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Multimodal object authentication with random projections: a
worst-case approach

Oleksiy Koval and Sviatoslav Voloshynovskiy∗

ABSTRACT

In this paper, we consider a forensic multimodal authentication framework based on binary hypothesis testing in
random projections domain. We formulate a generic authentication problem taking into account several possible
counterfeiting strategies. The authentication performance analysis is accomplished in the scope of Neyman-
Pearson framework as well as for an average probability of error for both direct and random projections domains.
Worst-case attack/acquisition channel leading to the worst performance loss in terms of Bhattacharyya distance
reduction is presented. The obtained theoretical findings are also confirmed by results of computer simulation.

Keywords: multimodal authentication, fusion, performance analysis, worst case distortions.

1. INTRODUCTION

In the last years, digital reproduction tools have performed an impressive evolution, providing professional solu-
tions to various groups of users. Besides the obvious advantages, these tools offer at the same time unprecedent
possibilities for the counterfeiters that can virtually reproduce authentic items, i.e., objects, documents, IDs,
packaging or even biometrics. Thus, the item authentication becomes a critical issue demanding an urgent so-
lution for various applications. This urgency is also caused by the fundamental inability to satisfy the security
requirements by the currently used proprietary (mostly material-science based) technologies and classical crypto-
based techniques. Moreover, the particularities of modern markets, characterized by distributed manufacturing
and distribution, require new authentication technologies oriented on the end-users. A practically attractive
protocol of item authentication is based on the mobile phones of end-users. This protocol is schematically shown
in Figure 1. As secure forensic features that can not be copied or cloned we will consider here a random surface
microstructure image known to be a powerful discriminative and difficult to duplicate structure.1 The user
acquires the random surface microstructure image and sends it to the server with the accompanying authentica-
tion data. The server, possibly connected to the database of enrolled images, makes the binary decision about
requested item authenticity and communicates the decision back to the end-user portable device.
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Figure 1. Authentication architecture.
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Unique forensic features are suitable for authentication of both mentioned real world items where they are
represented by the mentioned random surface microstructure images and humans where biometrics are exploited
(Figure 2). This makes possible to consider both problems from common positions of object authentication.

As it is widely discussed in the domain of biometric person identification,2 selection of a particular forensic
feature to be used for authentication is not an easy task. The reason is that the successful candidate should
satisfy certain requirements that include performance (authentication accuracy) of the corresponding binary or
multiple hypothesis classification system, universality (presence of the feature in all objects), distinctiveness (all
objects should be differentiated based on them), etc .3
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Figure 2. Forensic features: belonging to the same person (a) and describing the paper acquired at 1200 dpi by an optical
scanner (top) and by CO.sub.2 laser (bottom).

A natural way of satisfying these requirements is to fuse various modalities that can be implemented at
different levels.4, 5 While, fusion is mostly performed at match score and decision levels, such an approach is
suboptimal in terms of the attained performance accuracy due to the data processing inequality6 that suggests to
combine the available data at sensor level. However, due to various practical constraints, not so many cases are
known that follow this strategy.7 To fulfill the gaps, fusion at the sensor level with data dimensionality reduction
based on random projections will be used in this paper in order to approach authentication performance limits.

Most of forensic features like a person iris and fingerprint or paper scans obtained from different locations
(Figure 1) can be considered as statistically independent. However, in certain8 some intermodal statistical
dependence might be assumed. Nevertheless, in the scope of this paper we assume the former case of independent
modality fusion. This choice is further justified by the ambiguity concerning the impact of the dependence
between multimodal signals on the accuracy of multimodal authentication/identification.9, 10

While adding modalities hopefully leads to the improvement of performance accuracy, requirements of proto-
col security/privacy and computational complexity should be additionally satisfied.11 Since cryptography-based
solutions are not fully applicable here due to inherent noisy nature of the observations, an alternative solution
should be proposed capable of resolving this performance/security/privacy/complexity trade-off. Classically, sev-
eral solutions in unimodal authentication of objects are proposed via various feature extraction techniques.12–15

As it was already mentioned in,16 all this operations are non-invertable and due to the data processing inequality
lead to a certain information loss. The first attempt to quantify this loss was performed in16 for a unimodal
case. In the scope of this paper we are trying to extend the earlier obtained results to a multimodal case.

