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ABSTRACT 
 
In camera identification using sensor noise, the camera that took a given image can be determined with high certainty 
by establishing the presence of the camera's sensor fingerprint in the image. In this paper, we develop methods to reveal 
counter-forensic activities in which an attacker estimates the camera fingerprint from a set of images and pastes it onto 
an image from a different camera with the intent to introduce a false alarm and, in doing so, frame an innocent victim. 
We start by classifying different scenarios based on the sophistication of the attacker’s activity and the means available 
to her and to the victim, who wishes to defend herself. The key observation is that at least some of the images that were 
used by the attacker to estimate the fake fingerprint will likely be available to the victim as well. We describe the so-
called “triangle test” that helps the victim reveal attacker’s malicious activity with high certainty under a wide range of 
conditions. This test is then extended to the case when none of the images that the attacker used to create the fake 
fingerprint are available to the victim but the victim has at least two forged images to analyze. We demonstrate the test's 
performance experimentally and investigate its limitations. The conclusion that can be made from this study is 
that planting a sensor fingerprint in an image without leaving a trace is significantly more difficult than previously 
thought. 
 
Keywords: Camera identification, digital forensics, photo-response non-uniformity, sensor fingerprint, counter-
forensics. 
 
 

1. INTRODUCTION 
 

Human fingerprints have been used in forensic science since 1892 when an Argentine police officer Juan Vucetich 
made the first criminal fingerprint identification. Since then, the science of human fingerprinting has developed to a 
rigorous discipline that often plays a decisive role in prosecution. Apparently, it is less known that faking a human 
fingerprint is possible. And in our information age, such counter-forensic techniques are available to the masses after a 
few clicks on Google, http://www.ehow.com/how_2122642_fake-fingerprints.html. The method uses a few drops of 
superglue to copy a fingerprint from a smooth surface onto a thin layer of dried wood glue that can be stuck to your 
thumb and, after gently rubbing your face, printed on any object of your choice, giving you the ability to frame the 
victim who unknowingly left his/her fingerprint behind. It is certainly conceivable to think of a number of counter 
counter-forensic methods that would be effective against this type of fingerprint forging. The most obvious one is 
detecting the mismatch between the DNA in the fingerprint residual with the person’s identity or looking at the fine 
structure of the fingerprint to reveal some tell-tale signs of the faking process. The important message here is that even 
human fingerprints can be forged given enough skill and resources. The second important message is that such counter-
forensic attempts can likely be revealed with more advanced forensic methods. 

Digital sensor fingerprints [1] are likewise vulnerable to forging by a skilled individual. The sensor fingerprint is 
essentially a spread-spectrum watermark and, as such, it is vulnerable to attacks previously developed for robust 
watermarks, such as the watermark-copy attack [2]. In particular, if an attacker obtains access to images from a given 
camera, she can estimate its fingerprint and paste it onto an arbitrary image to make it look as if it came from the 
camera with the stolen fingerprint.  An early attempt to investigate such counter-forensic methods appeared in [3]. In 
this work, we investigate whether it is possible to detect forged camera fingerprints, then develop appropriate 
countermeasures, and study their effectiveness. 



The rest of this introduction defines the preliminary concepts and notation used in this paper. In Section 2, we formulate 
our assumptions under which we develop our techniques based on the actions of the attacker. The actual techniques are 
detailed in Section 3, depending on the means available to the attacker and the victim. Each technique is deployed on a 
real-life example and then analyzed and experimentally tested on a larger data set in Section 4. The paper is concluded 
in Section 5, where we discuss consequences of the newly obtained results and outline future directions.  

