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Abstract

Brain tissue segmentation of neonate MR images is a challenging task in study of early brain 

development, due to low signal contrast among brain tissues and high intensity variability 

especially in white matter. Among various brain tissue segmentation algorithms, the atlas-based 

segmentation techniques can potentially produce reasonable segmentation results on neonatal 

brain images. However, their performance on the population-based atlas is still limited due to the 

high variability of brain structures across different individuals. Moreover, it may be impossible to 

generate a reasonable probabilistic atlas for neonates without tissue segmentation samples. To 

overcome these limitations, we present a neonatal brain tissue segmentation method by taking 

advantage of the longitudinal data available in our study to establish a subject-specific 

probabilistic atlas. In particular, tissue segmentation of the neonatal brain is formulated as two 

iterative steps of bias correction and probabilistic atlas based tissue segmentation, along with the 

guidance of brain tissue segmentation resulted from the later time images of the same subject 

which serve as a subject-specific probabilistic atlas. The proposed method has been evaluated 

qualitatively through visual inspection and quantitatively by comparing with manual delineation 

results. Experimental results show that the utilization of a subject-specific probabilistic atlas can 

substantially improve tissue segmentation of neonatal brain images.
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1. INTRODUCTION

MRI studies in neonates have attracted a lot of research interests in brain development due 

to its potential to reveal the early brain developing pattern 1-3. To perform volumetric or 

cortical surface analysis in the brain, tissue segmentation is a fundamental step, which 

classifies brain images into gray matter (GM), white matter (WM), and cerebrospinal fluid 

(CSF). The brain tissue segmentation problem has been well studied for adult brain images 
4. However, it still remains challenging for neonatal brain images, due to the low brain tissue 
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contrast and poor spatial resolution as compared with adult brain images. Moreover, due to 

the dynamic WM myelination process, the tissue intensity pattern in the neonatal brain 

changes dramatically with age. Specifically, the brain is mostly unmyelinated in newborns, 

but rapidly changes in the first year, and the adult pattern occurs at 2 years of age 5. The 

conventional intensity-based segmentation algorithm, which assumes a similar intensity for 

the same brain tissue, generally fails for the segmentation of neonatal brains due to the large 

overlap of tissue intensity distributions of GM, WM, and CSF, making it difficult even for 

experts to distinguish between different neonatal brain tissues 6,7.

To overcome these problems, knowledge-based brain tissue segmentation methods for 

neonate images have been proposed 6-12, among which the probabilistic atlas based 

segmentation technique has a potential to yield promising results. In general, the 

probabilistic atlas is created from a set of previously segmented brain images which have 

been spatial normalized into a standard space 13-15. Then, voxel-wise tissue probability in 

the standard space is estimated from all spatially normalized images. To apply the atlas 

based techniques to neonate brain image segmentation, one needs to solve the following 

problems. First, the adult brain atlas cannot be directly applied to neonates due to large 

anatomical difference between the neonatal and the adult brains. Similarly, a general 

pediatric probabilistic atlas cannot be directly applied because the brain develops 

dramatically in the first year of life, and brain tissue patterns differ largely between neonates 

and other ages. Second, the probabilistic atlas constructed from a population is generally 

very fuzzy particularly in the cortical regions, making it difficult to perform high-

performance segmentation in the cortex and other sub-cortical regions (see Fig. 1).

On the other hand, it is known that the adult pattern occurs at two years old 5, and the 

segmentation of the two-year-old or later time brain images is relatively easy with 

conventional segmentation methods. More importantly, the cortical convolution patterns 

remain similar after birth. For example, as indicated in Fig. 2, the cortical patterns within the 

solid (and dashed) circles are very similar across images obtained at two weeks, one year, 

and two years old of the same subject. Therefore, the segmentation results of the later time 

images can potentially serve as a subject-specific tissue probabilistic atlas to guide the 

segmentation of the neonatal brain images from the same subject. In this paper, longitudinal 

MR images were employed to obtain a longitudinal subject-specific atlas (with high local 

specificity) for performing accurate tissue segmentation for neonatal brain images. 

