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ABSTRACT

High resolution digital pathology images have a wide range of variability in color, shape, size, number, appear-
ance, location, and texture. The segmentation problem is challenging in this environment. We introduce a
hybrid method that combines parametric machine learning with heuristic methods for feature extraction as well
as pre- and post-processing steps for localizing diverse tissues in slide images. The method uses features such
as color, intensity, texture, and spatial distribution. We use principal component analysis for feature reduction
and train a two layer back propagation neural network (with one hidden layer). We perform image labeling at
pixel-level and achieve higher than 96% automatic localization accuracy on 294 test images.
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1. INTRODUCTION

Digital anatomic pathology utilizes high resolution imaging :"; f":f 55‘: 1 & E’ | -
technology for diagnosis of causes and effects of particular Riad | pase.
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(Fig. 1). Then the crucial localization step, the focus of this
resear(?h, producles two outputs: A set' of high-resolution fo- portion is reserved for label/bar code (blanked out for
cus points { f; : ie{1...F}} where Fj, is the number of focus anonymity) and usually takes the top one-third of the
points in slide ke{1...K} and bounding boxes for all tissue image.

on the slide {b, : ae{l...Bx}} where By is the number of

non-overlapping tissue regions on slide ke{1...K}. A pre-scan is then performed using Fj to determine tissue
properties (height vs. sharpness). Then every frame in the boxes By is scanned at high resolution. Image
acquisition in iScan system is performed with two scanning resolutions: 0.46pm/pixel and 0.23um/pixel with
20X and 40X power, respectively. A stitching operation is then performed on all these high resolution frames
to produce the final high resolution image.

Figure 1. A sample set of slide images. The upper

We focus on the localization step to achieve optimal outputs mentioned above: the set of focus points
(F}) and the bounding boxes (Bj). Because the set of focus points (Fj) is responsible for determining tissue
properties, the points should lie on tissues T with minimal false positives as shown in Eq. 1 where P(a|b) is
the conditional probability that a occurs given b. A false positive point wastes about 200 milliseconds. On
the other hand, the second output, the bounding boxes (Bj), should contain every useful tissue location with
minimal false negatives (Eq. 2) so that the high resolution scan does not miss any tissue.

Ff = argmin P(Fy|T) (1)
k

B}, = arg I%in P(By|T) (2)
k
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The localization saves both time and memory space during the scanning process. A slide takes about 1 hour
for scanning without the localization step, while on average it requires about 15 minutes after applying successful
localization. On the other hand, scanning the whole scannable region (44.449mm x 25.4mm = 1290.3mm?) at
a sampling rate of 0.46um/pixel (20X) produces more than 6150 high resolution images of dimensions 1024 x
768 pixels. Considering overlaps between these high resolution images, which are used for the stitching stage,
the final image dimension for one slide would be about 110,000 x 44, 000 pixels which needs 110,000 x 44,000
x 3 bytes/pixel = 14.52 GBytes. Successful localization reduces the required space to an average of 3GBytes.

2. RELATED WORK

Traditionally, image segmentation is defined as identifying regions R C ) where € is the image to be segmented

into regions Ry and
N

R =0 (3)

k

where N is the number of regions and R; N R, = 0,Vj # k. However, soft image segmentation softens the
condition of hard subset to only one region by assigning probabilities for pixels to lie in regions.

Segmentation plays a significant role in medical imaging applications. Various methods have been applied
in segmentation and delineation of anatomical structures and regions of interest in various medical imaging
modalities.2* Early segmentation efforts used heuristic methods such as thresholding, edge detection and
region growing. In these methods, the user needs to fine tune many parameters such as threshold values used
as input to the segmentation algorithm.

