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ABSTRACT

In this paper, we consider facial expression recognition using an unsupervised learning framework. Specifically,
given a data set composed of a number of facial images of the same subject with different facial expressions, the
algorithm segments the data set into groups corresponding to different facial expressions. Each facial image can
be regarded as a point in a high-dimensional space, and the collection of images of the same subject resides on a
manifold within this space. We show that different facial expressions reside on distinct subspaces if the manifold
is unfolded. In particular, semi-definite embedding is used to reduce the dimensionality and unfold the manifold
of facial images. Next, generalized principal component analysis is used to fit a series of subspaces to the data
points and associate each data point to a subspace. Data points that belong to the same subspace are shown to
belong to the same facial expression.

Keywords: Facial expression recognition, unsupervised learning, dimension reduction, semi-definite program-
ming, manifold unfolding, principal component analysis

1. INTRODUCTION

The human face is a rich medium through which people communicate their emotions. Researchers have identified
six basic human expressions, namely, happiness, sadness, anger, disgust, fear, and surprise.1 Automatic facial
expression recognition algorithms can be used in systems involving human-computer interaction.2 An emerging
field of application for facial expression recognition algorithms involves clinical decision support systems.3, 4

Specifically, the authors in Refs. 5 and 6 present a framework for assessing pain and pain intensity in neonates
using digital imaging.

Among different approaches proposed for facial expression recognition are manifold-based methods.7 In these
methods, the facial image can be regarded as a point in a D-dimensional space (which is referred to as the
ambient space), where D is the number of pixels in the image or the number of parameters in a face model.
The underlying assumption in manifold-based methods is that a set of facial images of a subject, which are
represented by a set of points in a high-dimensional ambient space, resides on an intrinsically low-dimensional
manifold. Hence, an important part of the facial expression recognition algorithm in such methods involve finding
the manifold of facial expressions.

In this paper, we propose an unsupervised learning approach to facial expression recognition, where we
show that different facial expressions reside on distinct subspaces if the manifold of facial images is unfolded.8

Specifically, we introduce a new manifold-based method, where we use a maximum variance unfolding (MVU)
approach8 to identify the low-dimensional manifold of facial images and unfold it. Next, generalized principal
component analysis is used to fit a series of subspaces to the data points and associate each data point to a
subspace. Data points that belong to the same subspace are shown to belong to the same facial expression.
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The contents of the paper are as follows. First, we review the MVU dimension reduction technique, which
involves semi-definite programming and convex optimization. In Section 3, we review the generalized principal
component analysis (GPCA). This framework uses algebro-geometric concepts to address the problem of data
segmentation and subspace identification for a given set of data points. In Section 4, the MVU and GPCA
methods are used to recognize facial expressions from a given set of images within an unsupervised learning
framework. Finally, we draw conclusions in Section 5.

The notation used in this paper is fairly standard. Specifically, Z+ denotes the set of positive integers, R

denotes the set of real numbers, (·)T denotes transpose, and (·)† denotes the Moore-Penrose generalized inverse.
Furthermore, we write tr(·) for the trace operator, N (·) for null space, ‖ · ‖ for the Euclidean norm, and dim(S)
for the dimension of a set S ⊂ R

D, where D ∈ Z+.

2. MANIFOLD UNFOLDING AND DIMENSION REDUCTION

In this section, we introduce the method of maximum variance unfolding (MVU), which involves a dimension
reduction technique that uses semi-definite programming and convex optimization. Given a set of points sampled
from a low-dimensional manifold in a high-dimensional ambient space, this technique unfolds the manifold (and
hence, the points it contains) while preserving the local geometrical properties of the manifold.8 This method
can be regarded as a nonlinear generalization of the principal component analysis (PCA).8

Given a set of points in a high-dimensional ambient space, principal component analysis identifies a low-
dimensional subspace such that the variance of the projection of the points on this subspace is maximized.
More specifically, the basis of the subspace on which the projection of the points has the maximum variance
is the eigenvectors corresponding to the non-zero eigenvalues of the covariance matrix.9 In the case where the
data is noisy, the singular vectors corresponding to the dominant singular values of the covariance matrix are
selected.10, 11