1.1  Preliminaries 

Everywhere in this article, boldface symbols represent either vectors or matrices. Sometimes, it may be useful to index a 
matrix using a one-dimensional index instead of a two-dimensional index pair. It is hoped that switching between these 
two index types should cause no confusion. For two (in general rectangular) matrices of the same dimensions, A and B, 
their element-wise product (or element-wise division) is a matrix C of the same dimensions, C[i, j] = A[i, j] B[i, j]  (or 
C[i, j] = A[i, j] / B[i, j]), and we simply write C = AB (or C = A/B). The dot product of vectors or matrices is denoted as 
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For an image I obtained by a digital camera, its noise residual is defined as WI = I − F(I), where F is a denoising filter. 
The major component of the sensor fingerprint is due to photo-response non-uniformity (PRNU), which can be captured 
using a multiplicative factor K (the sensor “fingerprint”). Using the model described in [1], the noise residual can be 
written as 

 ,= +IW aIK Θ     (1) 

where  stands for all other random noise components, such as the shot noise or the readout noise, and a is an 
attenuation factor of the same dimension as K that, in general, depends on the image content.  

Θ

The maximum likelihood estimator of the PRNU factor K from images  has the form:  (1) ( ), , NI I…
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Under the assumption that no geometric transform was applied to image J (e.g., cropping, scaling, and digital zooming), 
the presence of the camera fingerprint represented by an estimate  is established through the correlation detector: K̂

 .   (3) ˆ( ,corrρ = JW JK)

 
2. ATTACK SCENARIOS 

In this section, we introduce the basic terminology, notation, and scenarios under which the attacker may operate. We 
assume that Alice owns a digital camera C and Eve wants to frame her by forging evidence. Eve takes an image J from 
a different camera C’ and makes it appear as if it came from C. We assume that the best choice for Eve is to first 
estimate the fingerprint of C and then properly superimpose it onto J. Eve may or may not attempt to suppress the 
fingerprint of C’ from J or remove any other artifacts, such as color-interpolation correlations [4]. In this paper, we 
conservatively assume that camera C’ is in the full possession of Eve, images from C’ never appeared in public, and 
Eve destroys C’ after framing Alice. Thus, we cannot take advantage of knowing any information about C’. Next, we 
detail Eve’s forging activity. 

Fingerprint estimation. Eve takes N images,  from camera C and estimates its fingerprint using an 
algorithm Φ : 

(1) ( ), , NI I…

   (4) (1) ( )ˆ ( , , ; ).N
KPΦ=K I I…



The symbol PK stands for the settings of the estimation procedure, such as the choice of the denoising filter used to 
extract the noise component from images, the parameters of this filter, or the formula for the aggregation of the noise 
residuals and its parameters. Fundamentally, the estimation procedure is some form of averaging of the noise residuals 
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Preprocessing. After estimating the fingerprint, Eve proceeds with preprocessing J to suppress the fingerprint of C’ 
and/or to remove any artifacts in J that are incompatible with C. We argue that suppressing the trace of the fingerprint 
of C’ is not an easy task [6] and one that Eve may skip altogether. This is because the PRNU component JK’ in J is 
very weak to be detected per se and C’ has been destroyed anyway. In fact, we argue that Eve should avoid processing J 
too much as it may introduce artifacts of its own. 

A potentially important issue for Eve is the JPEG quantization table of J. Eve will likely compress her forgery. If she 
does so with a quantization table that is incompatible with camera C, Alice will know that the image has been 
manipulated and did not come directly from her camera. If the quantization table of J is incompatible with camera C, 
she will necessarily introduce double-compression artifacts into J, giving Alice again a starting point of her defense.  

The forged image may also contain color-interpolation artifacts of C’ incompatible with those of C. Alice could 
leverage upon techniques developed for camera brand and model identification [7] and prove that there is a mismatch 
between the camera models. Eve, in turn, could attempt to remove such artifacts and introduce interpolation artifacts of 
C, for example, using the method described in [8]. 

The issues discussed above indicate that Eve’s job of creating a “perfect” forgery is more difficult than what it appears 
at first sight. While there certainly exist other potential countermeasures based on inspecting the traces of previous 
compression or color interpolation artifacts, no attempt is made in this paper to exploit these discrepancies to reveal the 
forged fingerprint. We simply assume that Eve can do her job well enough to avoid such pitfalls, for example by using 
C’ of the same model. 