The trend to pattern recognition methods such as Markov Random Fields,? Neural Networks, graph based
models,® and deformable model” started after many researchers found that heuristic methods are not feasible
because of the high data dependency as well as the amount of effort for the user to fine tune all the required
parameters. Markov Random Fields and Hidden Markov Models played a significant role in segmentation of
soft organs such as the liver® and most authors used deformable models for delineation of the boundaries.” 1°

A third trend in medical imaging segmentation is based on incorporating knowledge based in forms of atlases,
priors, or models. Atlas based segmentation'! is a popular method and it depends on the availability of an atlas
for normal organs and a successful registration to the image under segmentation. Shape models also incorporate
shape information!? for the organ of interest and sometimes the surrounding structures.

Neural networks (NNs) has been successfully used to segment various medical images. When ground truth
is available (supervised learning), feed forward back propagation NNs are usually used.? Several NN models
for image processing problems have been proposed.'® !¢ Unsupervised NN was also used for segmentation
problem to reduce the limitation of supervised learning such as Kohonens learning vector quantization (LVQ)
network.'” Hall et al.,'® perfomed a comparison between a Neural Network and fuzzy clustering techniques in
segmenting MR, Images of the Brain. They trained both methods on normal and abnormal cases and found
that each method has advantages in some aspects. Unay et al.,'® proposed an artificial neural network-based
segmentation method. They apply their method on fruit images. They extracted statistical features at the
pixel level, tested many classifiers, and achieved around 90% recognition accuracy. Estevez et al.,'® proposed a
segmentation method for color images using fuzzy min-max neural network.?’ Segmentation is similar to region
growing but with only the seed point as input. They grow hyperboxes upto a limited size and can combine
region if they obey specific homogeinity criteria.

In this paper we localize the tissue from the whole slide image so that further image analysis is perfomed
only on the tissue. Many recent research efforts has been targetting segmentation, diagnosis, and prognosis
problems in histopathology images. However, as far as we know, all of them target small sizes of the full HR
image which is a zoomed piece of the whole slide image as shown in Fig. 2. We aim at indexing all the slide
image and perfom further analysis on it by analyzing all subimages produced from the whole slide image rather
than working on only pieces of the original image case.

Main research efforts in HR histopathology images have been focused on segmentation of anatomical struc-
tures and diagnosis of cancer cells. Latson et al,?! used basic fuzzy c-means clustering for nuclie segmentation
from HR images while Petushi et al.,?2 used adaptive thresholding. However, these method do not extend for



Figure 2. The whole slide image of prostate tissue (left) and a zoomed region (right).

high variabilities in data.?? Bamford et al.,?* used active contours for segmentation of the nuclie which succeeds
when there is no overlapping nuclie.

More recent work by Naik et al.,?3 proposed a two level approach for detection and segmentation of nuclie and
glands from breast and prostate histopathology high resolution (HR) images. They used a Bayesian classifier for
low-level likelihood generation, a high-level template for nuclie and level sets for gland detection, and domain
knowledge integration for verification of detected structures. They perfomed grading of prostate and breast
cancer as well as detection of malignant breast specimens. Other segmentation methods including segmentation
of liver from CT? and labeling of lumbar area discs in clinical MR?® has also been recently proposed.

3. DATASET PREPARATION

Because the main challenge in this problem is the high variability of images that need one solution for the
localization problem, we collect a representative dataset for tissues in different shapes, sizes, counts, conditions
of biopsy, appearances and colors. To clarify this we show a sample of this variability in Fig. 3. We use 294
different images to train, validate and test our proposed method. These images are collected from different
pathology labs in two datasets containing 150 and 144 images.

AL - | ‘
(d) Detritus in middle  (e) Unstained (f) Various shapes

Figure 3. Sample set showing the variability in shapes, sizes, counts, conditions of biopsy, appearances and colors of our
dataset. The first set shown in Fig. 3(a) shows a well stained tissues that are easily distinguished from background using
color. Fig. 3(b) shows some tissues with microscopic holes. Fig. 3(c) shows a set of tissues that are distributed all over
the slide with multiple pieces. Fig. 3(d) shows how detritus move inside the slide image and interfere with the tissues.
Fig. 3(e) shows thin strips of tissue that are unstained and appear very similar to the detritus. Fig. 3(f) shows variable
shapes of tissues, the first and third are microarrays of tissues.