Given the set of N input points X = {x1, x2, . . . , xN} ⊂ R
D, where D is the dimension of the ambient space,

we seek to find the set of N output points Y = {y1, y2, . . . , yN} ⊂ R
d such that d < D, X and Y are equivalent,

and points sufficiently close to each other in the input data set X remain sufficiently close in the output data set
Y. Recall that two sets X and Y are equivalent if and only if there exists a bijective (one-to-one and onto) map
f : X → Y. To address this problem, the concept of isometry for a set of points is needed.8, 12 In particular,
an isometry is a diffeomorphism defined on a manifold such that it admits a local translation and rotation. The
next definition extends the notion of isometry to data sets.

Definition 2.1.8 Let X = {x1, x2, . . . , xN} ⊂ R
D and Y = {y1, y2, . . . , yN} ⊂ R

d be equivalent. Then X
and Y are k-locally isometric if there exists a continuous map T : R

D → R
d such that if T (xi) = yi, then

T (Nxi(k)) = Nyi(k), i = 1, . . . , N , where Nxi(k) (resp., Nyi(k)) is the set of k-nearest neighbors of xi ∈ X
(resp., yi ∈ Y).

Before stating the MVU method, we introduce the following maximization problem.

Maximum Variance Unfolding Problem. Given a set of input data points X = {x1, x2, . . . , xN} ⊂ R
D

find the set of output data points Y = {y1, y2, . . . , yN} ⊂ R
d, where d ≤ D, such that the sum of pairwise square

distances between the outputs in Y given by

Φ =
1

2N

N∑

i=1

N∑

j=1

‖yi − yj‖2, (1)

is maximized, and X and Y are k-locally isometric for some k ∈ Z+.

Without loss of generality, we assume that
∑N

i=1 xi = 0. Moreover, we require
∑N

n=1 yn = 0 to remove the
translational degree of freedom in the output points contained in Y. Note that a data set (e.g., X ) can be
represented by a weighted graph G,13 where each node represents a point and the k-nearest points are connected
by edges, where k is a given parameter. The weights of G represent the distance between the nodes. In addition,
we assume that the graph G is connected.13 In the case of a disconnected graph, each connected component
should be analyzed separately. The k-local isometry condition in the Maximum Variance Unfolding Problem
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G G′

Figure 1. Original and modified graphs for k = 2.

requires that the distances and the angles between the k-nearest neighbors are preserved. This constraint is
equivalent to preserving the distances between neighboring points in a modified graph G′, where, for each node,
all the neighboring nodes of G′ are connected by an edge. More precisely, each node of G′ and the k-neighboring
nodes of G′ form a clique of size k + 1 (see Figure 1).13

The next theorem gives the solution to Maximum Variance Unfolding Problem for the case where d = D.

Theorem 2.2.8 Consider the Maximum Variance Unfolding Problem with d = D. The output data points in
Y = {y1, y2, . . . , yN} ⊂ R

D are given by the solution to the optimization problem

max
y1,y2,...,yN∈RD

Φ, (2)

subject to

N∑

i=1

yi = 0, (3)

‖yi − yj‖2 = Dij , if η(i,j) = 1, i, j = 1, . . . , N, (4)

where Φ is defined in (1), η = [η(i,j)] ∈ R
N×N is the adjacency matrix of the modified graph G′, and

Dij = ‖xi − xj‖2, i, j = 1, . . . , N, xi, xj ∈ X . (5)

The optimization problem (2)–(4) is not convex. The following convex optimization problem, however, is
equivalent to the optimization problem given in Theorem 2.2. Moreover, the following result also addresses the
case where d ≤ D.

