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ABSTRACT

We introduce a two–dimensional kinematic model for cyclic motions of humans, which is suitable for the use
as temporal prior in any Bayesian tracking framework. This human motion model is solely based on simple
kinematic properties: the joint accelerations. Distributions of joint accelerations subject to the cycle progress
are learned from training data. We present results obtained by applying the introduced model to the cyclic motion
of backstroke swimming in a Kalman filter framework that represents the posterior distribution by a Gaussian.
We experimentally evaluate the sensitivity of the motion model with respect to the frequency and noise level of
assumed appearance–based pose measurements by simulating various fidelities of the pose measurements using
ground truth data.
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1. INTRODUCTION

Human pose estimation and pose tracking in videos are among the most challenging subjects in the domain of
visual motion analysis. There exists a multiplicity of possible applications covering for example video indexing,
surveillance or automatic analysis of sports videos. Generative models and Bayesian approaches to track human
motions have become popular in the video domain1 because frameworks such as Kalman2 and particle3,4 filters
can cope with uncertainties as well as adapt quickly to changes by outputting posterior distributions over the
pose state rather than a single pose hypothesis. Such approaches also encode temporal information about
an underlying body representation. This information can significantly reduce the search-space in the image,
can make background subtraction obsolete, and can facilitate the dealing with partial or complete occlusions.
However, exploiting all these strengths requires the definition of an accurate motion model.

As opposed to the closely related works5,6 the approach presented in this work only depends on angular accel-
erations and covariances extracted from training data, and our model is subject to simple kinematic properties.
Hereby we can compute the temporal prior in an efficient way without the need to reduce the dimensional-
ity where we could possibly lose important information. We can also skip the expensive projection and back
projection (compared to Ref. 5) or Fourier transform (compared to Ref. 6). This makes our procedure less
computationally expensive while still providing predictions accurate enough to recover the state distributions
by exploiting the full dimension. Our decision to model only cyclic motion is motivated by the fact that many
human activities (like walking, swimming, running) already follow a periodic pattern7 and therefore many ac-
tions can very well be modeled with our cyclic motion model. We hence focus on the problem of developing an
accurate and computationally efficient two–dimensional motion model for cyclic motions that can (1) provide the
appearance model with a suitable temporal prior distribution, (2) be used in combination with popular Bayesian
tracking frameworks, and (3) be easily extended to three dimensions.

1.1 Related work

Although there exist several non–Bayesian approaches to track periodic motion7,8 or action specific motion9,10 we
restrain ourselves to Bayesian techniques because of the advantages mentioned above. Out of the many Bayesian
approaches especially particle filtering has become very popular since no assumptions are made concerning the
posterior distribution.11 The accuracy of the estimated posterior distribution rises with the number of samples
used; however propagating them becomes computationally very expensive. Much work addresses this problem.
Deutscher et al.12 proposed a modified particle filter that uses deterministic annealing to reduce the number



of samples required. Rius et al.13 used a mean cycle of the training data to avoid particle wastage. Other
approaches reduce the dimensionality of the model itself. Agarwal and Triggs14 learned and applied a linear
model in a lower–dimensional subspace. For cyclic motions Sidenbladh5 and Ormoneit et al.6 introduced similar
models. The latter is also concerned with extracting and aligning cycles from training data automatically, and
their approach also accounts for missing information within the training data by making use of the Fourier
transform.

2. MOTION MODEL

2.1 Body pose representation
We use a standard stick figure model to describe the high–dimensional and non–linear human motions. This
model is composed of eleven rigid body parts and fourteen joints as depicted in figure 1a. The pose of a person
is defined by the angles between each joint and its corresponding parent joint (relative to the image coordinate
system translated into the parent), where the hierarchy shown in figure 1b is imposed on the joints with the
center of the hip as root.