Upon examining the datasets, we found that tissues vary in some major characteristics including color,
texture, intensity (appearance), count, and location. Most tissues have some sort of color but not all of them.



As it is clear from Fig. 3, some tissues are just thin light gray strips in the middle of the slide image. Most
tissues have texture that is distinguishable from the background, however, significant amount of tissues have no
texture at all. Some tissues reside in one location (one piece) but some other (like the microarray tissues) have
so many tissue pieces. Furthermore, tissues usually reside inside the slide but sometimes they might touch the
border of the slide as well. The dataset is carefully created to include all these variabilities so that our method
is correctly validated.

4. METHOD
Our method utilizes a back propagation feed forward neu-
ral network for labeling low-level pixel values as well as Method Workflow
heuristic methods for feature extraction and fine tuning the
results. Fig. 4 shows the general workflow in our method. Online Labeling Offline Training

The offline training phase trains a two layer neural net-
work (with one hidden layer) on the features extracted from
the training data. In order for the neural network to train
efficiently, we perform pre- and post-processing steps: fea- Feature Feature
ture reduction using Principle Component Analysis (PCA), Exctracion Excuaction
normalization of the features, and removal of redundant in- o —— ‘m‘
formation. The online testing stage takes the resulting pa- ¥
rameters (normalization factors, input layer weights, hidden Labeling Stap with

layer weights, and biases) and performs testing at the pixel- MM e ey
level in new images. This testing stage contains pre- and Network.
post-processing steps including normalization of the feature
vectors, median filters, and image filling.2¢

Post-processing

Parameters
passad o
labeling
Step.

4.1 Offline Training and Feature Extraction

We obtain the training data by picking a set of points in
each class (tissue, background, detritus). Each point is en- Figure 4. General Work Flow of our Method: Off line
closed by a rectangular region of 20 x 20 giving a 21 x 21 stage includes ground truthing, feature extraction and
window that is manually checked to totally lie inside one training of the Neural Network. On line stage takes
class. From each window (WSize = 21 x 21) the set of parameters from the off line stage and produces a set
features are calculated producing one feature vector. Col- of minimal false positive points and a minimal false
lectively, a set of training data is produced. Our training negative bounding box.

data is produced from 64 high resolution color images that

were selected to represent all variability in data from different laboratories. This dataset contains: 1614 data
point for the tissue class, 1106 data points for the detritust class, and 11983 data points for the background
class.

Feature selection®”>2® is a core step in any machine learning approach. Usually, there are two ways for
selecting features; include a large number of features ranging from couple hundreds to a thousand,?? or carefully
select a small set of features ranging from less than five to a hundred.?? We approach the problem by empirically
examining a specific set of features representing the variabilities in the datasets. We start by empirically
examining 25 features for color, intensity, and texture. Features that do not add significance to the learning
process are rejected. In fact, we use PCA to reduce the feature vector besides the manual judgment of every
feature.

Below we describe the effective features in each category:

4.1.1 Color Features

Color is an important feature because major portions of the tissue are often stained. However, some detritus
contains color and color artifacts may be produced by reflection through filters present on the slide. These color
artifacts are usually of pure colors. Stained tissues in our datasets appear with different colors in the images;
mainly pink, green, brown, and blue with varying intensity levels. These colors are not pure colors, rather, they

fDetritus is particulate organic material that lies on slides because of lab conditions that is not related to the biopsy.
Usually, it appears as gray material along sides and sometimes extends to the interior.



appear more of mixed colors as shown in Fig. 3. This means that color features may not be specific to some
color frequencies, instead, it should emphasize the meaning of color and the variability that is caused by color
and distinguish it from the gray levels that represent the background and the detritus.

