
Fast Space-varying Convolution and Its Application in Stray

Light Reduction*

Jianing Weia, Guangzhi Caoa, Charles A. Boumana, and Jan P. Allebacha

aSchool of Electrical Engineering, Purdue University, West Lafayette, IN 47907-0501, USA

ABSTRACT

Space-varying convolution often arises in the modeling or restoration of images captured by optical imaging
systems. For example, in applications such as microscopy or photography the distortions introduced by lenses
typically vary across the field of view, so accurate restoration also requires the use of space-varying convolu-
tion. While space-invariant convolution can be efficiently implemented with the Fast Fourier Transform (FFT),
space-varying convolution requires direct implementation of the convolution operation, which can be very com-
putationally expensive when the convolution kernel is large.

In this paper, we develop a general approach to the efficient implementation of space-varying convolution
through the use of matrix source coding techniques. This method can dramatically reduce computation by
approximately factoring the dense space-varying convolution operator into a product of sparse transforms. This
approach leads to a tradeoff between the accuracy and speed of the operation that is closely related to the
distortion-rate tradeoff that is commonly made in lossy source coding.

We apply our method to the problem of stray light reduction for digital photographs, where convolution
with a spatially varying stray light point spread function is required. The experimental results show that our
algorithm can achieve a dramatic reduction in computation while achieving high accuracy.

Keywords: space-varying convolution, stray light, image restoration, matrix source coding

1. INTRODUCTION

Space-varying convolution often arises in the modeling or restoration of images captured by optical imaging
systems. This is due to the fact that the point spread function (PSF) and/or distortion introduced by a lens
typically varies across the field of view,1 so accurate restoration also requires the use of space-varying convolution.

In this work, we will consider the problem of stray light reduction for digital photographs.2 In all optical
imaging systems, a small portion of the entering light flux is misdirected to undesired locations in the image
plane. We refer to this severely misdirected light as stray light, but it is sometimes referred to as lens flare or
veiling glare.1 Causes for this phenomena include but are not limited to: (1) Fresnel reflections from optical
element surfaces; (2) scattering from surface imperfections on lens elements; (3) scattering from air bubbles in
transparent glass or plastic lens elements; and (4) scattering from dust or other particles.

The stray light reduction algorithm is originally due to Jansson and Fralinger.3 It can be described by2, 4 the
following equation:

x̂ = 2y − (1 − β)y − βSy, (1)

where y is the observed image, x̂ is the estimate of the underlying image to be recovered, S is a matrix representing
convolution with the stray light PSF, and β is the weight of stray light. If S implements space-invariant 2D
circular convolution, then Sy can be computed using a 2D FFT, which can dramatically reduce computation.5

*Research partially supported by E. I. du Pont De Nemours and Company.
Further author information: (Send correspondence to Jianing Wei)
Jianing Wei: E-mail: wei2@purdue.edu, Telephone: 1 765 494 3465
Guangzhi Cao: E-mail: gcao@purdue.edu, Telephone: 1 765 494 6553
Charles A. Bouman: E-mail: bouman@purdue.edu, Telephone: 1 765 494 0340
Jan P. Allebach: E-mail: allebach@purdue.edu, Telephone: 1 765 494 3535

However, the stray light PSF is space-varying, so FFT cannot be directly used to speed up computation. In
addition, the support of the stray light PSF is very large, which makes S a dense matrix, and the computation
of Sy extremely expensive. If the image contains N pixels, the computation is O(N2). For a 106 pixel image, it
takes 106 multiplies to compute each output pixel, resulting in a total of 1012 multiplies. This means hours of
processing time, which makes it infeasible for real-world applications of the stray light reduction algorithm.

In this paper, we introduce a novel approach for efficient computation of space-varying convolution, based on
the theory of matrix source coding;6 and we demonstrate how the technique can be used to efficiently implement
the stray light reduction for digital cameras. The matrix source coding technique uses the method of lossy source
coding which makes the dense matrix S sparse. This is done by first decorrelating the rows and columns of S and
then quantizing the resulting compacted matrix so that most of its entries become zero. By making S sparse, we
not only save storage, but we also dramatically reduce the computation of the required matrix-vector product.

Our experimental results indicate that, by using this approach, we can reduce the computational complexity
of space-varying convolution from O(N2) to O(N). For digital images exceeding 1 Meg pixel in size, this makes
deconvolution practically possible, and results in deconvolution algorithms that can be computed with 5 to 10
multiplies per output pixel.