The final step for Eve is to plant the estimated fingerprint in J. She achieves this using the procedure 

  (6) ˆ' ( , ; FPΨ=J K J

Here, again PF denotes the fingerprint planting settings, including the forgery method and the fingerprint strength α. In 
this paper, we allow Eve to use either an additive or multiplicative forgery: 

Additive forgery. Here, Eve creates J′ by adding a scaled PRNU factor to J 

 ,  (7) ˆ' [ ]α= +J J K

where α > 0 is a scalar and [x] is the operation of rounding x to the set {0, 1, ..., 255}. Equation (7) should be 
understood as three equations for each color channel of J. Eve may tune the strength α so that the fake fingerprint is not 
too weak or suspiciously too strong. To find the correct fingerprint strength α, Eve may utilize the predictor of 
correlation described in [1] or use as a reference another image from Alice’s camera that has a similar content, which is 
the approach we used in this paper. In fact, finding the correct strength is not an easy task. The authors intend to 
elaborate on this important issue in a follow up work. Finally, J′ undergoes JPEG compression with the same or similar 
quantization table as that of the original image J. 

Multiplicative forgery. In this case, Eve adds a scaled PRNU factor modulated by the content of J as this better mimics 
the process if J was indeed taken by C: 

 . (8) ˆ' [1 α= +J J K

Both attacks can, indeed, succeed in fooling the camera identification algorithm in the sense that the detector response 
(correlation [1] or the PCE [9]) will be high enough to indicate that the forged image J′ was taken by camera C. We 
reiterate that our task is to develop methods that Alice, the victim, could use to her defense and prove that J′ is a forgery 
that did not come from her camera. This is the subject of the next section. 



3. COUNTER COUNTERMEASURES 
Assuming that Alice has her camera C available, we recognize two cases that differ by what data is available to Alice 
for her forensic investigation and propose the corresponding methods to detect Eve’s manipulation. In the first case, 
analyzed in Section 3.1, Eve has created one forged image J and Alice has access to at least one of her images, 

, copies of which Eve stole and misused. In the second case (Section 3.2), Eve has produced at least two 
forgeries, J1′, J2′, while Alice has no access to the images used by Eve to estimate the fingerprint. 

(1) ( ), , NI I…

3.1 Stolen images 

In this scenario, some of the N images used by Eve to estimate the fingerprint of C are available to Alice but Alice does 
not know which they are. She has a pool of Nc candidate images that she suspects Eve may have used. This is a 
plausible scenario because, unless Eve obtains access to Alice’s camera and takes images of her own and then erases 
them from the camera memory card before returning the camera to Alice, Eve will have to use images taken by Alice, 
such as images posted by Alice on the Internet. It turns out that this case is quite favorable for Alice allowing her to not 
only prove that the forged image did not originally come from her camera but also determine exactly which images Eve 
used, thus providing her with a solid defense. 

We now explain the key observation based on which Alice can construct her defense. Let I be one of the images 
available to Alice that Eve used to forge J′. Because the noise residual WI participates in the computation of through 
the averaging formula (5), J′ will contain a scaled version of the entire noise residual WI = aIK + θ, independently of 
whether Eve uses an additive or multiplicative forgery. This will make the correlation = corr(WI, WJ′) larger than 
what it should be if the only common signal between I and J′ was the PRNU component (which would be the case if J′ 
was not forged). As this increase may be quite small and the correlation itself may significantly fluctuate across images, 
the test that evaluates the statistical increase must be calibrated. We call this test the triangle test. 

K̂

, 'cI J

3.1.1 The triangle test 

First, Alice builds her fingerprint  from images guaranteed to not have been used by Eve. (She can, for example, 

take new images with her camera C if needed.) Then, in addition to , she computes  and 

 (see the triangle diagram below). 
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The point is that for images I that were not used to forge J′, the value of  can be estimated from  and . 

