds and the terminals. In more advan
edwork, the 
ost is based on how the intensity of voxel p �ts into given intensity models (e.g histograms) of theobje
t and ba
kground, hen
e giving a pie
e of regional information.The graph is now 
ompletely de�ned and the segmentation 
ontour is drawn by �nding the minimum 
utof this graph. A 
ut in a graph is a subset of edge that divides the graph into two parts : the sour
e- and thesink-part, hen
e separating the obje
t from the ba
kground in a binary segmentation ; the 
ost of a 
ut beingthe sum of the 
ost of its edges. The minimum 
ut is thus the 
ut with the minimum 
ost and 
an be 
omputedin polynomial time using max-�ow algorithm,2 push-relabel te
hni
7 or the now 
lassi
al Boykov-Kolmogorovmethod.82.2 Image Observation : Maths At WorkAs explained above, we need two kinds of information to 
omplete our task : some on the region whi
h we obtainfrom multivariate mixture model and some on the border whi
h is provided by the spe
tral gradient. We willpresent in the following parts those two 
on
epts.2.2.1 Multivariate Gaussian Mixture Model : The Basi
sTo exploit the 
omplementary pie
e of information 
ontained in three registered MRIs from di�erent sequen
es,we use a multivariate Gaussian mixture model. For ea
h point labeled as a parti
ular 
lass c, we 
onsider a3-
omponents ve
tor Ψ 
omposed with the intensities of ea
h MRI at this point. We then 
ompute the meanve
tor Ψc and the 
ovarian
e matrix Σc. The 
lass-membership probability of a voxel v is 
omputed with themultivariate normal distribution formula :
P (Ψv|c) = exp−

1

2
(Ψv − Ψc)

T · Σ−1
c · (Ψv − Ψc) (2)As we 
onsider a two (or three) 
lasses obje
t (depending on what we want to a
hieve), the seeds of ea
h 
lassare di�erentiated from the beginning and the sour
e-membership probability of a voxel v is then the hightestof the two (or three) 
lass-membership probabilities. As the sink is always a single 
lass, the sink-membershipprobability is equal to the 
onsidered 
lass-membership probability.



2.2.2 The �How to...� Of Spe
tral GradientIn order to use the 
olor of tissus as an higly dis
riminative de
ision 
riterion, we need to build an invariant
olor-edge dete
tor. We propose to use the spe
tral gradient, �rst introdu
ed by Geusebroeak et al.,9 whi
h isbased on the psy
ho-visual 
olor theory and on Koenderink's Gaussian derivative 
olor model.10Color 
an be interpreted by spe
tral intensity (e) that falls onto the retina ; this intensity depends on thespe
tral re�e
tion fun
tion r of the surfa
e material but also on the light spe
trum l - whi
h is a fun
tion of thewavelength - falling onto it. In addition, the shading s takes a great part in this seen intensity whereas it is onlyposition-dependent. To sum it up, we 
an write this equation :
e(x, y, z, λ) = r(x, y, z, λ) · l(λ) · s(x, y, z) (3)As we seek 
olors invariants, we need to get rid of l(.) and s(.) sin
e r is the only �true� 
olor, whi
h doesnot depend on illumination 
onditions. This 
an be a
hieved quite easily followings these steps : �rst, we takethe derivative with respe
t to λ and we normalize the expression, thus leading to :

1

e(x, y, z, λ)

∂e(x, y, z, λ)

∂λ
=

lλ

l
+

rλ

r
(4)Then, a simple di�erentiation to the spatial variable (x, y or z) makes an expression whi
h suits all of our
onstraints :

∂( 1
e(x,y,z,λ)

∂e(x,y,z,λ)
∂λ

)

∂x
= 0 ⇐⇒

e · exλ − ex · eλ

e2
= 0 (5)Hen
e, we now have an expression whi
h is fully expressed by spatial and spe
tral derivative of e, whi
h isthe observable spatio-spe
tral intensity distributionGeusebroek et al.11 have proven that these terms 
an be very well approximated by simply multiplying theRGB values (seen as a 
olumn ve
tor) by two matri
es :