The analysis in16 was accomplished under a very conservative assumption about the statistics of the authen-
tication channel. Specifically, it was supposed that distortions introduced by this channel follow the Gaussian
distribution. However, this assumption appears to be too conservative for the authentication application. Indeed,
assuming that authentication is performed within the Kerckhoffs security framework,17 selection of the channel
might be performed based on all available prior information about the protocol design in order to maximally
deteriorate its performance. Possible channel configurations are broad and crucially depend on the amount of
a priori information. Moreover, during the life cycle of an authentified object, the acquisition conditions might



significantly vary due to, for instance, wide diversity of acquisition devices and introduced physical degradations
that makes applicability of the mentioned analysis doubtful in general. That is why the second research goal of
this paper is to perform analysis of authentication accuracy under the certain freedom of the statistics of the
acquisition channel.

Notations We use capital letters to denote scalar random variables X and X to denote vector random
variables, x and x denote the realizations of scalar and vector random variables, respectively. All vectors
without sign tilde are assumed to be of the length N and with the sign tilde of length L with the corresponding
subscripts. Calligraphic fonts X denote sets X ∈ X and |X | denotes the cardinality of X . We use X ∼ p(x)
to indicate that X is distributed according to pX(x). Statistical hypotheses are denoted as Hi, i = {0, 1}, and
the distributions under these hypothesis as p(v|Hi). N (μ, σ2

X) stands for the Gaussian distribution with mean
μ and variance σ2

X .

2. OBJECT AUTHENTICATION: PROBLEM FORMULATION AND
ARCHITECTURE

A generic object authentication problem can be considered as a hypothesis testing18 that requires the selection of
authentication criteria and assumptions behind the statistics of alternatives. In the case one has to authenticate
one out of {1, 2, ...,m, ..., |M|} objects associated with an index m, it can be formulated as a decision making that
the observed length-N feature vector v representing the object under authentication is in some proximity to the
genuine vector x(m), 1 ≤ m ≤ |M| for a givenm. The decision might be taken under conditions of conservative or
relaxed acquisition that refer to the assumptions of degradations that are introduced into v versus the genuine
data x(m). In the former case, acquisition imperfectness is characterized by a certain statistical model of
distortions introduced by the authentication channel (for instance, additive white Gaussian noise19). Definitely,
this approach is too restrictive and is not fully capable of adequately representing all potential degradations that
might happen. Oppositely, in the latter case such an assumption is dropped and the acquisition has a compound
nature and can rather be represented as a family of possible distortion models.

Evidently, the second scenario is much more involved for the performance of object authentication systems
and will be considered in this paper. The main expected result that we are targeting here is to provide some
tractable performance limits of such systems under the certain freedom of acquisition additive authentication
channels. In particular, we target finding the worst statistical channel model that will provide the lower bound on
the object authentication system accuracy. This strategy often appears in security applications, where the goal
of the opponent is to design an attack leading to the worst possible performance attained by the authentication
system taking into account all available prior knowledge about the system design as well as particularities of
object manufacturing or forensic features.

We start our analysis by the formulation of the main goal of object authentication. It consists in reliable
discrimination between two following alternatives:{

H0 : V ∼ p(v|H0) = p(v|x(/m)));
H1 : V ∼ p(v|H1) = p(v|x(m)),

(1)

where p(v|x/m) stays to indicate statistics of feature vectors of all objects excluding the genuine one x(m). In
this case it is assumed that zero hypothesis is composite and for |J | such objects x′(i), i ∈ {1, 2, ..., |J |}, is
represented as:

p(v|H0) =

⎧⎨
⎩

p(v|x′(1)) with prob. p1,
... ...
p(v|x′(J )) with prob. p|J |,

(2)

where
∑|J |

i=1 pi = 1 and pn can be assumed to be uniform.