In the rest of this paper, we start by introducing the stray light contamination model and the algorithm for
stray light reduction. We then elaborate on the theory and implementation of the matrix source coding approach
for space-varying convolution with the stray light point spread function. Finally, we present experimental results
to demonstrate the effectiveness of our algorithm.

2. STRAY LIGHT REDUCTION STRATEGY

2.1 PSF Model Formulation

The PSF model for a stray light contaminated optical imaging system is supposed to account for the following
contributions: (1) diffractive spreading owing to the finite aperture of the imaging device; (2) aberrations arising
from non-ideal aspects of the device design and device fabrication material; and (3) stray light due to scattering
and undesired reflections. Therefore, the forward model of stray light contamination can be expressed as

y = ((1 − β)G + βS)x, (2)

where G accounts for diffraction and aberration, S accounts for stray light due to scattering and undesired
reflections, β represents the weight factor of stray light. The entries of G are described by

Gq,p = g(iq, jq; ip, jp),

where (ip, jp) and (iq, jq) are the 2D positions of the input and output pixel locations, measured relative to the
center of the camera’s field of view. Using this notation, we have modeled the diffraction and aberration PSF
with the following function2, 4, 7, 8

g(iq, jq; ip, jp) =
1

2πσ2
exp

(

−
(iq − ip)

2 + (jq − jp)
2

2σ2

)

. (3)

Similarly, the entries of S are described by

Sq,p = s(iq, jq; ip, jp).

We model this stray light PSF with the following function2, 4, 7, 8

s(iq, jq; ip, jp) =
1

z

1
(

1 + 1
i2
p
+j2

p

(

(iqip+jqjp−i2
p
−j2

p
)2

(c+a(i2
p
+j2

p
))2 +

(−iqjp+jqip)2

(c+b(i2
p
+j2

p
))2

))α , (4)

where z is a normalizing constant that makes
∫

iq

∫

jq

s(iq, jq; ip, jp)diqdjq = 1. An analytic expression for z is

z = π
α−1 (c + a(i2p + j2

p))(c + b(i2p + j2
p)). The model parameters are then (a, b, c, α, β, σ). Previous work2, 4, 7, 8

has established an approach for estimating these parameters. We use the same apparatus and algorithm to do
parameter estimation.

2.2 Stray Light Reduction

Once the model parameters are estimated, we use Van Cittert’s method9, 10 to compute the restored image. Van
Cittert’s method is an iterative approach to restore images. The iteration formula is as follows:

x̂(k+1) = x̂(k) + y − Ax̂(k), (5)

where x̂(k) is the estimate of the original image at the kth iteration, A = ((1 − β)G + βS), and we initialize
x̂(0) with the observed image y. We can approximate the diffraction and aberration PSF with a delta function,2

leading to G = I. It has been shown that the result of the first iteration is already a good estimate of the original
image.2 Therefore, our restoration equation becomes:

x̂ = 2y − (1 − β)y − βSy. (6)

However, since our stray light PSF is global and space-varying, directly computing Sy is quite expensive. For a
6 Megapixel image, it requires 6 million multiplies per output pixel, and a total of 3.6 × 1013 multiplies. So we
compress the transform matrix S using matrix source coding to reduce the on-line computation.

3. MATRIX SOURCE CODING

3.1 Matrix Source Coding Theory

The computationally expensive part in Eq. (6) is

x̃ = Sy. (7)

Our strategy for speeding up computation is to compress the matrix S, such that it becomes sparse. In order to
find a sparse representation of the matrix S, we use the techniques of lossy source coding. Let [S] represent the
quantized version of S. Then S = [S] + δS, where δS is the quantization error. This error δS results in some
distortion in x̃ given by

δx̃ = δSy. (8)

A conventional distortion metric for the source coding of the matrix S is ‖δS‖2. However, this may be very
different from the squared error distortion in the matrix-vector product result which is given by ‖δx̃‖2. Therefore,
we would like to relate the distortion metric for S to the quantity ‖δx̃‖2.

It has been shown that if the image y and the quantization error δS are independent, then the distortion in
x̃ is given by6, 11

E
[

‖δx̃‖2|δS
]

= ‖δS‖2
Ry

= trace{δSRyδSt}, (9)

where Ry = E[yyt]. So if the data vector y is white, then Ry = I, and

E
[

‖δx̃‖2|δS
]

= ‖δS‖2. (10)

In other words, when the data is white, minimizing the squared error distortion of the matrix S is equivalent to
minimizing the expected value of the squared error distortion for the restored image x̂.