On the other hand, when I was used in the forgery, the correlation  will be higher than the estimate. 
, 'cI J
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To obtain a more accurate relationship, we will work by blocks of pixels, denoting the signal constrained to block b 
with subscript b. We adopt the model (1) for the noise residuals and a corresponding model for Alice’s fingerprint:  

 , ,b b b b b= +I I,W I K Θ ', ' ','b b b b baI , = +J J , JW J K Θ b, and A,
ˆ

b b= +K K . (9) ξ

Note that in (9) we assume that aI,b ≡ aI,b is constant on each block. When I was not used by Eve, under some fairly mild 
assumptions about the noise terms in these models, the following estimate of  is derived in the appendix: , 'cI J
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NB is the number of blocks, q ≤ 1 is the quality1 of the fingerprint , AK̂
A
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and the bar denotes the sample mean. The model coefficients are estimated from the computed block-wise correlations 

as follows, 
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The dependence between the random variables  and , for images I not used by Eve (innocent images), is 

reasonably well fit with a straight line  = λ  while the deviation from the linear fit seems to be random and 

independent of  (see 

, 'cI J , 'ĉI J

, 'cI J , 'ĉI J

, 'ĉI J Figure 2a). Thus, we assume that the conditional probability  
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is independent of  for images I not used by Eve. , 'ĉI J

Alice runs the following composite hypothesis test 
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The reason why (14) is not a simple hypothesis test is that the distribution of  when I is used for forgery is not 
available to Alice and it cannot be determined experimentally because Alice does not know what strategy Eve used. 
Thus, we resort to the Neyman-Pearson test and set our decision threshold t to bound the probability of false alarm, PFA: 

, 'cI J

, ' , ' 0 FAˆPr( | H ) .c c t Pλ− > =I J I J      (15) 

Alternatively, for each tested image I, Alice can evaluate its p-value and then, on a certain level of statistical 
significance, identify images that were used by Eve for the fingerprint estimation. The pdf f(x) is often very close to the 
Gaussian but for some images J, the tails show a hint of a polynomial dependence. Thus, to be conservative, we used 
Student’s t-distribution for the fit. Note that, depending on J′, the constant of proportionality λ > 1, which suggests the 
presence of an unknown multiplicative hidden parameter in (10). The quality of Alice’s fingerprint, q, can be considered 
unknown (or simply set to 1) as different q will just correspond to a different λ (scaling of the x axis). 

3.2 Multiple images with forged fingerprints 

Here, we develop forensic techniques for a different, but quite plausible situation. To make her case stronger and 
convince the judge and the jury, Eve decides to forge more than one image to frame Alice. In particular, she adds the 
same fingerprint to at least two different images from C’, J1 and J2, and obtains two forged images, J1′ and J2′. The new 
twist here is that Alice can inspect both images (or more pairs if available) but she has no access to images 

 used by Eve to estimate the fingerprint. Interestingly, the same triangle test applies to this case as well 
because J1′ and J2′ will again share another common component besides the PRNU term. The only difference is in 
replacing the tested image I with J2′. 

(1) ( ), , NI I…

 

                                                           
1 The quality of fingerprint is defined as K̂ ˆ( , ) ( , )q corr corr= I K I K  for some flat-field image I from the same camera 
and its true PRNU factor K. 



4. EXPERIMENTS 
In this section, we report all our experiments and implementation details of the forensic methods explained in the 
previous section. 

