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ABSTRACT

Digital multimedia such as images and videos are prevalent on today’s internet and cause significant
social impact, which can be evidenced by the proliferation of social networking sites with user generated
contents. Due to the ease of generating and modifying images and videos, it is critical to establish
trustworthiness for online multimedia information. In this paper, we propose a new framework to
perform multimedia forensics by using compact side information to reconstruct the processing history
of a multimedia document. We refer to this framework as FASHION, standing for Forensic hASH for
informatION assurance. As a first step in the modular design for FASHION, we propose new algorithms
based on Radon transform and scale space theory to effectively estimate the parameters of geometric
transforms and detect local tampering that an image may have undergone. The FASHION framework
is designed to answer a much broader range of questions regarding the processing history of multimedia
data than simple binary decision from robust image hashing, and also offers more efficient and accurate
forensic analysis than multimedia forensic techniques that do not use any side information.
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1. INTRODUCTION

Emerging and future communications are going much beyond dealing with one pair of sender and
receiver. We have witnessed growing trends of communications involving multiple users in a distributed
and heterogeneous environment such as peer-to-peer and wireless networks to deliver content-rich audio-
visual data. The exact form of the multimedia data stream delivered to each user may no longer be
bit-by-bit identical, as each stream becomes customized and optimized in an individual receiver for such
needs as bandwidth adaptation, format conversion, and usage auditing [1]. This brings a new challenge
toward establishing trustworthiness of digital multimedia, as having a conventional end-to-end hashing
to provide binary integrity decision is no longer sufficient once a stream is adapted on the fly. A more
complete knowledge about the entire processing history of the multimedia data is desirable to achieve
better decision and usage of online multimedia information.

Recent information forensic research shows that it is possible to determine the origin and detect
potential tampering for digitally acquired images/videos, even without proactive aids such as signa-
ture attachment or embedded watermark [2]. Given these new advances in non-intrusive multimedia
forensics, a related and important research question is to explore whether by appending a short string
as in the conventional hashing applications, we can use such additional information to augment the
capabilities of both conventional hash and non-intrusive forensics to identify and estimate with high



accuracy the processing history that the source data has undergone. Such capabilities of evaluating
the integrity, provenance, and processing history enable us to assess the trustworthiness of data at a
flexible and fine level and avoid the dilemma of one-size-fit-all designs. We refer to such a new frame-
work for forensic research as “Forensic Hash for Information Assurance”, or FASHION in short. Below

we review some related literature and present the main idea and contribution of our work.

Prior work on multimedia forensics Recent research in multimedia forensics can determine
whether a received image/video has undergone certain operations without knowing any information
about the original data. This is accomplished by analyzing intrinsic traces left by devices and process-
ing, and by identifying inconsistencies in signal characteristics [3]. Examples include image capturing
device identification by learning color filter array (CFA) interpolation patterns [4,5], resampling es-
timation by examining linear dependencies among image pixels [6], and image tampering localization
by exploiting the inconsistencies of JPEG quality [7] or lighting direction [8]. These completely non-
intrusive forensic analyses have limitations in terms of the accuracy levels and the scope of forensic
questions that can be answered; a considerable amount of computational complexity is also involved
in all-around analyses.

Prior work on robust image hashing Another related work is robust image hashing [9-11],
which represents the image content by a compact hash that is robust against allowable operations
but is sensitive against malicious tampering. Robust image hashing is an effective technique for image
authentication, but a simple binary decision of authenticity is inadequate for the purpose of multimedia
forensics. It is desirable to provide a complete processing history of the multimedia data, so that the
end users will have the flexibility in decision making on whether to trust and how to use the received
document for specific applications. Some recent work on image hashing can provide certain forensic
capabilities. Roy and Sun [12] incorporate SIFT features [13] into the hash for geometric registration
of the received image to the original and enable tampering localization. Lin et al. [14] use distributed
source coding to encode information about the original image and use EM algorithm to estimate
potential operations on the image. However, the use of SIFT feature in [12] results in considerable
increase in the hash length and registration is not possible when the transmitted SIFT points are not
available in the received image, while the EM algorithm used in [14] is computationally intensive.