So our strategy for source coding of matrix S is to simultaneously:

• Whiten the image y, so that minimizing the distortion in the coded matrix is equivalent to minimizing the
distortion in the restored image.

• Decorrelate the columns of S, so that they will code more efficiently after quantization.

• Decorrelate the rows of S, so that they will code more efficiently after quantization.

The above goals can be achieved by applying the following transformation

S̃ = W1ST−1 (11)

ỹ = Ty, (12)

where T is a matrix that simultaneously whitens the components of y and decorrelates the columns of S, and W1

is a matrix that approximately decorrelates the rows of S. In our case, W1 is a wavelet transform, since wavelet
transforms are known to be an approximation to the Karhunen-Loeve transform for stationary sources, and are
commonly used as decorrelating transforms.12 We form the matrix T by applying a wavelet transform to y

followed by gain factors designed to normalize the variance of the wavelet coefficients. Specifically, T = Λ
−1/2
w W2

and T−1 = W−1
2 Λ

1/2
w , where W2 is also a wavelet transform, and Λ

−1/2
w is a diagonal matrix of gain factors

designed so that
Λw = E[diag(W2yytW t

2)].

This matrix T approximately whitens and decorrelates the image y. The diagonal matrix Λw can be estimated
from training images. We take the wavelet transform W2 of these training images, compute the variance of
wavelet coefficients in each band, and average over all images. In this way, we only have a single gain factor for
each band of the wavelet transform.

Using the above matrix source coding technique, the computation of the space-varying convolution now
becomes

x̃ ≈ W−1
1 [S̃]ỹ, (13)

where [S̃] is the quantized version of S̃. Therefore, the on-line computation consists of two wavelet transforms
and a sparse matrix vector multiply. We will show later that this technique results in huge savings in computation
of space-varying convolution.

3.2 Efficient Implementation of Matrix Source Coding

In order to implement the fast space-varying convolution method of Eq. (13), it is first necessary to compute
the source coded matrix [S̃]. We will refer to the computation of [S̃] as the off-line portion of the computation.
Once the sparse matrix [S̃] is available, then the space-varying convolution may be efficiently computed using
on-line computation shown in Eq. (13).

However, even though the computation of [S̃] is performed off-line, rigorous evaluation of this sparse matrix
is still too large for practical problems. For example, if the image is 16 Megapixel in size, then temporary storage
of S requires approximately 1 Petabyte of memory. The following section describes an efficient approach to
compute [S̃] which eliminates the need for any such temporary storage.

In our implementation, we use the Haar wavelet transform13 for both W2 and W1. The Haar wavelet transform
is an orthonormal transform, so we have that

S̃ = W1ST−1

= W1SW t
2Λ1/2

w .

Therefore, the precomputation consists of a wavelet transform W2 along the rows of S, scaling of the matrix
entries, and a wavelet transform W1 along the columns. Unfortunately, the computational complexity of these
two operations is O(N2), where N is the number of pixels in the image, because the operation requires that each
entry of S be touched. In order to reduce this computation to order O(N), we will use a two stage quantization
procedure combined with a recursive top-down algorithm for computing the Haar wavelet transform coefficients.

The first stage of this procedure is to reduce the computation of the wavelet transform W1. To do this, we
first compute the wavelet transform of each row using W2, and then we perform an initial quantization step.
This procedure is expressed mathematically as

[S̃] ≈ [W1[SW t
2Λ1/2

w]], (14)

where the notation [· · ·] denotes quantization. After the initial quantization, the resulting matrix [SW t
2Λ

1/2
w] is

quite sparse. If the number of remaining nonzero entries in each row is K, then the computational complexity
of the second wavelet transform W1 is reduced to order O(KN) rather than O(N2).

However, the problem still remains as to how to efficiently implement the first wavelet transform W2, since
naive application of W2 to every row still requires O(N2) operations. The next section describes an approach for
efficiently computing this first wavelet transform by only evaluating the significant coefficients. This can be done
by using a top-down recursive method to only evaluate the wavelet coefficients that are likely to have absolute
values substantially larger than zero.

3.2.1 Determining the Location of Significant Wavelet Coefficients

As discussed above, we need a method for computing only the significant wavelet coefficients in order to reduce
the complexity of the wavelet transform W2. To do this, we will first predict the location of the largest K entries

in every row of the matrix SW t
2Λ

1/2
w . Then we will present an approach for computing only those coefficients,

without the need to compute all coefficients in the transform.