As in camera identification using sensor fingerprints [1], the signals that enter the triangle test must be preprocessed to 
remove all common signals called Non-Unique Artifacts (NUAs) [9] introduced by similar in-camera processing, such 
as demosaicking or on-board signal transfer, and by JPEG compression. Periodic NUAs are suppressed by matrix zero-
meaning [1], while artifacts due to JPEG compression and any remaining non-periodic NUAs are suppressed by Wiener 
filtering in the frequency domain [1].2

4.1 Stolen images (experiments) 

The experimental setup in general depends on a large number of parameters and choices made by Eve. In presenting our 
test results, we opted for what we consider (after many initial experiments) to be the most advantageous setting for Eve 
and the hardest one for Alice:   

1. To estimate the fingerprint, Eve uses the most accurate estimator (2) she can find in the literature implemented 
using the denoising filter described in [10] with parameter σ = 3. 

2. Then, Eve slightly denoises the 24-bit color image J using the same denoising filter (σ = 1) to suppress the 
fingerprint from the camera C’ that took J and other artifacts introduced by C’.  

3. Eve determines the fingerprint strength factor α so that other images from Alice’s camera that have a similar 
content also have a similar correlation detector (3) response.  

4. Finally, Eve applies the multiplicative modulation (8) because it better mimics the real impact of PRNU and 
saves the output image as a high-quality JPEG image. 

On the defense side, Alice estimates her fingerprint  from NA flat-field images. Surprisingly, the quality of has 
little impact on the triangle test. Tests with NA = 15 and NA = 100 produced essentially identical results. The 
experiments below were run for NA = 15 with the quality of , q = 0.806. The number of blocks NB, the parameter 
input in (11), was found to have little impact as well, as long as the block size stayed within some “reasonable range,” 
e.g., 100 ≤ NB ≤ 400 for a four-megapixel image. In all our experiments, NB = 20×20 = 400, which would correspond to 
9,690 pixels in each block. 

AK̂ AK̂

AK̂

                                                          

In order to demonstrate the power of the proposed triangle test, we started with N = 20 and then increased it to N = 50 
and N = 100. The six test images J (see Figure 1) that Eve attacked were chosen randomly from a set of 250 images 
downloaded from the image-sharing website Flickr. The source camera C’ is the Canon PS A520 while the camera C is 
Canon PS G2, which has the same native resolution. We do not show images after their fingerprints are forged as they 
are visually identical to the originals. Instead, we report the Peak Signal-to-Noise Ratio (PSNR) between J′ before it is 
JPEG compressed and J. This distortion includes the denoising Step 2 and quantization to 24-bit colors after adding the 
fingerprint. The output JPEG quality factor is Q = 90, which is slightly smaller than the quality Q0 of the original JPEG 
images (see the first column in Table 1). To accurately estimate the pdf f(x|H0), we used 669 images from camera C that 
were for sure not used by Eve. The images were all taken within a period of about four years. In practice, depending on 
the situation, sufficient accuracy may be obtained using a much smaller sample. 

 

Figure 2 presents a typical plot of  vs.  for N = 20 and N = 100. Quite understandably, the separation between 
innocent images and those used by Eve deteriorates with increasing N. The probability of correct detection PD in the 
hypothesis test (14) for all six test images is shown in Table 1. Each value of PD was obtained by running the entire 
experiment as depicted in 

, 'cI J , 'ĉI J

Figure 2 and evaluating the p-values for all images  used by Eve. (1) ( ), , NI I…
 

2 We skipped filtering of WI for all tested images (both those used and not used by Eve) to save computation time when 
producing experimental data for this paper. 
 



 

 

 
Figure 1. Original images (Canon PS A520, source Flickr.com), (#1, #2, #3); (#4, #5, #6). 
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(b) N = 100 
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Figure 2. Correlations  vs.  for image J #5 and 669 “innocent” images. Eve estimated the fingerprint from N images.  , 'cI J , 'ĉI J

 

The lower detection rate for image #3 is likely due to the fact that 27.6% of the image content is overexposed (the entire 
sky) with fully saturated pixels. The attenuation factor a in (9) is thus effectively equal to zero for such pixels, while it 
is estimated in (12) under H1 as being relatively large due to the absence of the noise term  A possible remedy 
involves identifying pixels that were originally saturated and setting their attenuation factors to zero.  