Experimental results will be provided below.

2. METHOD

To take advantage of the longitudinal data acquired in our study, we propose a subject-

specific atlas based tissue segmentation method for neonatal brain images. As summarized 

in Fig. 3, the proposed method is designed to segment brain tissues from longitudinal images 

acquired at approximately two weeks, one year old, and two years old. It consists of two 

main steps: (1) the intensity-based segmentation of two-year-old brain images as well as the 

creation of a subject-specific tissue probabilistic atlas, as described in the right panel of Fig. 

3; (2) the probabilistic atlas based tissue segmentation on the images acquired at an earlier 

time point (such as two weeks or one year old), as described in the left panel of Fig. 3. In 
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these two segmentation steps, we iteratively performed the bias correction and the intensity 

or probabilistic atlas based tissue segmentation until convergence. Notice the tissue 

segmentation results of the one-year-old images can also be used for creating a tissue 

probabilistic atlas and for combining with the two-year-old tissue probabilistic atlas to 

generate an integrated atlas for better guiding of the segmentation of two-week images.

In the following subsections, we will describe our proposed segmentation method by first 

introducing the preprocessing steps for skull-stripping and cerebellum removal, and then 

detailing the two major steps proposed in our segmentation method.

2.1 Preprocessing step

Skull-stripping is a standard processing step in brain image analysis, which helps improving 

the performance of subsequent analysis steps. Thus, in our study, all non-brain tissues in the 

images acquired at each time point were removed by using Brain Surface Extractor (BSE) 
16, followed by manual editing to ensure the complete removal of the skull. Moreover, in 

order to focus on segmenting brain tissues only, we also manually removed the cerebellum 

in all images. The results of skull-stripped and cerebellum-removed images can be observed 

in Figs. 1~7.

2.2 Step 1: Segmentation of two-year-old image

For segmenting two-year-old brain images, we performed an iterative procedure of bias 

correction and intensity-based tissue segmentation. In particular, the nonparametric 

nonuniform intensity normalization (N3) technique was used to perform bias correction 17. 

For brain tissue segmentation, we used the FMRIB’s Automated Segmentation Tool (FAST) 
18, which uses Markov Random Field for tissue segmentation. The brain images were 

segmented into three tissue types, i.e., GM, WM, and CSF. The final tissue segmentation 

results by this iterative procedure are shown in Fig. 4. It is worth noting that the above steps 

of bias correction and tissue segmentation also generate three tissue probabilistic maps for 

GM, WM, and CSF, respectively, which can be subsequently used to guide tissue 

segmentation of the earlier-time images as detailed below.

2.3 Step 2: Probabilistic atlas based segmentation of neonatal image

To segment the images acquired at earlier time points (such as two weeks or one year old), 

the tissue probabilistic maps of the later-time images were first aligned onto the space of the 

earlier-time images. This was achieved by linear alignment of the original skull-stripped 

two-year-old images onto the two-week (or one-year-old) skull-stripped images, and then 

using the estimated transformation to map the tissue probabilistic atlases onto the same 

neonatal image space. For example, the obtained atlases in the neonate image space are 

represented as {p(yi∣k), k=WM, GM, CSF}, which can be used as priors to guide the tissue 

segmentation of the neonate brain as detailed below.

Next, we introduce an iterative procedure of bias correction and probabilistic atlas based 

segmentation. The bias field was set as homogeneous in the beginning, and it was iteratively 

updated based on the segmentation result. With the estimated bias field, the intensity non-
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uniformity in the neonate images can be corrected, and the resulting bias corrected images 

can be used for tissue segmentation using an Expectation-Maximization (EM) algorithm.