Since each row of S is actually an image, we will use the 2D index (iq, jq) to index a row S, and (ip, jp)
to index a column of S. Using this notation, S(iq,jq),(ip,jp) represents the effect of the point source at position
(ip, jp) on the output pixel location (iq, jq).

Figure 1(a) shows an example of the row of S displayed as an image, together with its wavelet transform in

Fig. 1(b). The wavelet transform is then scaled by gain factors Λ
−1/2
w , and represented by the corresponding row

of SW t
2Λ

1/2
w . Finally, Fig. 1(c) shows the locations of the wavelet coefficients that are non-zero after quantization,

and a circle in each band that is used to indicate the region containing all non-zero entries.

By identifying the regions containing non-zero wavelet coefficients, we can reduce computation. In practice,
we determine these regions by randomly selecting rows of the matrix and determining the center and maximum
radius necessary to capture all non-zero coefficients.

3.2.2 A Top-Down Approach for Computing Sparse Haar Wavelet Coefficients

In order to efficiently compute sparse Haar wavelet coefficients, we compute only the necessary approximation
coefficients at each level using a top-down tree-based approach. The tree structure is illustrated in Fig. 2. Since
the approximation coefficients at different scales form a quad-tree, the value of each node can be computed from
its children as

fa[k][m][n] =
1

2
(fa[k − 1][2m][2n] + fa[k − 1][2m + 1][2n]

+fa[k − 1][2m][2n + 1] + fa[k − 1][2m + 1][2n + 1]), (15)

where fa[k][m][n] represents an approximation coefficient at level k and location (m, n). Here level k = 0 is
the lowest level corresponding to the full resolution image. A recursive algorithm can be easily formulated from
Eq. (15). We know that when the corresponding detail coefficients of an approximation coefficient are all zero,
it means that the approximation is perfect. So in this case, for the nodes whose corresponding detail coefficients
are all zeroed out after quantization, we stop and compute the value of the approximation coefficient by

fa[k][m][n] = 2kfa[0][2km][2kn]. (16)

Note that fa[0][2km][2kn] can be directly computed from the expression of the PSF. Another stopping point
occurs when the leaves of the tree are reached, i.e. k = 0. Therefore, we have a recursive algorithm for
computing the significant Haar wavelet approximation coefficients as shown in Fig. 3.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

(a) An example of the row image. (b) The corresponding wavelet transform.

(c) Location of non-zero wavelet coefficients after quantization.

Figure 1. An example of a row of S displayed as an image together with its wavelet transform, and the locations of
non-zero entries after quantization: (a) shows the log amplitude map of the row image, (b) shows the log of the absolute

value of its wavelet transform, (c) shows the locations of non-zero entries of the corresponding row of SW t
2Λ

1/2
w .

Figure 2. An illustration of the tree structure of approximation coefficients. Shaded squares indicate that the detail
coefficients are not zero at those locations. So we go to the next level recursion. Empty squares indicate that the detail
coefficients are zero, and we stop to compute their values.

After obtaining the significant approximation coefficients, we can compute the necessary wavelet coefficients13

using the following equation:

fh
d [k][m][n] =

1

2
(fa[k − 1][2m][2n]− fa[k − 1][2m][2n + 1] + fa[k − 1][2m + 1][2n] − fa[k − 1][2m + 1][2n + 1])

fv
d [k][m][n] =

1

2
(fa[k − 1][2m][2n] + fa[k − 1][2m][2n + 1] − fa[k − 1][2m + 1][2n] − fa[k − 1][2m + 1][2n + 1])

fd
d [k][m][n] =

1

2
(fa[k − 1][2m][2n]− fa[k − 1][2m][2n + 1] − fa[k − 1][2m + 1][2n] + fa[k − 1][2m + 1][2n + 1]),

(17)

where fh
d [k][m][n], fv

d [k][m][n], and fd
d [k][m][n] denote the horizontal, vertical, and diagonal detail coefficients

respectively, at level k, location (m, n). We can show that the complexity of our algorithm for computing

float FastApproxCoef(k, m, n) {
float value = 0;
if (k==0) {

value = s(iq, jq ; m, n);
fa[k][m][n] = value;
return value;

}
if (ZeroDetailCoef(k,m,n)) {

value = 2ks(iq, jq; 2
km, 2kn);

fa[k][m][n] = value;
return value;

}
value += FastApproxCoef(k-1, 2m, 2n);
value += FastApproxCoef(k-1, 2m, 2n+1);
value += FastApproxCoef(k-1, 2m+1, 2n);
value += FastApproxCoef(k-1, 2m+1, 2n+1);
value = value/2;
fa[k][m][n] = value;
return value;

}

(a) Primary function.

int ZeroDetailCoef(k,m,n) {

if (d
`

(m,n), (mk
c , nk

c)
´

> max{r
(k)
h , r

(k)
v , r

(k)
d }) {

/* (mk
c , nk

c) is the center of the circle at level k */
/* d

`

(m,n), (mk
c , nk

c)
´

is the distance from (m,n) to (mk
c , nk

c) */
return 1;

}
else {

return 0;
}

}

(b) Subroutine.