Theorem 2.3.8 Consider the Maximum Variance Unfolding Problem with d = D and let G and G′ denote
the weighted graph and modified graph corresponding to the data set X , respectively. The output data points in
Y = {y1, y2, . . . , yN} ⊂ R

D are given by

yji =
√

λjVji, j = 1, . . . , N, i = 1, . . . , D, (6)

where Vji, j = 1, . . . , N , i = 1, . . . , D, is the ith component of the jth eigenvector of K∗ given by Vj =
[Vj1, Vj2, . . . , VjD]T, λj is the associated eigenvalue, yji, j = 1, . . . , N , i = 1, . . . , D, is the ith component
of the vector yj = [yj1, yj2, . . . , yjD]T, and K∗ is the optimal solution to the optimization problem

max
K∈K

tr(K), (7)
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subject to

K ≥ 0, (8)
N∑

i=1

N∑

j=1

K(i,j) = 0, (9)

K(i,i) − 2K(i,j) + K(j,j) = Dij , if η(i,j) = 1, i, j = 1, . . . , N, (10)

where K ⊂ R
N×N denotes the cone of nonnegative definite matrices, η = [η(i,j)] ∈ R

N×N , and Dij is defined as
in (5). Moreover, if K∗ has d < D non-zero eigenvalues, then the set of reduced dimension output data points
is given by Y = {yred

1 , yred
2 , . . . , yred

N } ⊂ R
d, where yred

i , i = 1, . . . , N , is found by removing the zero elements of
yi.

Remark 2.4. When the data is noisy, all the eigenvalues of K are typically non-zero, and hence, one has to
choose the dominant eigenvalues of K∗.10,11 If the eigenvalues of K are sorted in descending order, then the
first d components of yi, i = 1, . . . , N , form a d-dimensional data set that is approximately k-locally isometric
to X = {x1, x2, . . . , xN} ⊂ R

D.8

3. DATA SEGMENTATION AND SUBSPACE IDENTIFICATION

In this section, we address the problem of data segmentation and subspace identification for a given set of data
points. First, we define the multiple subspace segmentation problem.

Data Segmentation and Subspace Identification Problem.10, 11 Given the set Y = {y1, y2, . . . , yN} ⊂
R

D, where yi, i = 1, . . . , N , are drawn from a set of distinct subspaces Sj , j = 1, . . . , n, of unknown number and
dimension, find i) the number of subspaces n, ii) their dimensions dim(Sj), and iii) the basis for each subspace.
Furthermore, associate each point to the subspace it belongs to.

GPCA uses algebro-geometric concepts to address this problem. First, we present the GPCA algorithm
followed by a more robust version of GPCA to deal with noisy data. For a detailed discussion, see Refs. 10 and
11.

3.1 Generalized Principal Component Analysis

In this subsection, we present the GPCA algorithm, where we assume that the data points are noise-free.
The GPCA algorithm consists of three main steps; namely, polynomial fitting, polynomial differentiation, and
polynomial division. The following definitions are needed.

Definition 3.1.10, 14–16 Let R be a commutative ring and let I be an additive subgroup of R. I is called an
ideal if r ∈ R and s ∈ I, then rs ∈ I. Furthermore, an ideal is said to be generated by a set S if, for all t ∈ I,
t =

∑n
i=1 risi, ri ∈ R, si ∈ S, i = 1, . . . , n, for some n ∈ Z+. Let F[x] be the set of polynomials of D variables,

where x = [x1, x2, . . . , xD]T, xi ∈ F, i = 1, . . . , D, and F is a field. Then F[x], with polynomial addition and
multiplication, forms a commutative ring. A product of n variables x1, x2, . . . , xn is called a monomial of degree
n (counting multiplicity). The number of distinct monomials of degree n is given by

Mn(D) � C(D + n− 1, n), (11)

where C(p, q) denotes the combination of p objects taken q at a time. A polynomial with all of its terms being
the same degree is called a homogenous polynomial. An ideal that is generated by homogenous polynomials is
called a homogenous ideal. Finally, the Veronese Map of degree n is a mapping νn : F

D → F
Mn(D) that assigns

to the variables x1, x2, . . . , xD all the possible monomials of degree n; namely,