(a) (b)

Figure 1: Representation of a human body. (a) Stick figure model; joints are colored in black, body parts in
gray. (b) Hierarchy imposed on the joints; angles of each joint are calculated relative to the coordinate system
of the parent.

2.2 Model overview
We model the cyclic motion with respect to a reference cycle of defined length l (specified in number of frames)
and corresponding reference velocity vref = 1/l. The state of a person within a cycle at time t is defined by

the state vector xt =
[
φ0
t , v

0
φ,t, . . . , φ

12
t , v

12
φ,t, ct, vt

]T
which contains the angles φ and respective angular velocities

vφ of the joints. ct specifies the position within the reference cycle and vt the velocity with which the person
moves through each cycle. Additional parameters are used for tracking: the position of the root joint within a
video frame and the segment lengths of the stick figure model. These parameters, however, can be determined
independently and are not part of the pose state, because they do not constitute the motion model itself.

In a Bayesian tracking framework the motion model provides the temporal prior distribution p(xt|xt−1) that
encodes how the state changes over time.11 The essential component of the motion model is the state transition
function that describes how this distribution is obtained from the previous state distribution. One can either
generate samples according to this function (when e.g. using a particle filter) or apply the function directly
(when e.g. using a Kalman filter).11 In this work we propose a simple state transition function that is solely
based on kinematics with additive noise:

xt = Atxt−1 + at + εt, (1)

where xt ∈ Rm is the m–dimensional state at time t, At the m×m dimensional state transition matrix, at the
m–dimensional acceleration vector encoding the effects of accelerations and εt a Gaussian noise vector with zero



mean. Unlike other approaches we do not try to learn the state transition function from training data. Instead
we let simple kinematics govern this function. For each angle φjt and angular velocity vjφ,t we know the following
holds:

φjt = φjt−1 + vjφ,t−1∆t+
1
2
ajφ,ct−1

(∆t)2 (2)

vjφ,t = vjφ,t−1 + ajφ,ct−1
∆t (3)

where ajφ,ct−1
denotes the angular acceleration of joint j around angle φ at the relative temporal position ct−1 in

the reference cycle. ∆t is the difference in time between the former and the new state (here we always assume
∆t = 1 frame). The same kinematics applies to ct and vt:

ct = ct−1 + vt−1∆t+
1
2
at(∆t)2 (4)

vt = vt−1 + at∆t. (5)

at is called the temporal acceleration which simply states whether nor not a person accelerates or decelerates the
overall cyclic motion. This has to be included so that the model can adapt itself to different speeds. The above
dependencies can also be expressed in matrix notation (to keep the notation simple, we only write it down for a
single joint j): 

φjt
vjφ,t
ct
vt


︸ ︷︷ ︸

xt

=


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


︸ ︷︷ ︸
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·
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vt−1


︸ ︷︷ ︸

xt−1

+


1
2a
j
φ,ct−1

(∆t)2

ajφ,ct−1
∆t

1
2at−1(∆t)2

at−1∆t


︸ ︷︷ ︸

at

+εt. (6)

Given ct−1, the pose at time t is completely defined by means of the acceleration vector at and corresponding
noise εt. The new state distribution thus depends only on these vectors and they are coevally the only information
we learn from training data.

2.3 Incorporating training data

Sample cycles specifying the configuration of the stick figure model in every frame are used to create the training
data set by normalizing the duration (in frames) of each cycle using cubic spline interpolation. The angular
accelerations are computed by differentiating them twice with respect to time using a common derivative filter,15

and we base our estimation of the true accelerations on the mean vector µaφ,ct and the covariance matrix Σaφ,ct
of these accelerations at each ct. Both quantities, however, apply only to the reference velocity vref , i.e., only if
the modeled person moves through the cycle with the same velocity. When being applied to different velocities
we have to alter them16 based on the ratio k = vt/vref by the factor k2.