Main idea and contribution of our work In this paper, we propose to extract properly selected
information from an image into a compact representation, called forensic hash. The forensic hash is
designed to be modular and contains various components to answer different forensic questions in a
compact, efficient, and accurate manner. The forensic capability of the FASHION framework can be
easily extended by adding new components. Given that geometric transform estimation is necessary
to answer further forensic questions such as tampering localization, but is usually difficult and involves
high computational cost in blind forensic analysis, we propose in this paper an alignment component
for FASHION. We extract side information based on the Radon transform of the image and then
perform estimation of rotation angle, scaling factor, and cropping amount with the help of scale space
theory [15]. After geometric registration, one implementation of integrity check component is presented



to localize image tampering using compact block-based information. The main contributions of our
work include: (1) a modular and extensible framework for information assurance and multimedia
forensics research; (2) novel construction of compact and scalable hash representation with efficient
algorithm for geometric transform estimation, which can be extremely difficult without knowing the
original image. Compared with the robust hashing work [12], our work achieves the registration using
much shorter hash length and the result is more robust to content changes. We believe the proposed
work can have applications in ensuring trustworthiness for digital multimedia data distributed online.

2. MULTIMEDIA FORENSICS USING COMPACT SIDE INFORMATION

The objective of the proposed FASHION framework is to achieve efficient and accurate multimedia
forensics by properly designing forensic hashes that capture important side information about the orig-
inal image. A forensic hash is a compact and modular representation of the original image to facilitate
later forensic analysis. Unlike traditional robust image hashing, forensic hashes from similar images
do not have to be similar in terms of smaller distance between the two hashes. Instead, delicate yet
efficient algorithms are designed to analyze a forensic hash and a given image to identify potential op-
erations that the image may have undergone and estimate the parameters of such operations. Desirable
properties for forensic hash include robustness, scalability, and security. Robustness means that the
forensic hash can provide accurate analysis for images that have undergone multiple operations and
strong tampering; scalability ensures that the performance of forensic analysis can be improved as we
include more side information; security guarantees that malicious tampering cannot evade detection.
In this section, we present our algorithm for the alignment component of forensic hash for estimating
geometric transforms, such as rotation and scaling. Once the image under question has been aligned
with the original image, an integrity check component is devised to detect and localize any tampering
by using block-based features. The forensic hash is designed to be as compact as possible and the
forensic analysis has low computational complexity, which makes it possible to be used in band-limited
channels and on small devices such as mobile phones.

2.1 Geometric Transform Estimation

Geometric transforms such as rotation and scaling are common post-processing operations and the
estimation of transform parameters are important in order to compare the original and testing images
on a common ground. Prior work [12,14] on image hashing either result in considerable hash length to
incorporate the geometric registration information or require high computational cost to estimate the
transform parameters. In this section, we describe our compact forensic hash for efficient rotation and
scaling estimation.

Rotation Estimation The direction of image edges can be used to capture the information about
image orientation. For an original image I(x,y), we first compute its edge map E(x.y) using Canny
edge detector [16]. Radon transform is then applied on the edge map E(x,y). Radon transform of an
image is essentially a line integral of that image along certain directions, defined as follows:

o
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Given another image I’ which is obtained by rotating image I by a degrees counter-clockwise, its
edge map E’ would give a Radon transform Rp/(p,0) = Rg(p,0 + ). Thus, in the Radon trans-
form domain, rotation becomes a shift along the angle axis. This property of Radon transform has
been exploited in the image registration [17] and authentication [18] literature, where a 1-D sum-
marization of the Radon transform along the angle axis is used to estimate the rotation angle by
cross-correlation. For the Radon transforms Rg(p,0) and Rg/(p,8), the 1-D summarization is derived
as m(0) = max,(Rgr(p,0)), and m’(#) = max,(Rp/(p,0)). In order to compactly represent the 1-D
summarization about the original image, quantization and subsampling will be applied to m(6). Since
downsampling will cause aliasing, we first pass the signal m(#) through a low-pass filter f(-) to obtain
m(f) = f(m(#)). If an n-byte hash is desired, we downsample the signal m(#) to obtain the forensic
hash h = {h(1),--- ,h(n)} with h(i) = m(|(: — 1) - zﬂj), i=1,2,--- ,n.