The main color feature is the variance in the three RGB channels, as both background and detritus have
almost equal values for the three channels. We select these features to represent color information:

1. Variance (03,,,,) between Pke{ PeakR, PeakG, PeakB } where PeakR, PeakG, and PeakB are the peak
values of color component in the Red, Green, Blue channels, respectively:

3

J%’eaks = Z (Pkl - MPIC)Q (4)
=1

where ppg is the mean value of the three peaks. This value is small in detritus and background due to
the small variance in RGB values compared to stained tissues.

2. Variances (0%, 02, 0%) in RGB channels: 0% = ZySize (Ri — pr)?, 0 = ZySize (Gi — pe)?, and
0% = Egvsme (B; — up)? where ug, pic, and pup are the averages of R-, G-, and B-channel in the current
window, respectively. The window size (WSize = 21 x 21) is constant. These three values are high in

tissue and low in both the detritus and the background.

3. Mean hue value ppqye in the HSI color model : ppye = WSlize Z?/Size H; where H; is the hue value at

location ¢ in the window. Because this value represents the color in HSI color model, it takes higher values
in colored regions than gray regions (detritus and background). In fact, using the Hue does not replicate
the color information from the RGB model according to our experimental analysis. We found that the
addition of ¢* and b* from the L*a*b* color model does not add significant value to the results when we
consider the high computational requirements.

4.1.2 Appearance (Intensity) Features

Intensity-based features are significant in two situations; capturing unstained tissues and capturing the white
and gray microscopic holes inside the stained tissues. As we can see in Fig. 3, some tissues are unstained, thus,
they don’t appear with any color, rather, they are white to gray pieces inside the slide image. These tissues
may not be captured by color features which necessitates adding intensity features. In fact, these tissues do not
have any meaningful texture that might be captured by texture features.

On the other hand, in most stained tissues, some white and gray microscopic holes appear inside the tissue.
These holes may not be captured because we label at the pixel level and closing or filling operation may not be
useful because sometimes the tissues have holes that are not part of them such as circular tissues (Fig. 3).

In order to capture intensity information, we integrate both the mean gray intensity:

1 W Size
Hgray = 7751 7e 27: gray; (5)
and the variance gray intensity agmy = Zyvsme (gray — ugmy)z as part of the feature vector using the standard
NTSC formula:
gray = 0.2989« R+ 0.5870 « G + 0.1140 « B (6)

where R, G, and B are the Red, Green, and Blue channels of the RGB color model, respectively. In fact, there
are different formulae to gain intensity from color images such as the I in the HSI color model and the L in the
L*a*b*. However, the NTSC formula is a standard that gives meaningful intensity information.



4.1.3 Texture Features

Texture also help in identifying tissue. Integration of some covariance matrix CO statistics add significant
enhancement to the localization process. CO is the matrix of covariances between elements of a vector:

Size(CO)

CO= 3 BIXi - m)(X; — ) ™

where p; = E(X;) is the expectaion of the i** entry in the vector X .3 We use Correlation and Energy which
are defined as:

Size(CO) , . . . o
Correlation = Z (1 — pi)(j — pj)(CO(L, 7)) ®)
ij 0i0j
Size(CO)
Energy= Y CO(i,j)? (©)
ihj

4.1.4 Spatial Features

Spatial features are extracted from the spatial distribution of tissues on the slides. These features mainly
distinguish between the detritus and the colorless gray tissue that resides inside the slide image. In most cases,
the detritus lies along the edges of the slide image and may extend to the inside of the image but in almost all
cases it keeps its base touching the edges of the slide. However, tissue might sometimes touch the edges, thus,
not everything touches the edges is detritus.

We use a heuristic method based preliminary segmentation to obtain this feature. A set of normalized
features (O'I%eaks, 0%2, aé, %, Hgray, and ngy) are collectively used at the whole image level. This highlights
the tissue region as every feature adds higher value for tissue pixels and lower values for other pixels (background
and detritus). Then we apply the Otsu!' threshold algorithm to achieve preliminary segmentation. Next we
apply connected component analysis to analyze this initial segmentation. The pixels of the components that
are connected to the border (within 50 pixels) are assigned lower probability value (0.001) while the rest are
assigned a higher value (0.5). We use this border map for post-processing the results obtained from the neural
network. In fact, this feature is the key for localizing tissues containing gray thin strips; intensity-based features
do not distinguish between this type of tissue and the detritus extending from the border.