In the analysis of performance of this test we will use a technique that is widely exploited in digital com-
munications to limit performance of practical codes that is justified by the closest codebook entries.20 Thus,
to design the decision rule for the binary hypothesis test, we will use the worst case condition for the selection
of the alternative hypothesis assuming that one needs to ensure the desired performance characteristics for the



closest possible to x(m) feature vector x(n) in a collection x′(i), i ∈ {1, 2, ..., |J |}. It should be noticed that it
can be done taking into account all feature vectors according to the model (2). However, to avoid cumbersome
integrations that reduces tractability, we will follow the worst case approach. Alternatively, one can also consider
generalized maximum likelihood approach that is tractable but not always optimal.

Then, (1) can be reformulated as follows:{
H0 : V ∼ p(v|H0) = p(v|x(n)),
H1 : V ∼ p(v|H1) = p(v|x(m)).

(3)

We use the Neyman-Pearson decision rule maximizing probability of correct acceptance PD subject to the
constraint probability of false alarm PF that can be formulated as the likelihood ratio test:

Λ(v) =
p(v|H1)

p(v|H0)
≶ η, (4)

with the threshold η chosen to satisfy the constraint on PF =
∫
Λ(v)>η p(v|H0)dv = α.

As it was already mentioned in the introductory part of this paper, in order to implement such an object
authentication system in practice additional complexity, memory storage, privacy and security requirements
should be taken into account. In most cases, the solution is based on channel coding fundamentals and principles
of robust perceptual hashing that are known as a robust version of classical cryptographic hashes. Unfortunately,
these solutions have a fundamental shortcoming related to collusions. To overcome this problem, authentication
based on source coding principles was proposed. Such an approach is adopted in this paper (Figure 2) where
authentication accuracy is defined by the properties of the acquisition and by the rate-distortion properties of
the corresponding source code.

It should be pointed out that practical implementation of the above schemes was envisioned by the conversion
of the continuous vectors to the discrete representations. These conversions are not invertible and obviously lead
to the information loss due to data processing inequality.6 On the other side, non-invertability of this operations
that can be referred as feature extraction that plays a particular role of securing original feature vectors. This
generic feature extraction operation is modeled in our case by a random projection operator Φx (Φy) that
transforms input data to a lower-dimensional representation (Figure 2). Moreover, as it will be shown in this
paper, this transform has nice robustness properties for a certain class of acquisition distortions.

3. MULTIMODAL AUTHENTICATION: BINARY HYPOTHESIS TESTING
FORMULATION

As it was mentioned earlier, multimodal fusion might be considered as a practical way of performance optimiza-
tion of object authentication system (Figure 2).

The problem under analysis might be considered as a binary hypotehsis testing between the following two
alternatives: ⎧⎪⎪⎨

⎪⎪⎩
H̃0 :

ṽ = Φx(x(n) + zX) = x̃(n) + z̃X ,
w̃ = Φy(y(n) + zY ) = ỹ(n) + z̃Y ,

H̃1 :
ṽ = Φx(x(m) + zX) = x̃(m) + z̃X ,
w̃ = Φy(y(m) + zY ) = ỹ(m) + z̃Y ,

(5)

where x ∈ R
NX , y ∈ R

NY , x̃ ∈ R
LX , ỹ ∈ R

LY , Φx ∈ R
LX×NX , Φy ∈ R

LY ×NY , LX ≤ NX and LY ≤ NY and
zX and zY are noise components in each modality corresponding to the discrete memoryless channels (DMC)
pV |X and pW |Y . It is assumed that elements of Φx and Φy are generated i.i.d. from a zero-mean Gaussian

distribution with variances 1
NX

and 1
NY

, respectively in order to approximate orthogonality of the projection,

i.e., ΦxΦ
T
x = ILX and ΦyΦ

T
y = ILY , where IL is an L× L identity matrix.