Given a testing image I’, the Radon transform of its edge map R/ (p,#) and the 1-D summarization
m’(0) = max,(Rg(p,0)) will be generated. In order to compare with the forensic hash h, the signal
m'(6) will be passed through the low-pass filter and downsampled at different shift positions to obtain
h'(¢) = {h'(1),--- , K (n)} with W' (i) = rﬁ’(L(z —-1)- 1%0J +¢), ¢ =0,1,---,179. The shift amount
which maximizes the cross-correlation between the two vectors h and h’(¢) is then considered as the
rotation angle between the two images I and I’, i.e.

o =argmax y_h(i)h/(i+¢), ¢ €{0,1,--+ 179}, (2)
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To further compress the forensic hash, we can store only the rank order information of h, i.e.
rank(h) = {r(1),--- ,r(n)} where r(i) € {1,---,n} is the rank of h(i). Given h'(¢) of the testing
image, its rank order information is denoted by rank(h'(¢)) = {r/(1), -+ ,7/(n)}. The shift amount
which minimizes the Ly distance between rank(h) and rank(h’(¢)) will be the estimated rotation angle
between the two images I and I, i.e.

a= argmqgn;\m) —r'(i+¢), ¢ €{0,1,---,179}. (3)

Experimental results show that rotation estimation using ranking information gives comparable

performance to estimation using cross-correlation, which will be shown in Section 3.

Scaling Estimation Given original image I and its scaled version I’ with scaling factor s, their Radon
transforms have the property that the Radon projections at any particular angle 0, f(p) = Ry(p,0) and
1'(p) = Ry (p,0), have the same scaling factor s, i.e. f(p) =s- f'(s- p). However, this scaling relation
may not be exactly satisfied when the image has undergone additional cropping, local tampering, and
other image processing operations such as filtering and contrast enhancement. The forensic hash should
be able to reliably estimate the scaling factor even in such cases.

We propose to use scale space features of the 1-D signals f(p) and f/(p) to address this problem.
Scale space theory [15] is a technique for analyzing signals at different scales, which makes it useful for
automatic scale selection and scale invariant image analysis. Given f(p) of the original image, we first



generate its scale space representation L(p;t) by convolving f with a 1-D discrete Gaussian filter to

obtain
e P/ (2t) (4)

1
L(p;t) = g(p;t) = f(p), where g(p;t) = Nors
The scale space representation is a 2-dimensional signal with higher value of ¢ indicating coarser scale.

With L(p;t) computed, we then locate the space extrema of L(p;t) at each scale ¢ by detecting the
zero-crossing positions of OL(p;t)/0t for each t. For the 1-D signal f shown in Fig. 2, its local extrema
across scales are illustrated in Fig. 1, where horizontal direction represents the signal and the vertical
direction represents the scale. Extrema positions are marked black and from top to bottom the scale
becomes coarser. The property of smoothing using Gaussian kernel is that no new extrema will be
created in coarser scales, which means that the number of extrema will be fewer in the coarser scale
and their evolution over scales will never cross each other.

Figure 1: Space extrema across scales: horizontal direction represents the signal and the vertical

direction represents the scale, with fine scale at the top

We can see from Fig. 1 that smoothing can cause the extrema to drift at coarse scales, therefore
we trace the extrema from the coarse scale to the finest scale and use its position at the finest scale to
accurately locate each extremum. During tracing, we also compute the lifetime of a space extremum,
denoted as log(tp), where tp is the scale at which the extrema disappears. The use of logarithm is to
make sure signals at different scales are treated in a similar way [15]. Extrema with longer lifetime are
expected to capture more important information about the signal and are more robust against local
variations of the signal. The 10 extrema of f with longest lifetime are shown in Fig. 2, which roughly
captures the most stable extrema while ignoring small variations in the signal.