e

eλ

eλλ



 =





−0.019 0.048 0.011
0.019 0 −0.016
0.047 −0.052 0





︸ ︷︷ ︸

XY Z to e

·





0.621 0.133 0.194
0.297 0.563 0.049
−0.009 0.027 1.105





︸ ︷︷ ︸

RGB to XY Z

·





R

G

B



 (6)The �rst matrix transforms the RGB values to the CIE 1964 XYZ basis for 
olorimetry and the se
ond onegives the best linear transform from the XYZ values to the Gaussian 
olor model. These two matri
es 
an bemerged in a 3 × 3 matrix M that 
hara
terises the transformation from RGB values to e and its derivatives.
Figure 2. From left to right : Color MRI (from T1, T2 and Flair sequen
es), spe
tral intensity e, �rst order derivative ofspe
tral intensity eλ and se
ond order derivative of spe
tral intensity eλλ.On
e the spe
tral intensity and its derivatives are 
omputed, we 
an use the following di�erential propertiesof the invariant 
olor-edge dete
tor :



ε =
1

e
·

∂e

∂λ
=

eλ

e
(7)As stated in Geusebroek's work,11 yellow-blue transitions 
an be found with the �rst order gradient, whi
hmagnitude is:

Γ =
√

(∂xε)2 + (∂yε)2 + (∂zε)2 (8)The se
ond order gradient dete
ts the purple-green transitions. Its magnitude 
an be 
omputed as follows :
Υ =

√

(∂x,λε)2 + (∂y,λε)2 + (∂z,λε)2 =
√

(∂xελ)2 + (∂yελ)2 + (∂zελ)2 (9)with : ελ =
∂ε

∂λ
=

e · eλλ − e2
λ

e2
(10)Finally, the dete
tion of all 
olor edges 
an be performed with :

ℵ =
√

Γ2 + Υ2

=
√

(∂xε)2 + (∂yε)2 + (∂zε)2 + (∂xελ)2 + (∂yελ)2 + (∂zελ)2 (11)

Figure 3. Left : Color MRI - Right : Spe
tral gradient.2.3 Introdu
ing Multivariate Mixture Model And Spe
tral Gradient in the Graph CutParadigmLet's get ba
k to the energy formulation of the Graph Cut :
E(V) = α ·

∑

p∈P

Rp(Vp) +
∑

{p,q}∈N
Vp 6=Vq

B{p,q} (12)To form the graph, we need to 
ompute the t-links. Two 
ases are to be 
onsidered : �rst, the weight Wso ofthe t-link involving the �sour
e� node is :
Wso =







0 if p ∈ B

∞ if p ∈ O

α · Rp(B) elsewhere (13)



Similar, the weight Wsi of the t-link involving the �sink� node is 
omputed as follows :
Wsi =







∞ if p ∈ B

0 if p ∈ O

α · Rp(O) elsewhere (14)A

ording to the s
heme by Boykov et al.,5, 6 the t-link weights of a voxel p are the negative log-likelihoods :
Rp(B) = − lnP (Ψp|B) and Rp(O) = − lnP (Ψp|O) (15)To 
ompute the n-links, we use an ad-ho
 fun
tion :

B{p,q} ∝ exp

(

−
(ε(p) − ε(q))2 + (ελ(p) − ελ(q))2

2σ2

)

·
1

dist(p, q)
(16)where ε and ελ are the quantities de�ned in equations 7 and 10. Changing the 
hannels assignment only 
hangethe spe
tral gradient intensity but not the lo
ation of the border, so, in this graph 
ut s
heme, the 
hannelassigment does not impa
t the segmentation.In order to deal with the quite huge data sets we have whi
h are very resour
e 
onsuming, we needed ahierar
hi
al s
heme that allows us to 
ompute the graph 
ut in a de
ent time. Consequently, we 
hoose toimplement the graph 
ut as a multiresolution algorithm. This method, �rst developed by Lombaert et al.,12is inspired by the multilevel graph partition te
hnique13 and the narrow band from the level sets.14 It �rst
omputes the graph 
ut on the 
oarsest level and then in the su

essive higher level but only on a narrow bandderived from the minimal 
ut found at the previous 
oarser level. This pyramidal approa
h with a Gaussiande
imation has proven to be robust, even with high downs
aling fa
tor.3. EXPERIMENTS AND RESULTSFirst, we will present the validation experiments run on syntheti
 data, thus permitting us a 
omparison withmethods from the literrature. Then, we will show the results obtained with real data with ground truth from anexpert.3.1 Validation on syntheti
 dataThe validation of the a