νn([x1, x2, . . . , xD]T) = [u1, u2, . . . , uMn(D)]T, (12)

where ui = xni1
1 xni2

2 · · ·xniD

D , i = 1, . . . , Mn(D), and where ni1 + ni2 + · · · + niD = n, nij ∈ Z+, j = 1, . . . , D,
and ni1, . . . , niD are in lexicographic order.
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Let A = {S1,S2, . . . ,Sn}, ZA = S1 ∪ S2 ∪ · · · ∪ Sn, where Sj ⊂ R
D, j = 1, . . . , n, is a linear subspace,

dim(Sj) = dj , and n ∈ Z+. A is referred to as a subspace arrangement. In addition, let Y = {y1, y2, . . . , yN} ⊂
R

D be a set of a sufficiently large number of points sampled from ZA. In this paper, we assume that the number
of subspaces n is known. However, the GPCA algorithm, in its most general form, gives the solution for the
case where n is unknown.10, 11 In order to algebraically represent ZA, we need to find the vanishing ideal of
ZA, denoted by I(ZA). The vanishing ideal of ZA is the set of polynomials which vanish on ZA. It can be
shown that the homogenous component of I(ZA), denoted by In, uniquely determines I(ZA). Hence, to find
the vanishing ideal I(ZA) it suffices to determine the homogenous component In.

If pn(x) is a polynomial in In, then pn(x) = cT
nνn(x), where cn ∈ R

Mn(D), νn(x) : F
D → F

Mn(D) is the
veronese map given by (12), x = [x1, x2, . . . , xD]T for some D ∈ Z+, and Mn(D) is given by (11). Therefore,
each point yi, i = 1, . . . , N , satisfies pn(x) = 0, and hence, Vn(D)cn = 0, where

Vn(D) �

⎡

⎢⎢⎢⎣

νT
n (y1)

νT
n (y2)

...
νT

n (yN )

⎤

⎥⎥⎥⎦ (13)

is called the embedded data matrix. A one-to-one correspondence between the null space of Vn(D) and the
polynomials in In exists if

dim(N (Vn(D))) = dim(In) = hI(n), (14)

or, equivalently,

rankVn(D) = Mn(D)− hI(n), (15)

where the Hilbert function hI(n) is the number of linearly independent polynomials of degree n that vanish on
ZA. The singular vectors of Vn(D) denoted by cni ∈ R

Mn(D), i = 1, . . . , hI(n), corresponding to the zero singular
values of Vn(D) can be used to compute a basis for In, namely

In = span{pni(x) = cniνn(x), i = 1, . . . , hI(n)}.

In the case where the data set Y is corrupted by noise, the singular vectors corresponding to the hI(n) smallest
singular values of Vn(D) are used to compute the basis for In.

The following theorem shows how polynomial differentiation can be used to find the dimensions and bases of
each subspace Sj , j = 1, . . . , n.

Theorem 3.2.10, 11 Let Y = {y1, y2, . . . , yN} ⊂ R
D be a set of points sampled from ZA = S1 ∪ S2 ∪ · · · ∪ Sn,

where, for j = 1, . . . , n, Sj is a subspace of unknown dimension dj. Furthermore, assume that for every subspace
Sj, j = 1, . . . , n, there exists wj ∈ Sj such that wj 	∈ Si, i 	= j, i = 1, . . . , n, and condition (14) holds. Then

S⊥j = span
{

∂

∂x
cT
nνn(x)|x=wj : cn ∈ N (Vn(D))

}
, j = 1, . . . , n, (16)

where Vn(D) is the embedded data matrix of Y given by (13). Furthermore, dj = D − rank∇Pn(wj), j =
1, . . . , n, where Pn(x) = [pn1(x), pn2(x), . . . , pnhI(n)(x)]T ∈ R

1×hI(n) is a row vector of independent polyno-
mials in In, composed of the singular vectors corresponding to the zero singular values of Vn(D), and ∇Pn =
[∇Tpn1(x), ∇Tpn2(x), . . . ,∇TpnhI(n)(x)] ∈ R

D×hI(n).