After computing f(p) from the original image, the forensic hash for scaling estimation is generated
by recording the positions of the n extrema of f with the longest lifetime across scales, where n can
be determined by the desired hash length. Since the extrema with long lifetime are expected to be
stable after scaling even with cropping and local tampering, we use their positions to estimate the
scaling factor s. Given the extrema positions of the two signals f(p) and f'(p) = s- f(s - p), we
iteratively choose two extrema from both f(p) and f/(p), respectively. An estimate of the scaling
factor can be obtained by the ratio of the distance between extrema in f’(p) to the distance between
extrema in f(p). We then scale the testing signal f’(p) and align it to the original extrema from f(p),
following which the number of matched extrema between the two signals is recorded. After exhaustively
comparing every two extrema from f(p) to every two extrema from f’(p), the scaling factor that gives
the maximum number of matched extrema between the original signal and testing signal will be the
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Figure 2: The 10 most stable extrema of f(p) Figure 3: Cropping estimation by aligning ex-

trema from original and testing signals

estimated scaling factor s. By computing the Radon projections of the original image along both the
vertical and horizontal directions, we obtain two signals fo(p) and fi(p), respectively, and these two
signals can be used to estimate the scaling factor of the testing image along those two directions.

2.2 Detecting and Locating Changes Made to An Image

Once the parameters of geometric transform are estimated, we can compare the testing image with the
original image on a common ground. In this section, we describe how the above proposed alignment
component of the forensic hash can enable image cropping detection and tampering localization.

Cropping Estimation Cropping can be used by an attacker to remove important information on
the boundary of an image and render most image hashing schemes useless as they are typically sensitive
to misalignment. We can use the forensic hash containing stable extrema proposed above to estimate
the amount of cropping. Cropping on the left and right boundary of the image causes the same amount
of cropping on the boundaries of the signal fy(p). Similarly, cropping on the top and bottom boundary
causes the same amount of cropping on the boundaries of the signal f1(p).

Given a testing image I’, we compute its Radon projections along the vertical and horizontal
directions to obtain f}(p) and fi(p). The positions of the most stable extrema of f{(p) and fi(p) are
also computed. After moderate amount of cropping, majority of the extrema in fo(p) and fi(p) are
still available in f}(p) and fi(p). We can align the original extrema with the extrema from f{ and f]
such that the number of matched extrema is maximized, as described in Section 2.1. An example of the
alignment is shown in Fig. 3. Once the two signals are properly aligned, the amount of cropping can
be obtained by comparing the distance between the boundaries of the two signals. In Fig. 3, dl and dr
are the estimated amount of cropping on the left and right boundaries of the original image. It should
be noted that the accuracy of cropping estimation depends on the accuracy of scaling estimation, since
the testing signal needs to be scaled before alignment. With an accurate scaling estimation, cropping
estimation errors are typically within 1 or 2 pixels.



Tampering Localization Besides cropping, an adversary can modify local regions of an image and
alter its original content by operations such as cut and paste. An effective methods to detect such
local tampering is to represent the original image using block-based features and compare block-wise
differences between the original and testing image. For this approach to work well, the two images
need to be properly aligned before block comparison. Compared with tampering localization based on
inconsistencies in image statistics, as used in blind multimedia forensics, block-wise comparison can
achieve more efficient and more accurate tampering localization. The alignment component that we
arrive at offers accurate geometric registration and therefore provides the necessary common ground
to enable accurate block-based tampering localization.

Since a tampered part of an image usually has significant difference from the original in terms of
their gradient information, features such as edge direction histogram have been used for tampering
localization with good results [12]. Edge direction histogram and quantization of pixel gradient into
a few directions provide good robustness against small rotation and scaling effect. In this paper, we
quantize pixel orientation into four directions (horizontal, vertical, diagonal, and anti-diagonal) and
compute the edge direction histogram for each block. These edge direction histograms form the integrity
check component of the forensic hash. We examine the effectiveness of block-based edge histograms for
tampering localization and show that non-uniform quantization of the histogram can provide enhanced
performance over uniform quantization, which will be demonstrated in the next Section.

3. EXPERIMENTAL RESULTS

To examine the effectiveness of the proposed forensic hash, we collect 200 images from Flickr with 40
different tags, such as beach, building, flower, car, panda, etc. The size of each image is about 500x300.
In order to evaluate the effectiveness and robustness of the proposed forensic hash, we perform over 20
operations for each of the 200 images, which gives us a database of over 4000 images. The operations
are listed in Table 1. For the local tampering operation, we randomly select and swap two blocks
within the image, where the block sizes are 50x50 and 100x100. After swapping, proper blending is
introduced to avoid the sharp transition at the boundary of the tampered regions. For each of the
200 original images, we generate forensic hash capturing geometric and block-based features, and then
evaluate the forensic analysis performance over the 4000 modified images.