Furthermore one has: {
H0 : p(ṽ, w̃|H0) = p(ṽ|H0)p(w̃|H0),
H1 : p(ṽ, w̃|H1) = p(ṽ|H1)p(w̃|H1),

(6)



 

X̂Decoder  X

V  

 

Encoder
 

Enrollment formodalityX  Channel formodalityX

′X

 

DMC
 

Jointauthentication  

0

1

H

H

η

XM 

xΦ
 

X

V 

xΦ
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Figure 3. Multimodal authentication architecture based on random projections.

with the assumption of independence between modalities justified in the introductory part of the paper.

We will use the Neyman-Pearson decision rule that maximizes PD subject to the constraint PF ≤ α according
to the unimodal analog (4):

Λ(ṽ, w̃) =
p(ṽ, w̃|H1)

p(ṽ, w̃|H0)
=

p(ṽ|H1)p(w̃|H1)

p(ṽ|H0)p(w̃|H0)
≶ η̃, (7)

with the threshold η chosen to satisfy the constraint PF =
∫
Λ(ṽ,w̃)>η̃ p(ṽ, w̃|H0)dṽdw̃ = α.

In our analysis, the signals pairs (x̃(m), ỹ(m)) and (x̃(n), ỹ(n)) are assumed to be known according to the
assumptions of the worst case authentication. We begin our considerations assuming that the DMC parts of
acquisition channels are Gaussian due to the highest possible differential entropy, i.e., largest sphere of ambiguity,
in the class of all distributions with the bounded variance.

Assuming that noise in the coordinate domain follows i.i.d. Gaussian, i.e., ZX ∼ N (0, σ2
ZX

INX ),ZY ∼
N (0, σ2

ZY
INY )), in the projected domain one has Z̃X ∼ N (0, σ2

ZX
Cx) and Z̃Y ∼ N (0, σ2

ZY
Cy), where Cx =

ΦxΦ
T
x and Cy = ΦyΦ

T
y . Then, for ZX and ZY and known signal pairs (x̃(m), ỹ(m)) and (x̃(n), ỹ(n)), we

obtain: {
H0 : p(ṽ, w̃|H̃0) = N (x̃(n), σ2

ZX
Cx)N (ỹ(n), σ2

ZY
Cy),

H1 : p(ṽ, w̃|H̃1) = N (x̃(m), σ2
ZX

Cx)N (ỹ(m), σ2
ZY

Cy).
(8)

It is important to note that the mapping based on the orthoprojectors does not change the variances of noise,
i.e., σ2

ZX
Cx = σ2

ZX
ILX and σ2

ZY
Cy = σ2

ZY
ILY . Under such kind of mapping the impact is only reflected on the

transformed mean vectors: x̃(m) = Φxx(m), x̃(n) = Φxx(n), ỹ(m) = Φyy(m), ỹ(n) = Φyy(n).

This setup was intensively studied in literature (see, for instance19, 21) and the performance measures in terms
of probabilities of error and their error exponents are available. For the purpose of this paper we will use the
results of21 limiting error probabilities in terms of Chernoff distance.

The Chernoff distance between two densities is defined as:

Ds(p(ṽ, w̃|H1), p(ṽ, w̃|H0)) = −μ(s) = − log
∫
ṼLX

∫
W̃LY

p(ṽ, w̃|H1)
(

p(ṽ,w̃|H1)
p(ṽ,w̃|H0)

)s
dṽdw̃, (9)

for 0 ≤ s ≤ 1.

The Chernoff distance provides an upper bound on both PF and probability of miss PM =
∫
Λ(v)<η p(v|H1)dv

22:

PF ≤ eμ(s)−sμ̇(s), PM ≤ eμ(s)+(1−s)μ̇(s), (10)



where η = μ̇(s) and μ̇(s) denotes the first derivative of μ(s) with respect to s. The fastest convergence rate of
the exponential terms is achieved for the optimal selection of s.