In the EM algorithm, a Gaussian mixture model (GMM) was first employed to model the 

intensity distribution of the k-th tissue in the neonatal brain images:

(1)

where yi is the intensity of voxel i. Nk is the number of Gaussian functions used to estimate 

the intensity distribution in the k-th tissue. p (yi ∣ k, n) is the probability density function 

parameterized with the mean μk,n and the variance σk,n of the intensity in the n-th Gaussian 

function of the neonate images. γk,n is a mixing proportion and it sums to one for each tissue 

k.

To estimate the parameters in GMM, the warped probabilistic atlases {p(yi∣k)} were applied 

to the neonate images as prior probability. By incorporating with neonatal image intensity, 

the posterior probability map is estimated by the Bayes rule. The E-step in the EM algorithm 

focuses on estimating the n-th Gaussian function in the k-th tissue:

(2)

where p(yi∣k, n) and p(k,n) are given by the warped probabilistic atlas of the k-th tissue. p(yi) 

is obtained by GMM with parameters {γ,μ,σ}

After obtained the posterior probability p(k,n∣yi) in the E-step, the new values of parameters 

γ, μ and σ can be estimated in the M-step as follows:

(3)

(4)

(5)

where I is the total number of voxels in the neonate images. The EM algorithm as well as the 

bias correction were iterated until convergence. The final segmentation results were 

obtained by assigning each voxel with the maximum belonging probability to a certain class. 
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The probabilistic maps and the final segmentation results of the two-week images are 

provided in Fig. 5.

It is worth noting that our segmentation algorithm has a certain tolerance to slight errors in 

the probabilistic atlas. For example, the frontal area in the warped prior probability maps 

(Fig. 5b-d) is slightly different from that of neonate images (Fig. 5a), while the segmentation 

is not dominated by prior atlas; instead, it produces reasonable results (Fig. 5e-h).

Considering the tissue intensity contrast is dramatically changed during the brain 

developmental process, the intensity based registration method may not achieve good 

registration between neonate and 2-year-old images. To improve registration, we could non-

rigidly register them by using their segmented images, particularly after we obtain the tissue 

segmentation result for the neonate image. We could potentially repeat the probabilistic atlas 

based tissue segmentation and the non-rigid registration iteratively to achieve better 

segmentation, as most joint segmentation and registration methods did 19.

3. EXPERIMENTAL RESULTS

To evaluate the proposed segmentation method, we applied it to a dataset of 10 neonates, 

each with the longitudinal T1-weighted MR images acquired at a mean gestational age of 

two weeks, one year old, and two years old. All of the scans were performed using a 3T 

Siemens scanner with the following MR imaging parameters, TR=1900ms, TE=4.38ms, Flip 

Angle=7, acquisition matrix=256×192, resolution=1×1×1 mm3, and 160 axial slices.

To visually inspect the segmentation performance, segmentation results of four 

representative subjects are shown in Fig. 6. In each panel from (a) to (d), the first column 

shows the original images and the second column shows the segmentation results. In 

particular, the results in the two-week images are impressive, where all major and even 

small structures are reasonably segmented.

For quantitative evaluation of our proposed tissue segmentation method, two experts 

manually segmented 10 subject images in 2 sagittal slices, 3 coronal slices, and 3 transverse 

slices by using the same initialization for segmentation and the ITK-SNAP software 20. The 

manual segmentation was performed on the T2-weighted images, and the segmentation 

results are rigidly transformed to the T1-weighted images, for allowing the evaluation of 

tissue segmentation results on the T1-weighted images.

Our neonate segmentation results were compared with manual segmentation results by 

measuring the overlay percentage and the volume error. The overlay percentage is measured 

by the Dice ratio (DR) 21. Considering two segmented regions A and B, the Dice ratio is 

defined as follows:

The range of DR is from 0 (complete non-overlay) to 1 (perfect overlay). Generally, 0.7 is 

considered as satisfactory agreement of the two regions 22. Note that the central brain 
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region, as shown in Fig. 7, was blocked in manual segmentation due to its low tissue 

contrast, and thus it is not included in the computation of the Dice ratio in our experiment. 