Table 1 Image operations and their parameters

Operations Operation parameters
Rotation 3, 5, 10, 30, 45 degrees
Scaling scaling factor = 0.3, 0.5, 0.7, 0.9, 1.2, 1.5
Cropping 19%, 28%, 36% of entire image
Local tampering block size 50x50, 100x100
JPEG compression Q=10
Various combinations of rotation, scaling, cropping, and local tampering

Rotation estimation results The rotation estimation accuracy for different hash length is given in
Fig. 4. It can be observed from the figure that applying low-pass filter before downsampling the 1-D



summarization of the Radon transform greatly improves the estimation accuracy. By further combining
the estimation results from using normalized cross-correlation and ordinal ranking information, the
proposed forensic hash can achieve rotation estimation error of about 3 degrees with a hash length of
about 10 to 15 bytes. The estimation is also robust for images that have undergone multiple operations,
such as combinations of rotation, scaling, cropping, and local tampering.
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Scaling estimation results To estimate the scaling factor of a testing image, we perform Radon pro-
jection of the image along vertical and horizontal directions. Scale space extrema of the two projected
signals are then encoded into the forensic hash to estimate the scaling factor along the two directions.
The relative estimation error for scaling factor is shown as the blue curve with circle markers in Fig. 5,
where lower than 10% relative error can be achieved when encoding only 10 extrema. Since scaling
operation is usually done isotropically, we can use this prior knowledge to select the scaling factor
estimation that has higher confidence between the two directions. This joint estimation result is shown
as the red curve with square markers in Fig. 5, where around 7% relative error can be achieved using
only 10 extrema or 10 bytes along each of the horizontal and vertical projection directions. It should
be noted that majority of the errors are contributed by testing images whose estimated rotation angles
are slightly different from the actual values. For images whose rotation estimation is accurate, the
scaling estimation error is typically below 1%.

Tampering localization results For tampering localization, the choice of block size controls the
trade-off between hash length and detection performance. Larger block size gives a smaller hash length
but can introduce higher false detection than a smaller block size. For compact representation, the
edge direction histogram in each block will be quantized. In Fig. 6, we compare tampering localization
performance using uniform quantization and Lloyds quantization. The ROC curves are obtained by
quantizing each component of the edge direction histogram to 4 bits using uniform quantization and
Lloyds quantization, respectively. It can be observed that by slightly increasing the hash length to
encode the quantization codebook, Lloyd quantization significantly improves tampering localization



performance compared to using uniform quantization. We can use 1 byte per block with Lloyd quanti-
zation to achieve similar performance as compared to using 2 bytes per block with uniform quantization.
An example of a tampered image and its tampering localization is shown in Fig. 7 and Fig. 8.
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Figure 6: Tampering localization performance

For image authentication applications, after the testing image has been properly aligned with
the original image based on the geometric transform parameters estimated using the forensic hash,
block-based features can be used to authenticate the testing image. Due to the use of edge direction
histograms, the probability that two different images yield similar histograms over most of the blocks
is expected to be low. Very good authentication performance can therefore be achieved by setting a
proper threshold on the percentage of matched blocks between the testing and the original images.

Figure 7: Tampered image Figure 8: Tampering localization result

4. CONCLUSIONS

In this paper, we proposed a new framework called FASHION for multimedia forensics. Based on
Radon transform and scale space theory, an alignment component of the forensic hash is designed to be
as compact as traditional image hashing and can answer a broader range of forensic questions regarding



the processing history of the image data. With 30-40 bytes, the forensic hash can provide accurate

estimates of the parameters of geometric transforms that the image has undergone, providing the

necessary registration for further forensic analysis such as tampering localization. Experiments show

that the proposed forensic hash is robust against images that have undergone multiple operations. The

main contribution of this work is the introduction of the new research framework on using compact side

information for multimedia forensics. As future work, we plan to design new forensic hash components

for other common image editing and malicious tampering operations, so that we can gain a more

complete understanding on the processing history of an image and better evaluate its trustworthiness.
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