For the average probability of error22:

Pe ≤ 0.5 exp(μ(sm)), (11)

where sm is the value for which μ̇(s) = 0.

For the independent modalities, the Chernoff distance satisfies the additivity property and reduces to:

Ds(p(ṽ, w̃|H1), p(ṽ, w̃|H0)) = Ds(p(ṽ|H1), p(ṽ|H0)) +Ds(p(w̃|H1), p(w̃|H0)). (12)

Thus, presence of the second modality increases the convergence rate of the exponential terms to zero for any
distribution. One can also extend these bounds to the considered Gaussian case (8) for which s = sm = 0.5 and:⎧⎪⎪⎨

⎪⎪⎩
PF ≤ exp

(
− 1

8

(
d̃2
X

σ2
ZX

+
d̃2
Y

σ2
ZY

))
;

PM ≤ exp

(
− 1

8

(
d̃2
X

σ2
ZX

+
d̃2
Y

σ2
ZY

))
,

(13)

and the average probability of error is:

Pe ≤ 1

2
exp

(
−1

8

(
d̃2X
σ2
ZX

+
d̃2Y
σ2
ZY

))
, (14)

where d̃2X = (x(m) − x(n))T ΦT
xC

−1
x Φx (x(m)− x(n)), d̃2Y = (y(m) − y(n))T ΦT

yC
−1
y Φy (y(m) − y(n)).

In order to verify the impact of random transforms on the multimodal binary authentication performance,
one can assume that Φx = INX ,Φy = INY that allows to rewrite (13)-(14) as follows:⎧⎪⎪⎨

⎪⎪⎩
PF ≤ exp

(
− 1

8

(
d2
X

σ2
ZX

+
d2
Y

σ2
ZY

))
;

PM ≤ exp

(
− 1

8

(
d2
X

σ2
ZX

+
d2
Y

σ2
ZY

))
,

(15)

Pe ≤ 1

2
exp

(
−1

8

(
d2X
σ2
ZX

+
d2Y
σ2
ZY

))
, (16)

where d2X = (x(m) − x(n))T (x(m)− x(n)) and d2Y = (y(m) − y(n))T (y(m)− y(n)).

Thus, the impact of Φx and Φy is introduced through modification of the distance between vectors in R
NX ,

R
NY and R

LX , RLY , respectively. In fact, this impact is negative in sense that d̃2X < d2X and d̃2Y < d2Y for
LX < NX and LY < NY leading to a performance loss. The loss is not unbounded and the corresponding limit
is introduced by the Johnson-Lindenstrauss lemma.23

Therefore, to introduce the bounds on the distance d̃2 we will use the results of Johnson-Lindenstrauss
lemma (JLL).23 It states that, with high probability, the geometry of a point cloud is not disturbed by certain
Lipschitz mappings onto a space of dimension logarithmic in the number of points. In particular, the mapping
Φ can be taken as a linear mapping represented by an L × N matrix whose entries are randomly drawn from
certain probability distributions. More particularly, |M| vectors in the Euclidean space can be projected down

to L ≥ 4 log2 |M|
ζ2/2−ζ3/3 dimensions while incurring a distortion of at most 1+ ζ, 0 < ζ < 1, in their pairwise distances.

In principle, this can be achieved by a dense L ×N matrix and such a mapping takes O(N log2 |M|) (for fixed
ζ). We refer interested readers to24 for more details.

According to the JLL23 one has:



(1− ζ)
√

LX

NX
||x|| ≤ ||Φxx|| ≤ (1 + ζ)

√
LX

NX
||x||,

(1− ζ)
√

LY

NY
||y|| ≤ ||Φyy|| ≤ (1 + ζ)

√
LY

NY
||y||,

(17)

where 0 < ζ < 1. Therefore, the random projections reduce the information distances in the corresponding error
exponents due to the data processing inequality. Using the result of JLL (17) this loss can be approximately
quantified as:

μ(s) ≈ s(s− 1)

2

(
LX

NX

d2X
σ2
ZX

+
LY

NY

d2Y
σ2
ZY

)
. (18)

The observed situation will be exemplified in the experimental part of the paper.