The comparison results on the manual and automated segmentations are shown in Fig. 8.

The overall Dice ratios of segmentation results between our proposed method and the two 

manual raters are, respectively, 0.79±0.02 and 0.76±0.03 for GM, and 0.75±0.04 and 

0.73±0.04 for WM. This indicates high agreement between our results and manual 

segmentation results in both GM and WM. The relative high Dice ratio in GM might be due 

to the slight over-segmentation of GM. The inter-rater Dice ratio is 0.88±0.01 for GM, and 

0.87±0.02 for WM. The higher Dice ratio between the two manual raters might attribute to 

the use of the same initial segmentation in the beginning of their manual delineation.

Volume error is also calculated to evaluate the segmentation performance. The volume error 

in the GM is 0.05±0.02 with rater 1, 0.12±0.06 with rater 2, and the inter-rater volume error 

is 0.09±0.07. For WM, the volume error is 0.10±0.05 with rater 1, 0.18±0.07 with rater 2, 

and the inter-rater volume error is 0.10±0.07. It can be seen that the volume error by the 

proposed method is comparable with inter-rater difference.

4. CONCLUSION

We presented a method for performing brain tissue segmentation of neonatal brain images 

by using a subject-specific probabilistic atlas. This method takes advantage of the available 

longitudinal data in our study, i.e., using the segmentation results from the images acquired 

at a later time to guide the segmentation of the images acquired at earlier times. The 

experimental results demonstrated that the proposed method have potential to achieve 

promising segmentation results for the neonate images.

To further improve the performance of the proposed method, we are now exploring in two 

directions. First, we are investigating an integrated method to combine the non-rigid 

registration with tissue segmentation, particularly to use non-rigid registration algorithms to 

align the subject-specific atlas with the intermediate segmentation results at each iteration, 

aiming to improve the registration and segmentation performance simultaneously. Second, 

we are investigating the advantage of combining the probabilistic atlases from two years old 

and one year old, to produce better segmentations on the neonate images.
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Fig. 1. 
Segmentation of neonatal brain images using a population-based tissue probabilistic atlas, as 

shown in (a-c). The original neonatal brain image and its segmentation result are shown in 

(d) and (e), respectively.
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Fig. 2. 
Demonstration of the similarity of the cortical convolution patterns in images acquired from 

a subject imaged at two weeks, one year old, and two years old. Red circles are provided for 

an easy comparison of the same local cortical folds across different times.
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Fig. 3. 
The proposed tissue segmentation framework. The images in the top row are the original T1-

weighted MR images acquired at approximately two weeks, one year old, and two years old. 

The images in the bottom row are the corresponding segmentation results.
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Fig. 4. 
Tissue segmentation results for images obtained from a representative two-year-old. (a) 

Original T1-weighted image, (b) tissue segmentation result, and (c-e) probabilistic maps of 

GM, WM, and CSF.
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Fig. 5. 
Illustration of prior and posterior probability maps. (a) Original T1-weighted image; (b-d) 

the warped prior probabilistic maps of GM, WM, and CSF, warped from the later-time 

image; (e) segmentation result, integrated from the posterior probability maps of GM, WM, 

and CSF in (f-h), respectively.
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Fig. 6. 
Segmentation results of longitudinal images from four subjects, corresponding to the panels 

in (a-d), respectively. For each subject, from top to bottom are the two-year-old, one-year, 

and two-week images, and from left to right are the original skull-stripped images and the 

segmentation results.
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Fig. 7. 
Segmentation results of two neonates (top and bottom) by our proposed method and two 

manual raters. (a) Original T1-weighted images; (b) Segmentation results by our proposed 

method; (c-d) Manual segmentation results by two experts.
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Fig. 8. 
Evaluation of segmentation results between manual raters and our proposed methods with 

the Dice ratio. The left panel is the result for GM, and the right panel is for WM.
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