ura
y of our segmentation method was performed on syntheti
 phantom by using theBrainWeb data.15 We built the 
olor MRI from simulated T1, T2 and PD sequen
es. All the images belong tothe same subje
t and are 
onstituted of 217 sli
es of 181 x 181 isometri
 1 mm voxels with 3% noise (relative tothe brightest tissue in the images).In order to 
lassify 
orre
tly the di�erent 
lasses of tissues, we followed a hierar
hi
al segmentation s
heme.A �rst Graph Cut with sour
e seeds mixing all the tissues and sink seeds on the ba
kground gives us the brainmask ; then inside this mask, we perform one graph 
ut per tissue with only its own sour
e seeds - the sinkseeds being the ba
kground seeds and the other tissues seeds. The whole 
omputation time is between 50 to 80se
onds on a laptop (Dual 
ore at 2.16 Ghz and 2 GB of RAM running Linux).We tested our method on di�erent non-uniformity levels and 
ompared the obtained segmentation to theground truth available, using the Di
e Similarity Coe�
ient with �ve 
omponents being 
onsidered : 
erebro-spinal �uid, white matter, grey matter, the whole brain and the lateral ventri
les. All the tests were performedon data with 3% of noise, relative to the brightest tissue.The following table shows that the a

ura
y of the segmentation is not signi�
antly in�uen
ed by bias as theDSC is quite similar for all non-uniformity values. More over, the segmentation is more or less equally a

uratefor little or thin stru
tures (ventri
les, CSF) or bigger ones (grey and white matter).



Figure 4. Validation on Brainweb - Left : our segmentation (DSC = 0.983) - Right : BrainWeb ground truthNon Uniformity0% 20% 40%Cerebro Spinal Fluid 0.892 0.891 0.892Grey Matter 0.932 0.924 0.927White matter 0.961 0.954 0.958Whole brain 0.983 0.981 0.982Ventri
les 0.946 0.944 0.944Those results are better or similar to those found in the literature on similar data, su
h as Ashburner et al.16with DSC running from 0.932 for grey matter to 0.978 for the whole brain ; the LOCUS approa
h by S
herrer etal.17 s
ores 0.83 for CSF, 0.94 for grey matter and 0.96 for white matter, or Bri
q et al.18 with a DSC around
0.96 for ea
h 
lass of tissu.An important data in the evaluation of this tool is the amount of seeds needed to a
hieve a 
orre
t seg-mentation on pathologi
al tissue. We ran experiments in order to quantify the similarity between the obtainedsegmentation and the ground truth. As input to our algorithm, we used the ground truth randomly de
imated.In order to assess this algorithm, we used syntheti
 data from BrainWeb15 with simulated multiple s
lerosislesions. Results of this test are presented on �gure 5.

Figure 5. Di
e Similarity Coe�
ient versus relative number of seeds (in per
entage of the ground truth). Blue line :DSC obtained after running our algorithm. Bla
k line : DSC from initialisation seeds only. Red Line : di�eren
e of thepre
eding two 
urves, showing the e�en
y of the proposed methodAs explained by Zijdenbos,19 a DSC s
ore above 0.7 is generally 
onsidered as very good, espe
ially whenthe segmented stru
tures are small. Here, this threshold is rea
hed when the input seeds are around 5% of theground truth. The performan
e of our algorithm was 
ompared to Van-Leemput's,20 Freifeld's21 and Rousseau's



algorithm22 on moderate MS lesions. For the optimal value (10% of relative number of seed), our DSC is 0.93when Van-Leemput s
ores 0.80 (
al
ulated by Freifeld in21), Freifeld 0.77, Rousseau only 0.63 and Bri
q 0.79.3.2 Quanti�
ation of the a

ura
y on various sequen
esUsually simulated data don't address the same issues than 
lini
al data. That's why it is important to runexperiments on this type of data whi
h rarely allows the use of automati
 or generi
 appro
hes. As we aim touse this new tool in a 
lini
al 
ontext, we evaluated the results on di�erent 
lini
al data sets. Those sets arethe ones that are most likely to be used for diagnosis purpose. Three 
ombinations of sequen
es were 
onsideredrelevant with our goal : T1-weighted, T2-weighted and Flair (whi
h will be referred as TTF), T1-w, T2-w andPD (whi
h will be referred as TTP) and T1-w, T1-w inje
ted with Gadolinium and Flair (whi
h will be referredas TGF). The data 
overs a large range of lesion load and 
lini
al grades (from RR to SP).The following table summarizes the di�erent parameters of the 
olor MRIs we built in order to assess ourtool: Type of Number of Number of Size of Size ofMRI Subje
ts sli
es sli
es voxelsTTF 6 138 256 × 256 isometri
 1 mmTTP 8 217 181 × 181 isometri
 1 mmTGF 5 160 256 × 256 isometri
 1 mmWe run similar experiments than those for BrainWeb validation with an addition : we also used a groundtruth de
imated by su

essive erosions as input, hen
e simulating the 
lassi
al behavior of the users whi
h wouldpreferably take seeds in the 
enter of the bigger lesions and forget smaller lesions.