We will combine the accelerations from the training data at time ct with the Gaussian noise vector εt so that
the added noise is subject to the variation within the training data, and hence the learned motion or action. In
other words, the mean of the Gaussian noise will correspond to the mean accelerations extracted from training
data, and the covariance is defined by the variation within these accelerations. Beginning with the angular
components of the resulting noise vector we assume the accelerations extracted from the training data at ct to
be normally distributed according to[

a0
φ,ct , a

1
φ,ct , . . . , a

12
φ,ct

]T ∼ N (µaφ,ct ,Σaφ,ct ) (7)

and write the angular components of the acceleration vector at as a linear combination of the matrix K and the



training data accelerations:
1
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By making use of the Gaussian property that states that if a random variable X is normally distributed, X ∼
N (µ,Σ), and another random variable Y is a linear combination of X, Y = CX + b, then Y is also normally
distributed according to Y ∼ N (Cµ+b, CΣCT ), we know that the angular components of the acceleration vector
are distributed according to[

1
2
a0
φ,ct(∆t)

2, a0
φ,ct∆t, . . . ,

1
2
a12
φ,ct(∆t)

2, a12
φ,ct∆t

]T
∼ N (Kµaφ,ct ,KΣaφ,ct K

T ). (9)

The training data obviously cannot provide information about the temporal accelerations, because every training
cycle has the same length l. Since we assume steady cyclic motions without persons rapidly accelerating or
decelerating within the period of a single frame, we simply model these temporal accelerations by a Gaussian
with zero mean, at ∼ N (0, σ2

at), and applying the same properties as we did before, we know that the temporal
components of the acceleration vector are distributed according to[

1
2
at(∆t)2, at∆t

]T
∼ N ([0, 0]T , Lσ2

atL
T ) (10)

with L =
[
1
2 (∆t)2,∆t

]T . Under the assumption that angular and temporal accelerations are probabilistically
independent, we can combine the above results to the new noise vector γt that is completely governed by the
training data accelerations, and hence the modeled action, and rewrite the original state transition function as

xt = Atxt−1 + γt (11)

where γt ∼ N (µct ,Σct) and

µct =
[
Kµaφ,ct , 0, 0

]T
,Σct =

(
KΣaφ,ctK

T 0
0 Lσ2

atL
T

)
. (12)

The introduced model is a very simple but coevally a very effective one (see section 3). It covers the dynamics
involved for a certain action and the training data already specifies how much variance there is to expect, making
an additional empirical analysis obsolete. Only mean accelerations and corresponding covariances of the reference
cycle are stored in memory, and the evaluation of the state transition function is of low complexity. This makes
the model very computationally efficient without disregarding any dimensions of the state.

3. EXPERIMENTAL RESULTS

We evaluated the performance of the introduced model by using it within a Kalman filter and a particle filter
framework to track the cyclic motion of backstroke swimmers. The measurement in each frame was a noisy
observation of the true pose, i.e. the true angles at time t. Since Bayesian filters require the measurement zt to
be a conditional probability rather than a simple scalar value , i.e., p(zt|xt) ∼ N (µ, σ), we use the true angles as
mean µ and the introduced noise σ as the standard deviation, defining roughly how far (in radians) the angles
measured by the appearance model may deviate from the true ones of the pose. The measurement only provides
information about the predicted angles, and not about the velocities or the progress, meaning that only these
quantities of the state vector are updated by the measurement update. As stated, our main goal is to provide



a decent motion model for cyclic motion that can be used with any Bayesian tracking framework and is thus
independent from the used appearance model. In order to systematically evaluate this model we have to control
when and with what quality (in terms of measurement noise) a measurement update occurs. This gives us the
ability to evaluate the model according to different criteria like how frequent measurements should occur, how
accurate the measurement should be, and how long phases without any update can be handled. It then lets us
state the requirements that should be met by an appearance model using our motion model. The evaluation in
this section thus focuses completely on the motion model: how well is the motion itself predicted, i.e. how well
are the angles approximated?