Figure 3. Pseudo code for fast computation of significant Haar approximation coefficients. Part (a) is the main routine.
Part (b) is a subroutine called by (a). The approximation coefficient at level k, location (m, n) is denoted fa[k][m][n].

sparse Haar wavelet coefficients of an N -pixel image is O(K), where K represents the number of nonzero entries
after quantization. The number of nodes that we visit in the tree of approximation coefficients is at most 4K.
Computing these 4K nodes requires at most 16K additions. So the complexity of computing the approximation
tree is O(K). Once the necessary approximation coefficients are computed, computing the detail coefficients
only requires O(K) operations. Thus the complexity of our algorithm is O(K) for one row of S. Therefore, we
reduce the complexity of precomputation of [S̃] from O(N2) to O(KN).

4. EXPERIMENTAL RESULTS

4.1 Experiments on Space-varying Convolution with Stray Light PSF

In order to test the performance of our algorithm in computing x̃ = Sy, we use the test image shown in
Fig. 4 for y, and a realistic stray light PSF for S. The parameters of this PSF are: a = −1.65 × 10−5 mm−1,
b = −5.35 × 10−5 mm−1, α = 1.31, c = 1.76 × 10−3 mm. The parameters of this PSF were estimated for an
Olympus SP-510 UZ∗ camera. We picked three natural images as training images to obtain the scaling matrix

∗Olympus America Inc., Center Valley, PA 18034

Figure 4. Test image for space-varying convolution with stray light PSF.

Λw. We use normalized root mean square error (NRMSE) as the distortion metric:

NRMSE =

√

‖x̃ − W−1
1 [S̃]ỹ‖2

2

‖x̃‖2
2

. (18)

Our measure of computation is the average number of multiplies per output pixel (rate), which is given by the
average number of non-zero entries in the sparse matrix [S̃] divided by the total number of pixels N .

In order to better understand the computational savings, we used two different image sizes of 256× 256 and
1024 × 1024 for our experiments. In the 256 × 256 case, we used an eight level Haar wavelet transform for W2.
In the 1024× 1024 case, we used a ten level Haar wavelet transform for W2. In both cases, W1 was chosen to be
a three level CDF 5-3 wavelet transform.14 In addition, the wavelet transform W1 was computed using a 64× 64
block structure so as to minimize the size of temporary storage used in the off-line computation. Using a block

structure enables us to compute the rows of [SW t
2Λ

1/2
w] corresponding to one block, take the wavelet transform

along the columns, then quantize and save, and then go to the next block.

Figure 5(a) shows the distortion rate curves for a 256× 256 image using two different techniques, i.e. simple
quantization of S and matrix source coding of S as described by Eq. (13). Note that direct multiplication by S

without quantization requires 65, 536 multiplies per output pixel.

Figure 5(b) compares the distortion rate curves of our matrix source coding algorithm on two different image
sizes — 256 × 256 and 1024 × 1024. Notice that the computation per output pixel actually decreases with the
image resolution. This is interesting since the computation of direct multiplication by S increases linearly with
the size of the image N .

At 1024× 1024 resolution, with only 2% distortion, our algorithm reduces the computation from 1048576 =
10242 multiplies per output pixel to 12 multiplies per output pixel; and that is a 87, 381:1 reduction in compu-
tation.

4.2 Experiment on Stray Light Reduction

We use Eq. (6) to perform stray light reduction. The space-varying convolution Sy is efficiently computed using
our matrix source coding approach. We take outdoor images with an Olympus SP-510UZ camera. The stray
light PSF parameters were shown in the previous subsection. The other parameter β = 0.3937. We use an eight
level Haar wavelet for W2, and a three level CDF 5-3 wavelet14 for W1, with block structure of block size 64×64.