Figure 6. Di
e Similarity Coe�
ient versus relative number of seeds (in per
entage of the ground truth). Red lines : TTFMRIs, green lines: TTP MRIs, blue lines : TGF MRIs, bla
k line : DSC from input data alone ; solid line : randomlyde
imated ground truth as input, dash dotted line : ground truth de
imated by su

essive erosions as input.Figure 6 presents the results of this experiment. One 
an noti
e that the behavior of the 
urves are quitesimilar, however, the TTF sets seem to be more suitable for segmenting MS lesions, with an average 0.972 DSCs
ore for a number of seeds around 6% of the ground truth; TTP being se
ond best with a 0.777 average DSCs
ore for the same relative number of seeds and TGF only s
oring 0.593.The other important fa
t showed by this experiment is that a random de
imation performs better than thesu

essive erosions as the DSC is lower by about 10% when the erosions are used. We 
an interpret that fromtwo hypothesis : this may 
ome from keeping small lesions in the initial stage in the random de
imation (thosesmall lesions being the �rst to disappear in the de
imation method) or the Gaussian multivariate law 
omputed



Figure 7. Di
e Similarity Coe�
ient Enhan
ement versus relative number of seeds (in per
entage of the ground truth).Red lines : TTF MRIs, green lines: TTP MRIs, blue lines : TGF MRIs ; solid line : randomly de
imated ground truthas input, dash dotted line : ground truth de
imated by su

essive erosions as input. The variation is shown as an errorbar on the optimal point of ea
h 
urve and is about ±2% for TTF,±1.5% for TTP and ±1% fot TGF.from the seeds has a lower varian
e than the real one as we only keep the 
enters of lesions whose intensities arenot fully representative of the normal intensity distribution of all lesions.Figure 7 shows the di�eren
e between the DSC s
ore of the initial portion of the ground truth retained frominitialisation alone and the DSC s
ore obtained after running our algorithm from the same initialisation. Itsomehow 
omputes the enhan
ement given by our tool with respe
t to the DSC. From top to bottom of the
urves in �gure 7, the maximum enhan
ement is obtained respe
tively for 6, 8, 11, 14, 16 and 18% of relativenumber of seeds. This gives our optimal range for initialisation 
onstraints with respe
t to the expe
ted lesionload.Results and seeds of the algorithm are shown on �gure 8 for TTF sequen
es.

Figure 8. Results on TTF images. Upper row from left to right : T1-w, T2-w and Flair Sequen
e. Lower left : initialisationfrom randomly de
imated ground truth. Lower 
enter : initialisation from ground truth de
imated by erosion. Lowerright : segmentation results (green : 
orre
tly 
lassi�ed ; blue : false positive ; yellow : false negative)



We then applied the spe
tral gradient Graph Cuts on MRIs of patients with tumors. The aim of these testswere to be able to segment a

urately the peri-tumoral edema and the tumor itself. The MR sequen
es used forthis purpose are T1 and T1 with Gadolinium inje
tion images 
omposed of 182 sli
es of 256 x 256 isometri
 1mm voxels and an interpolated FLAIR image (original size 704x704x34). As in the pre
eding appli
ations, the�rst pass gives us the brain mask, then we apply the graph 
ut for ea
h 
lass of interest (white matter, greymatter, edema and tumor). On the following �gure, we 
an see that the tumor (in blue) and edema (in darkgrey) regions are well segmented. This result was obtained in roughly 90 se
onds. Visual assesment have beenperformed by an expert.
Figure 9. Our segmentation (right), T1 image (middle) and Flair image (left).4. CONCLUSION AND FUTURE WORKIn this paper, we have introdu
ed the spe
tral gradient in the �eld of 3D medi
al images. This new, fastand robust multiple images segmentation framework allows us to pro
ess multi
hannel data from s
ale-spa
ederivatives.Its optimization by a hierar
hi
al graph 
uts has proven to be a

urate with very e�e
tive results. It 
om-bines region-based intensity pro
essing and 
ontour-based s
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