4.2 Neural Network

We train a back propagation feed forward neural network3% 33 (N'N) that consists of two layers with 20 neurons
for the hidden layer and one output neuron. The input layer has the same number of neurons as the input
features vector size of 15.

We perform preprocessing steps on the training data (Xj =< a; >,0 < i < 15,0 < j < TrainDataSize)
to utilize the work of the NN; values scaling and removal of duplicate training data. The feature values in the
training data are scaled to x;e[—1, 1] and all duplicate feature vectors are then removed. The scaling factors are
passed as parameters to the testing (labeling) stage to normalize the testing vectors as well.

Ground truth target values T' are provided at each window (21 x 21 pixels) in our training dataset which
makes each window as a feature vector (X =< x; > and g(X) = T). The Logistic transition functions
fln) = (1+Tllrn) are used for both layers. The output (O) is then mapped into one of the three classes (tissue,
detritus, or background) using simple thresholding. The mean squared error is used as the performance function
and the Levenberg-Marquardt algorithm is used for back propagation.

4.3 Testing Stage

Testing stage accepts new images and labels every pixel to one of the three classes. First, we divide the input
image into equal size blocks (windows) and then extract the same feature vector from every window. Every
feature vector (V =< v; >) is preprocessed to scale the values v;e[—1,1] and then it is input to the testing stage
of the NN. The threshold value for every class is then used to determine the class of the window that produced
this feature vector. All pixels inside this window take the same class label.



Table 1. Results on the training set and two test sets. Any image that shows any portion as false negative/positive
is counted as false negative/positive. If this false negative/positive affects the localization mask, then it is counted as
localization error. Our method achieves 96.9%, 94% and 96.5% localization accuracy on the three datasets.

Dataset | Size || False Negatives | False Positives | Localization error | Localization Accuracy
Training | 64 8 3 2 96.9%
Testing | 150 13 9 9 94%
Testing | 144 10 6 5 96.5%

One main implementation issue is the choice of the window size. During the training, we use (20 x 20) pixels
for each window. However, in the testing stage, we may use any suitable size. If we choose coarse window sizes,
the resulting image will appear blocky as all pixels inside the window will have the same class label. On the
other hand, when we choose a fine window size, smoother results are obtained but more computation time is
required. We found that (5 x 5) windows represents a good compromise between the computation time and
acceptable results.

In our experiments, we use a (5 x 5) window size for running the neural network. We then apply a median
filter (with 20 x 20 convolution window) on the resulting image, following an image filling?® operation. We then
apply the border map to eliminate border connected components.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

Our dataset consists of 294 images collected in two datasets of 150 and 144 images. We use 64 images from the
first set for extracting the data points for training as discussed in section 3. Then we perform labeling on three
sets: the 64 images, all 150 images, and the 144 images as shown in Tab. 1. Labeling the training data aims at
showing comparative results with labeling of testing data.

In order to measure labeling accuracy that serves our target, we label all the images and produce binary
masks that represent the tissue class. For these images, we overlay the binary masks on the corresponding
images. Next, an expert examines every image and decides whether it has correct localization or not, and if
it has false negative or false positive. The resulting image is correctly localizing the tissue if all tissue on the
slide appears in the binary mask. Then the expert decides if there is false negative, i.e., some portions of the
background (or detritus) is labeled as tissue, or if there is false positive, i.e., some portions of the tissue is
labeled as background (or detritus). Note that the resulting image might have false positive and false negative
regions at the same time. After this, the number of resulting images that have significant amount of either false
positive or false negative are counted as localization error (Locg.ror) and thus the whole image is considered as
mislabeled. The accuracy; which appears in the last column of Tab. 1, is then

LOCE’I"TOT

A =(1-
ceuracy = ( ~

) % 100% (10)

where (Locgrror) is the number of images incorrectly localized and N is the total number of images in the
dataset.