Figure 4.2 shows an example of stray light reduction. Figure 4.2(a) is the captured image. Figure 4.2(b) is
the restored image. Figures 4.2(c-d) shows a comparison between captured and restored versions for different
parts of the image. From this example, we can see that the stray light reduction algorithm increases the contrast
and recovers more details of the original scene.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

multiplies per output

N
R

M
S

E

matrix source coding of S
direct quantization of S

(a) Distortion vs. computation for two methods on image size 256 × 256.

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

multiplies per output

N
R

M
S

E

image size 256x256
image size 1024x1024

(b) Distortion vs. computation for two image sizes using matrix source coding of S.

Figure 5. Experiments demonstrating fast space-varying convolution with stray light PSF: (a) relative distortion versus
number of multiplies per output pixel (i.e. rate) using two different matrix source coding strategies: the black solid line
shows the curve for our proposed matrix source coding algorithm as described in Eq. (13), and the red dashed line shows
the curve resulting from direct quantization of the matrix S; (b) comparison of relative distortion versus computation
between two different resolutions: the solid black line shows the curve for 256 × 256, and the dashed blue line shows the
curve for 1024 × 1024.

(a) Captured image. (b) Restored image.

(c) Captured | restored. (d) Captured | restored.

Figure 6. Example of stray light reduction: (a) shows a captured image, (b) shows the restored image, (c) shows a
comparison between captured and restored for a part of the image, (d) shows a comparison between captured and
restored for another part of the image.

5. CONCLUSION

In this paper, we proposed a systematic approach for efficiently computing space-varying convolution using
matrix source coding theory. Our approach reduced the computation from O(N2) to O(N), where N is the
number of pixels in the image. We also developed a fast algorithm for computing sparse entries of Haar wavelet
transform to accelerate our encoding process, which involves precomputation of quantized wavelet transforms
along the rows and columns of the convolution matrix. Our algorithm for computing the Haar wavelet transform
uses a top-down recursive approach, rather than the bottom-up approach used by a conventional filter-bank
implementation. The value of this algorithm is to obtain the sparse entries of Haar wavelet coefficients with
O(K) complexity, where K is the number of sparse entries to compute. Finally, we showed experimental results
of space-varying convolution which demonstrated the efficiency of our algorithm. We also showed a stray light
reduction example using our fast algorithm.

REFERENCES

1. W. J. Smith, Modern Optical Engineering : the Design of Optical Systems, McGraw Hill, New York, NY
(2000).

2. J. Wei, B. Bitlis, A. Bernstein, A. Silva, P. A. Jansson, and J. P. Allebach, “Stray light and shading reduction
in digital photography – a new model and algorithm,” in Proceedings of the SPIE/IS&T Conference on
Digital Photography IV, 6817, (San Jose, CA) (2008).

3. P. A. Jansson and J. H. Fralinger, “Parallel processing network that corrects for light scattering in image
scanners,” US Patent 5,153,926 (1992).

4. B. Bitlis, P. A. Jansson, and J. P. Allebach, “Parametric point spread function modeling and reduction of
stray light effects in digital still cameras,” in Proceedings of the SPIE/IS&T Conference on Computational
Imaging VI, 6498, (San Jose, CA) (2007).

5. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1975).

6. G. Cao, C. A. Bouman, and K. J. Webb, “Fast and efficient stored matrix techniques for optical tomography,”
in Proceedings of the 40th Asilomar Conference on Signals, Systems, and Computers, (2006).

7. P. A. Jansson, “Method, program, and apparatus for efficiently removing stray-flux effects by selected-
ordinate image processing,” US Patent 6,829,393 (2004).

8. P. A. Jansson and R. P. Breault, “Correcting color-measurement error caused by stray light in image
scanners,” in Proceedings of the Sixth Color Imaging Conference: Color Science, Systems, and Applications,
(Scottsdale, AZ) (1998).

9. P. H. V. Cittert, “Zum einfluss der spaltbreite auf die intensitatswerteilung in spektrallinien,” Z. Physik 69,
298–308 (1931).

10. P. A. Jansson, Deconvolution of Images and Spectra, Academic Press, New York, NY (1996).

11. G. Cao, C. A. Bouman, and K. J. Webb, “Results in non-iterative map reconstruction for optical tomogra-
phy,” in Proceedings of the SPIE/IS&T Conference on Computational Imaging VI, 6814, (San Jose, CA)
(2008).

12. D. Tretter and C. A. Bouman, “Optimal transforms for multispectral and multilayer image coding,” 4(3),
296–308 (1995).

13. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA (1998).

14. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE
Trans. on Image Processing 1(2), 205–220 (1992).