3.1 Datasets

The training data set consists of ten sample cycles of swimmers swimming backstroke. They were recorded from
the side either with one camera (swimming canal; capturing the swimmer above and below the water surface) or
two cameras (open-air pool; one camera recording the swimmer above and one below the water surface). In each
frame the two–dimensional locations of the joints were manually labeled. We use female and male swimmers as
well as two different locations to introduce enough variations into the data set: Six cycles (three by female/male
swimmers) were recorded in a swimming canal, four cycles (two by female/male swimmers) in an open-air pool.
The reference cycle length was set to l = 100 frames.

To test the performance we used two different test sets. The first test set consists of eight cycles from a
known environment, but from different swimmers: two cycles each from female/male swimmers in the swimming
canal and the open-air pool. The second test set contains four sample cycles of a female and a male swimmer in
a swimming hall and thus was taken from an unknown environment for the motion model. The test set consisted
of an overall number of 816 frames. Figure 2 depicts two example frames of the videos used.

(a) (b)

Figure 2: Two examples of the videos used: (a) Frame obtained from two synchronized cameras, (b) frame
obtained from a single camera with manually labeled segments (only one body half is drawn for convenience,
source: IAT Leipzig17).

3.2 Kalman filter results

The Kalman filter returns for every frame the state distribution represented by its moments, i.e. the mean and
the covariance, rather than a single pose. We simply took the mean of this distribution as the estimated pose
(which we denote by Φt) in each frame. The model was initialized from ground truth and training data, i.e.
the angles were taken from the initializing frame in the ground truth data, and the velocities were estimated by
the mean of the training data velocities at this frame. The quality of the estimated poses was measured by the
absolute error between the predicted joint angles and the true ones, averaged over all joints and all frames in the
test set.

Table 1 shows the errors on both test sets for a varying measurement noise σ. Note that for simplification
all angles are displayed in degrees rather than radians. As expected, the error rises with increased noise, i.e.
with an increased uncertainty about the value of the measurement. We achieve a very low average error of



11.12◦ and 11.17◦ respectively for the highest measurement noise (σ = 115◦) on both test sets, and even smaller
ones (8.09◦/8.21◦) for a more realistic value of about 29◦. Moreover, the choice of the test set, does not seem
to influence the resulting error negatively, meaning that our model has no difficulties in adapting to unknown
environments, and in the following we will therefore no longer distinguish between both sets.

σ = 1◦ σ = 3◦ σ = 6◦ σ = 29◦ σ = 57◦ σ = 115◦

test set 1 2.8110 4.3950 5.3210 8.0852 9.5177 11.1174
test set 2 2.8865 4.6235 5.5994 8.2082 9.5934 11.1659

Table 1: Average absolute difference (in degrees) over all angles for varying measurement noise σ broken down
by test sets.

Figure 3 shows an example of the true and estimated trajectories of the left foot as well as the left hand
for two complete cycles. The angles estimated by our model follow the true ones closely, and our model even
predicted a rather smooth motion when compared to the noisy ground truth data.
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Figure 3: Ground truth and estimated trajectories of (a) the left foot and (b) the left hand with a measurement
noise of σ = 6◦

When we break down the error by several joints as depicted in figure 4a, we see that the motion of the legs is
more easily followed than the motion of the arms. This indicates that the movement of the legs is more consistent
among different swimmers than the movement of the arms and that accelerations are better estimated for steady,
repeating motions within a cycle. The arms thus rely more strongly on the measurement update.

Importance of measurement frequency: In order to evaluate the quality of the motion model according
to its ability to handle missing measurements, we conducted more experiments on the test set with the standard
deviation of the measurement update set to σ = 6◦. First, we let the model predict several consecutive frames
without any update (the number of frames where we did not perform an update is denoted by skip), i.e. we
provided the measurement only every skip number of frames, so that mispredictions by the model had greater
impact. Second, we simulated very long phases of uncertainty, only providing two measurement updates per
cycle when the arms of the swimmers pointed straight out of the water (denoted by two updates). The results of
these experiments are shown in figure 4b.