', .bJΘ

 



Table 1. Detection rate PD [%] and PSNR for the case analyzed in Section 4.1, JPEG quality Q = 90. 

Image #,(Q0,Q) PSNR(J, J′) [dB] PD [%] for PFA = 0.001  PD [%] for PFA = 0.0001 
 N = 20 N = 50 N = 100 N = 20 N = 50 N = 100 N = 20 N = 50 N = 100 

1 (93,90) 52.58 52.56 52.57 100 98 76 100 98 61 
2 (93,90) 52.77 52.72 52.71 100 98 48 100 96 29 
3 (93,90) 51.67 51.63 51.59 100 60 20 95 40 6 
4 (93,90) 51.01 51.02 51.00 100 94 25 100 70 6 
5 (93,90) 51.50 51.47 51.45 100 94 48 100 90 11 
6 (97,90) 52.61 52.56 52.53 100 100 67 100 94 54 

 

The success of the triangle test largely depends on the number of images, N, used by Eve to estimate the fingerprint of 
camera C. The triangle test in our study is quite reliable when N is small, e.g., N < 30. If Eve has enough resources and 
can obtain a large number of images, say N > 200, the reliability of the triangle test applied to each image one by one 
will likely be quite low. However, the situation is not completely hopeless for Alice if she has a set of Nc candidate 
images while a good portion of them are among those N used by Eve. After testing all Nc images one by one, Alice can 
pool the results and test whether the differences from the model  – λ  indeed follow f(x|H0). Since the differences 
are independent across different images, the scaled log-likelihood of all Nc observations 
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is asymptotically Gaussian. Here,  and  are the correlations for the ith image, i = 1, …, Nc.  ( )
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To demonstrate this pooling approach, we provide a sample result with the test image #5 for N = 100 and Nc = 200. If 
Alice randomly selects, say, k = 40 images out of Nc candidates, approximately k/2 of them were used by Eve to 
estimate her fingerprint. With PFA = 0.001 (or PFA = 0.0001), by testing single images, PD ≈ 48% (or 11%) (see Table 1). 
After pooling all 40 images, however, PD ≈ 99% (or 82%). These probabilities were obtained by repeating the pooling 
test using bootstrapping 500 times. 

4.2 Multiple images with forged fingerprints (experiments) 

In this section, we put to test the forensic method proposed in Section 3.2. Here, Alice has no access to any of the 
images used by Eve to estimate the fingerprint, however, Eve has forged two images, J1′ and J2′, and Alice can inspect 
them both. The method is the same triangle test applied to J1′ and J2′. 

To enlarge the experiments, we downloaded additional 147 images J from camera C’ from Flicker and created 3×147 
(147 for each choice of N) forgeries by adding Eve’s fingerprint to them using the same parameters as described in the 
beginning of Section 4.1. All other images are reused from the previous section. Figure 3 and Table 2 are the 
equivalents of Figure 2 and Table 1. Because the same fingerprint was added to each forgery, the PSNR between J and 
J′ was the same as indicated in Table 1. This experiment was run separately for N = 20, 50, 100. 

In general, the larger the correlation between J and J2′, the more reliably the triangle test can decide between the 
hypotheses (14). The decision becomes less reliable when the correlation is low, a situation induced by our rather 
conservative choice of the fingerprint strength α. This is apparent in Table 2 in the column N = 20 that shows some 
missed detections. On the other hand, in this test, PD does not drop with N as fast as in the “stolen images” case studied 
in Section 4.1 and reported in Table 1. 
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ĉĉ

Figure 3. Correlations  vs.  for image J #5 and 669 “innocent” images I. For the 147 forged images, I = J2′ ran through all 

147 images and J′ = J1′ was fixed. 
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Table 2. Detection rate PD [%] for the method reported in Section 4.2. The JPEG quality factor Q = 90, NA = 15. 