To select a point wj , j = 1, . . . , n, for each subspace such that wj ∈ Sj , wj 	∈ Si, i 	= j, i = 1, . . . , n, without
loss of generality, let j = n. One can show that the first point wn, where wn ∈ Sn and wn 	∈ Si, i = 1, . . . , n− 1,
is given by10, 11

wn = argminy∈Y:∇Pn(y) �=0Pn(y)(∇TPn(y)∇Pn(y))†PT
n (y). (17)
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Furthermore, a basis for Sn can be found by applying PCA to ∇Pn(wn). To find the rest of the points wi ∈ Si,
i = 1, . . . , n− 1, we can use polynomial division as outlined in the next theorem.

Theorem 3.3.10, 11 Let Y = {y1, y2, . . . , yN} ⊂ R
D be a set of points sampled from ZA = S1 ∪ S2 ∪ · · · ∪ Sn,

where, for j = 1, . . . , n, Sj is a subspace of unknown dimension dj . Assume (14) holds, S⊥n is known, and a
point wn ∈ Sn is given. Then, the set

⋃n−1
j=1 Sj is characterized by the set of homogenous polynomials given by

{
cT
n−1νn−1(x) : Vn(D)Rn(bn)cn−1 = 0, bn ∈ S⊥n , cn−1 ∈ R

Mn−1(D)
}

,

where Rn(bn) ∈ R
Mn(D)×Mn−1(D) is the matrix of coefficients of cn−1 when (bT

nx)(cT
n−1νn−1(x)) ≡ cT

nνn(x) is
rearranged to have the form Rn(bn)cn−1 = cn.

Once the homogenous polynomials {cT
n−1νn−1(x)} given by Theorem 3.3 are obtained, an identical procedure

can be repeated to find wn−1 and the homogenous polynomials characterizing
⋃n−2

j=1 Sj .

3.2 Subspace Estimation Using a Voting Scheme

The GPCA framework given in Subsection 3.1 works well in the absence of noise. In practice, however, noise is
always present and efficient statistical methods need to be incorporated with the GPCA. In this subsection, we
present one such statistical method where a voting scheme is combined with the GPCA. Here, we assume that
the number of the subspaces and their dimensions are known. For details, see Refs. 10 and 11.

Let Y = {y1, y2, . . . , yN} ⊂ R
D be the set of data points sampled from the set ZA = S1 ∪ S2 ∪ · · · ∪ Sn,

where, for j = 1, . . . , n, Sj is a subspace of dimension dj and co-dimension cj = D− dj . As noted in Subsection
3.1, the homogenous component of degree n of the vanishing ideal I(ZA), denoted by In, uniquely defines
I(ZA) and dim(In) = hI(n), where hI(n) is the Hilbert function. Let P = {p1(x), p2(x), . . . , phI(n)(x)} be
the set of polynomials forming a basis for In. This set is obtained by selecting the hI(n) smallest singular
values of Vn(D), where Vn(D) is the embedded data matrix given by (13). Let y1 ∈ Y and define ∇PB(y1) �[∇Tp1(y1), ∇Tp2(y1), . . . , ∇TphI(n)(y1)

]
. Note that in the noise-free case, if y1 ∈ Sj , then rank∇PB(y1) = cj .

In the case where the data is corrupted by noise, a more efficient method for computing the basis is desired.
Suppose the co-dimension of the subspaces S1, S2, . . . , Sn take q distinct values c′1, c′2, . . . , c′q, respectively. Given
the fact that the membership of y1 to one of the subspaces Sj , j = 1, . . . , n, is unknown, a set of basis candidates
for the orthogonal complement of subspaces of all possible dimensions c′i, i = 1, . . . , q, is calculated by choosing
the c′i principal components of ∇PB(y1). This results in q matrices Bi ∈ R

D×c′i , i = 1, . . . , q, each of which is a
basis candidate for S⊥i , i = 1, . . . , n.