4. WORST CASE ADDITIVE ACQUISITION DISTORTIONS

The analysis performed in the previous Section was based on a conservative assumption that the acquisition
distortions introduced by the authentication channel are modeled as i.i.d. Gaussian distribution. However, for
the authentication performed within the Kerckhoffs security framework such an assumption is too restrictive.
Moreover, it is highly questionable how accurate such an approximation of realistic distortions could be. From
another point of view, realistic distortion modeling in the presented compound sense might be too complex and
not tractable. Therefore, instead of following these approaches, we will consider an authentication protocol where
similarly to data-hiding applications,25 some freedom exists in selecting authentication channel that is the most
harmful in terms of authentication accuracy loss. The main goal is to investigate a class of possible additive
authentication channels that can be modeled in the class of i.i.d. distributions with a zero-mean and a limited
variance. The results of such an analysis are the limits that object authentication systems could achieve in such
settings in the terms of bounds on the probability of authentication error.

In our analysis we assume that the performance of the authentication protocol is defined only by the closest
feature vectors. Then, the goal of our study will be to deduce an acquisition distortion statistical model that
leads to the worst performance loss in the terms of the Bhattacharyya distance Dbh that is a special case of the
Chernoff distance for s = 0.5. It is known to provide bounds on the average probability of error in discrimination
between two equally likely classes.19 The problem under consideration can be formulated similarly to.26 The
difference with the referred approach consists in the relaxation of the Gaussian masking constraint (in order to
find an optimal distortion model) as well as in the change of the cost function to the Bhattacharyya distance.
We will formulate and consider the problem only for the case of x modality since for the second one it is fully
symmetric for the independent case studied in this paper.

Thus, we will be seeking for the solution to the following constrained optimization problems in the direct
domain:

p(zXopt) = argmaxp(zX ) Dbh(p(zX);x(m),x(n));

s.t.
∫
...
∫ +∞
−∞ p(zX)dzX = 1;Cov[ZX ] = σ2

ZX
INX ,

(19)

and in the projected domain:

p(z̃Xopt) = argmaxp(z̃X )Dbh(p(z̃X); Φxx(m),Φxx(n));

s.t.
∫
...
∫ +∞
−∞ p(z̃X)dz̃ = 1;Cov[Z̃X ] = σ2

Z̃X
ILX ,

(20)

where Cov[Z] denotes a covariance matrix of z. According to the results presented in,26 one can expect that
the seeking distribution p(zXopt) will be defined on a discrete set. The solution to this problem is obtained by
numerical optimization and can be found in Section 5.

In the case of (20) one can immediately note that:

z̃X = ΦxzX , (21)

will be a Gaussian vector of length LX with zero-mean vector and covariance matrix σ2
ZΦxΦ

T
x according to the

Central Limit Theorem.6 Therefore, the solution to (20) will be a multivariate Gaussian density with zero-mean
and covariance σ2

ZΦxΦ
T
x disregarding distribution of zX . Thus, such a random projection performs a mapping of

arbitrary statistics to Gaussian ones. Remarkably, that in the considered case the assumption about Gaussianity
is valid and one can use the previous results.



−20 −15 −10 −5 0 5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR
X
, [dB]

P
D

 

 

SNR
Y
=−20 dB

SNR
Y
=−10 dB

SNR
Y
=0 dB

SNR
Y
=10 dB

SNR
Y
=20 dB

Figure 4. Probability of correct detection PD for PF = 10−10 for LX
NX

= LY
NY

= 1.