PD [%] PFA = 0.001 PFA = 0.0001 
Image # N = 20 N = 50 N = 100 N = 20 N = 50 N = 100 

1 97 95 85 95 92 79 
2 95 93 77 92 91 66 
3 82 63 40 73 52 28 
4 97 89 71 95 83 61 
5 97 95 77 95 90 59 
6 99 92 80 95 87 70 

5. CONCLUSION 
Camera identification using sensor noise works by establishing the presence of the camera's sensor fingerprint in the 
image under investigation. An adversary (Eve) may attempt to fool the identification algorithm by pasting a camera 
fingerprint onto an image that did not come from the camera. In doing so, an innocent victim (Alice) would be framed. 
In this paper, we investigate techniques that the victim may use to prove that the fingerprint was not inserted during the 
image acquisition, as the adversary claims, but was later maliciously added. 

The crucial breakthrough we experienced in our study came from positioning ourselves into the role of the adversary 
and realizing what information and data will be available to both Eve and Alice. In her activity, Eve will likely have to 
rely on images taken by Alice that she decided to share with others, for example on her Facebook site. However, the 
estimation error of the camera fingerprint estimated from such images will contain remnants of the entire noise residual 
from all images used by Eve. We designed a test, the so-called “triangle test,” using which Alice can identify which 
images Eve used for her forgery and, in doing so, prove her innocence. This test was then extended to the case when 
none of the images is available to the victim but the victim has at least two forged images to analyze. We demonstrated 
the test's performance experimentally and investigated its limitations. The conclusion that can be made from this study 
is that planting a sensor fingerprint in an image without leaving a trace is significantly more difficult than previously 
thought. 



Finally, we would like to mention that in our investigation, we have explored many diverse ideas, most of which ended 
up in a dead end. Given a forged image J, a seemingly promising idea was to acquire the same scene using Alice’s 
camera (the so-called baseline image) and then compare the fingerprint presence in the two images for consistency, for 
example, on small blocks. The baseline image could be obtained by displaying J on a computer monitor and taking 
picture of it using Alice’s camera. Alternatively, we may print out J on a high-quality printer and again take a picture of 
it. The biggest problem with this approach is the fact that the fine-grain details of the baseline image and those of J will 
likely be quite different, resulting in a very different noise term  (see (1)). Additional complications are caused by a 
different gamma factor, distorted colors, or the interference between the discrete nature of the display and the camera 
sensor. 
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7. APPENDIX 
We assume the model (9) for the noise residual WI from image I and the camera fingerprint K. Furthermore, we adopt 
the following simplifying assumptions. 

Uncorrelatedness. For any two images I and J, not necessarily different, and for every b 

, 0b b b =JI K Θ: , 0b b b =I K ξ: , 0b b =K ξ: , , 0b b =JΘ ξ: .               (A.1) 

In reality, these assumptions really mean that the dot products are small compared to other quantities in the derivations 
below. 



Dot product. We will need the following approximate equality valid whenever Kb is a realization of a stationary 
random variable with finite variance: 
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which is the sample pmf of the signal . [ ] [ ]b bi iI J

The actual derivations. 

Our goal is to find a relationship between , , and , the quantities we can 

compute for any two images I, J, and an estimated fingerprint . Using (A.1) and (A.2), we first express 
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which can be simplified by introducing 
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Similarly, we now write for 
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By comparing (A.6) and (A.7), we see that 
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Assuming the SNR  is independent of b, because , we obtain after 

some simple algebra: 
A
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and the formula for  can be expressed using the norm of  rather than the unknown norm of K: ( ,corr I JW W ) AK̂
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Determining the factors aI,b: 
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From here after some simple algebra, 
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From (1), we obtain another equation for both unknowns : 2
, ,, || ||b bI Ia Θ
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and because in our case R is the r.h.s. of (A.13), 2 2|| ||b bd = I K , , 2
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which can be written using (A.9) to involve the norm of  rather than K:  A,
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