The training data (64 images) labeling produce 96.9% accuracy which means that only two images were
considered mislabeled by the expert. According to Tab. 1, eight images have portions of false positive and
three images have portions of false negative. However, only two images have significant amount of false labeling
(either negative or positive or both) to be considered an error for localization.

In the next experiment, we label the entire first dataset of 150 images that includes the 64 training images.
Only nine images contain significant amount of false labeling. In fact, thirteen images contain portions of false
negatives and nine images contain false positives. It is worth mentioning that this does not mean that 22 images
have problems because the same image might contain false negative and false positive pixles at the same time.
The accuracy for this dataset is 94% which is below the training set by 3 percentage points. However, after
examining the dataset we found two images with handwritten markers on top of the tissue region which caused
the mislabeling.

The third experiment labels 144 images, none of which were used for training. Five images were marked to
have localization error among the sixteen images that contain false negative (ten images) or false positive (six



images). The overall accuracy is 96.5% which is around the same level as the dataset that includes the training
data. In other words, the labeling on a randomly selected dataset is expected to be over 96%.

Fig. 5 shows a set of test images (none from the training set) and the final results from our method. The
resulting binary mask is overlaid on the original image for visual localization quality. As Fig. 5(a) shows,
localization of the tissues is excellent with almost 100% accuracy and negligible false positives and negatives.
All images that have localization similar to fthese images are considered correctly localized with neither false
negative nor false postive. However, when you compare the resulting image with the original image you might
see very small number of pixels that are incorrectly labeled; especially in the original resolution of the image,
but this misclassification is negligible compared to the size of the image.

Fig. 5(b) shows some false negative/positive portions in microarray tissues due to the high variability in
such tissues. Despite that these images are reported as false negative/positive because the size of the false
negative/positive pixels is significant. They are reported as correctly localized because the portion of the
false negative is not affecting the localization of the tissues. In other words, these two images are counted in
the 3rd (and/or) 4th columns but not in the 5th column. Fig. 5(c) shows various tissue types that contain
small false negatives. These are due to white microscopic holes in the tissue structure or thin tissues that
are indistinguishable from border detritus. These results also do not affect the localization accuracy, but they
count as false negatives in table 1. Fig. 5(d) shows an example of a localization error image. In fact, this
image has significant portion of false negative because significant portion of tissue is labeled as background.
The significance here is that the bounding box will not include all tissues because the tissue is spread all over
the slide.

Pass o
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(b) Contains false negative. (c) Localization of various light stained cases. (d) Error
Figure 5. Classification results from our method. Original Image (Label portion is blanked for anonymity) and binary
mask result overlaid on top of the original image for visual comparison. Fig. 5(b) and (c) contain some portions of false
negatives/positives that are counted in false negative/positive columns of Table 1. Fig. 5(d) shows a sample case of an
error in localization where the false negative portion is significant and affecting the localization decision of the tissue.

6. CONCLUSION

We proposed a systematic approach to solve the localization problem in pathology images. Our proposed
a method utilizes a feed forward back propagation Neural Network with pre- and post-processing and many
features including; color, texture, appearance, and location. We trained the NN on a large set of data points
extracted from 64 images by manually selecting points inside these images. All these points with an enclosing
(20 x 20) window lie in the same class. We have three classes, namely, tissue, detritus, and background. We
produce 1614 data point for the tissue class, 1106 data points for the detritus class, and 11983 data points
for the background class. The tissue is usually colorful with distinguished texture and lies inside the image.
The detritus is usually noisy gray regions and the background is usually noisy white. However, exceptions for



all these exist where we find unstained tissues, tissues touching the border, or tissues spread all over the slide
image.

We tested the labeling procedure on 294 images and achieved over 96% labeling accuracy according to
judgment from an expert pathologist.
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