−20 −15 −10 −5 0 5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR
X

P
D

 

 

L
X
/N

X
=0.5

L
X
/N

X
=0.60

L
X
/N

X
=0.7

L
X
/N

X
=0.80

L
X
/N

X
=0.9

L
X
/N

X
=1

Figure 5. Probability of correct detection PD for PF = 10−10 and various LX
NX

and LY
NY

= 1 for SNRY = −10 dB. The
dash lines show the corresponding approximations.

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

In this section we will demonstrate the main obtained results. The impact of the second modality Y on authen-
tication performance based on modality X is demonstrated in Figure 4 for PF = 10−10 without dimensionality
reduction. The presence of noisy modality Y increases PD. The impact of dimensionality reduction based
on the random projections and approximation accuracy were investigated using both analytical formulas and
Monte Carlo simulation for Gaussian data of lengths NX = NY = 215. This selection is justified by the require-
ments of Johnson-Lindenstrauss lemma to produce a stable projections for the dimensionality reduction ratio
L
N = {0.5; 0.6; , 0.7; 0.8; 0.9} for ζ = 0.1. The orthoprojectors Φx and Φy have been generated according to the
Gaussian distribution with the parameters described in Section 3. The results of simulation for the probability
PD are shown in Figure 5. The dimensionality reduction of modality X for the fixed length of modality Y
in the indicated ranges revealed the loss in performance bounded by ∼ 3 dB. This loss is relative small price
for the reduced complexity of processing and especially for the memory storage reduction and security/privacy
enhancement.

The final set of experiments represents the solutions of the numerical problem defined in (19).

Since, according to the observation presented in Section 4, the acquisition distortions are well defined in the
case of projected domain authentication that is Gaussian with a limited variance, the situation appears to be



z

p
(z

)
x

o
p

t
optimal
Gaussian

Probability density of p(z ) (D =0.490) vs.
Gaussian density (D =1.934) for SNR=-10 dB

x opt bh

bh

(a)

z

p
(z

)
x

o
p

t

optimal
Gaussian

Probability density of p(z ) (D =2.169) vs.
Gaussian density

x opt bh

(D =11.441) for SNR=10 dBbh

(b)

Figure 6. Worst case additive attack pdf for worst case direct domain authentication (modality x) for various constraints
on attack variance: 4-δ attack (a) and 3-δ attack (b).

different in the case of direct domain authentication. The distributions p(zxopt) are discrete in this case and are
significantly more dangerous in terms of Dbh loss versus Gaussian distribution of the same variance (Figure 6).

The analysis of the obtained results allows to reveal the following. While mapping from a high- to low-
dimensional space leading to the original distance reduction from d2 to d̃2, the impact of this mapping on the
binary classification error clearly depends on the statistics of the acquisition distortions. For instance, in the case
of Figure 6,(a) the Dbh in the case of direct domain authentication are 1.934 and 0.490 for the case of Gaussian
distortions and p(zxopt), respectively, while in the projected domain it is equal to 1.914 for LX

NX
= 0.9. Thus, one

can state that reducing dimensions besides breaking curse of dimensionality provides a significant resistance of
the authentication protocol to various acquisition distortion models.

6. CONCLUSIONS

In this paper we consider the problem of multimodal authentication with random projections in the worst-case
formulation. Similarly to digital communication, we propose to limit the performance of teh considered authen-
tication system based on the probability of error caused by two classes that are located at the smallest pairwise
distance in the given class set. We demonstrated that the involvement of additional source of information is
beneficial for the overall system performance accuracy. Contrarily to the existing conservative assumptions on
acquisition channel distortions, we consider the opponent that has a relative freedom of selecting a distortion
model in the class of additive channels with a bounded variance. We revealed that in such settings an optimal
attacking distribution leading to the highest probability of misclassification is not continuous and differ signif-
icantly from the commonly assumed Gaussian statistics. Finally, we demonstrated that for the given choice
of a random projector, the output will follow Gaussian distribution that provides a certain universality of the
considered protocol to various additive distortion models.

In our future research, we are planning to extend the performed analysis to the issues of security and privacy.
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