The small error of 12.12◦ when skipping two frames hints that the model can cope with missing measurements,
resulting from e.g. occlusion. However, as the experiments show, the error rises considerably the longer the phases
get without any measurement. This stems from the fact that the training data itself is very generic, combining
different swimmers, different scales and different locations, in order to cover many aspects of the learned motion.



Although this significantly increases applicability, it also demands that the model is updated regularly so that it
can adapt to the specific motion of the tracked person. This is also reflected in the error when providing only two
updates per cycle. Two frames clearly cannot provide the information required to infer all aspects and dynamics
of the currently tracked motion.
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Figure 4: (a) Errors broken down by certain angles for very high measurement noise. (b) Error when skipping
measurement updates for a varying number of frames. The measurement noise was set to σ = 29◦

3.3 Particle filter results

We demonstrate that the model can be used with different Bayes filters by additionally using it within a particle
filter framework where we conducted the same experiments as we have done with the Kalman filter. The particle
filter represents the state distribution by a discrete set of samples Xt. Each sample s is an instance of the state
and is assigned a normalized weight w[s]

t that corresponds to the likelihood of its state. We used the expected
pose of all samples to estimate the predicted pose in a frame, .i.e. Φt =

∑
s w

[s]
t Φ[s]

t . However, since angles
are periodic, we cannot simply add the weighted angles, because this would result in the arithmetic estimate,
which is not what we want. Take for example two angles, φ0 = 45◦, φ1 = 315◦, the arithmetic average would
yield φ′est = 180◦, but the value we actually want is φest = 0◦. To overcome this, we calculate the Cartesian
coordinates of each angle, compute the expected values in this space, and transform the coordinates back to
angles. The model was initialized in the same way as the Kalman filter, i.e using ground truth angles of the
initial frame and training data velocities.

Table 2 shows the error for a varying number of samples and a measurement noise of σ = 29◦. For both
test sets we see a clear decrease in the error with an increasing number of samples. A minimum at 4.86◦ and
4.77◦ is attained for 100,000 samples, which is the expected behavior of a particle filter: the higher the number
of particles, the more accurate the approximation of the true distribution. A high number of samples will lead
to more samples being in the vicinity of the correct pose and these samples will with a high probability be
propagated into the next iteration, whereas less accurate samples are bit by bit eliminated. The high errors
for 500 and 1000 samples indicate that the dimension of the state vector demands a higher number of samples,
because the framework obviously suffered from particle deprivation. In line with the results we have seen with
the Kalman filter, the particle filter also performs equally well on both test sets.

We also evaluated the particle filter performance with infrequent measurement updates. In other words, in
frames where no measurement was provided we assumed a uniform likelihood, making each sample equally likely
prior to resampling. The measurement noise was set to σ = 29◦. Figure 5a depicts the results for 10,000 and
50,000 samples. We chose the number of samples according to the error the Kalman filter committed for the
same measurement noise. The particle filter behaves similarly to the Kalman filter in that it copes with short



500 1,000 5,000 10,000 50,000 100,000
test set 1 25.7307 23.7371 9.3002 9.6875 5.5931 4.8555
test set 2 25.1875 30.3826 11.3332 9.4183 5.5368 4.7666

Table 2: Average absolute difference (in degrees) over all angles for a varying number of samples broken down
by test sets.

periods of uncertainty, however, as these periods get longer, many samples start to drift away from the vicinity
of the correct pose as the components of their states are not directly updated. This results in higher prediction
errors.

Importance of model initialization: In order to test how much the model initialization influences the
prediction quality of the particle filter we reran the experiments. First, we initialized the samples in a random
fashion rather than using ground truth angles. We randomly generated values in [−π, π] and initialized the
angles and velocities accordingly. Second, we initialized each sample uniformly over the cycle position ct. That
is, we pretended to be right about the angles and velocities of the initial pose, but wrong about the position
within the cycle. Our model should be able to concentrate the samples around the true pose after a few frames.
This means that if we start computing the error after these frames, it should be comply with the error obtained
when initializing with the true cycle position. We therefore began to compute the error after the fifth frame.

Figure 5b shows the committed error on the test set of the alternative initializations compared to the standard
initialization, again, for a varying number of samples and σ = 29◦. Clearly, when initializing the model randomly
the framework fails to recover the poses. This was expected since a random initialization means that during the
first frames the bulk of all samples will not be in the vicinity of the correct pose, and since the measurement
update only selects significant samples rather than really updates their values, the true distribution cannot be
approximated. However, initializing the samples uniformly over the cycle position yields almost the same errors
compared to a standard initialization. This is because at least a fraction of all samples (the ones where the value
of ct is close to the index of the initializing frame) were initialized approximately correct, meaning that most of
these samples get propagated.

This reveals that although an initialization with proper values is of great significance, it suffices that these
values resemble plausible angles and velocities that actually occur with the modeled action.
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Figure 5: (a) Errors when skipping measurement updates for a varying number of frames with 10,000 and 50,000
samples. (b) Average error on the test set when using standard, random, and uniform initialization for a varying
number of samples. The measurement noise was set to σ = 29◦ for both experiments.



As the experiments showed, the model can easily be put into a Kalman or particle filter framework, and both
implementations achieved low error rates. When using many samples (e.g. more than 50,000) the particle filter
outperformed the Kalman filter, but at the cost of high computing times. It takes the Kalman filter only 0.39s
to run the experiments consisting of 816 frames, which is approximately .0004s/frame, whereas the particle filter
takes 129s (255s) which is approximately .16s/frame (.31s/frame) for 50,000 (100,000) samples. Execution times
were measured on a 2.53GHz Intel i7 CPU with 16 parallel threads. We thus have to trade off accuracy against
computational complexity: if we require real-time capable tracking, we have to put up with a loss in accuracy
and should stick to a Kalman filter implementation. However, if we want to achieve better results and can handle
longer execution times, we better use a particle filter with more samples.

4. CONCLUSION AND OUTLOOK

We have proposed an approach to model two–dimensional cyclic motion of humans solely based on simple kine-
matic properties. The accelerations of only a few sample cycles of the motion to be modeled serve as training
data, and the means and covariances are used to propagate the state in time according to a plain state transition
function. We describe the motion itself by the temporal change of angles between the segments of a standard stick
figure model. The model computes the temporal prior distribution in an efficient way, so neither PCA, Fourier
transform nor projection/back projection of the state vector to/from a lower dimensional space is required, while
we still exploit the full dimension of the state. We thus do neither lose possibly important information nor do
we have to use computationally expensive operations due to the simple function. Memory usage of the model is
very low, since only one acceleration vector and one covariance matrix per frame of the reference cycle is stored.
The conducted experiments within a Kalman and a particle filter framework showed that with only ten training
cycles of the modeled motion a very low average error can be achieved, even when the update is applied infre-
quently and with high uncertainty about the value of the measurement. Furthermore we have seen that, when
using a particle filter, we do not require a very accurate model initialization since the framework concentrates
the samples around the true pose after few measurement updates. This relaxes the requirements for both, the
appearance model and the model initialization significantly, because the model can cope with uncertainties and
partial as well as complete occlusions as long as they don’t occur over long periods.

The proposed two–dimensional model can easily be extended to three dimensions by describing the pose by
two angles per joint and using three–dimensional motion data to train. This will be part of our future work. In
addition, we will fuse the motion model with a newly developed appearance model and evaluate the results on
publicly available datasets (like HumanEva18). This lets us compare the model to other popular approaches.
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