The main idea of the voting scheme is to count the number of repetitions of each basis candidate for all points
in the data set Y = {y1, . . . , yN}. The n basis candidates with the most votes are chosen to be the basis for S⊥i ,
i = 1, . . . , n, and each point is assigned to its closest subspace. In our criterion for counting the repetition of the
basis candidates, two basis candidates are considered to be the same if the angle between the subspaces spanned
by them is less than τ , where τ > 0 is a given tolerance parameter.

4. UNSUPERVISED LEARNING OF FACIAL EXPRESSIONS

The MVU and GPCA methods presented in Sections 2 and 3 can be used to recognize facial expressions from
a given set of images within an unsupervised learning framework. Specifically, given a set of images of a person
with two different facial expressions (e.g., neutral and happy), we show that the two facial expressions reside on
two distinct subspaces if the manifold is unfolded. In particular, semi-definite embedding is used to reduce the
dimensionality and unfold the manifold of facial images. Next, generalized principal component analysis is used
to fit a series of subspaces to the data points and associate each data point to a subspace. Data points that
belong to the same subspace are claimed to belong to the same facial expression. The algorithm is summarized
in Table 1.

In our experiment, 30 photographs were taken for each human subject, where the subject starts by a neutral
expression, transitions to a happy expression, and goes back to a neutral expression with each part containing
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Table 1. Facial Expression Recognition Algorithm

Step 1. Preprocess of the grayscale image data I1, . . . , IN .
a. Compute xj ∈ R

D′
by column stacking the matrix of Ij , j = 1, . . . , N .

b. Set the number of neighbors k.
c. Form the weighted graph G.
d. Form the modified graph G′ and the adjacency matrix η = [η(i,j)].

Step 2. Manifold unfolding and dimension reduction.

a. Set the dimension of the reduced space D.
b. Find K∗, the maximizer of (7) subject to (8)–(10).
c. Compute the eigenvectors and the associated eigenvalues of K∗; denote by

Vj = [Vj1, Vj2, . . . , VjD′ ]T and λj , j = 1, . . . , N .
d. Reorder Vj and λj such that λj , j = 1, . . . , N are in decreasing order.
e. Compute yji =

√
λjVji, j = 1, . . . , N, i = 1, . . . , D′.

f. Compute yj = [yj1, yj2, . . . , yjD′ ]T, j = 1, . . . , N .
g. Compute yred

j = [yj1, . . . , yjD]T, j = 1, . . . , N.

h. Compute Y = {yred
1 , . . . , yred

N }.
Step 3. Subspace estimation using a voting scheme.

a. Set the subspace angle tolerance parameter τ > 0.
b. For the subspaces S1, S2, . . . , Sn, compute the distinct value of their co-dimension

c′1, c
′
2, . . . , c

′
q.

c. Initialize the arrays U1 = [ ], . . . , Uq = [ ] and the counters C1 = [ ], . . . , Cq = [ ]
d. for j = 1 : N
e. for i = 1 : q
f. Compute the c′i principal components of ∇PB(yred

j ).
g. Form the orthogonal matrix Bi ∈ R

D×c′i using outputs of Step 3f.
h. if there exists k such that the angle ∠subspace(Bi,Ui(k)) < τ , then
i. Ci(k)← Ci(k) + 1.
j. else
k. Ui ← [Ui, Bi].
l. Ci ← [Ci, 1].

m. end for
n. end for
o. Select basis candidates from U1, . . . ,Uq corresponding to the n highest values of

C1, . . . , Cq. Denote basis by B1, . . . , Bn.
p. Use B1, . . . , Bn (basis for S⊥1 , . . . , S⊥n ) to find the B′

1, . . . , B
′
n (basis for S1, . . . , Sn).

q. Use results in Step 3p to assign each yred
1 , . . . , yred

N , to the closest subspace.

10 photographs. An example set of images is given in Figure 2. These images were taken in a sequence, each
200× 240 pixels, and in total there were 4 subjects.

Each image can be considered as a vector of dimension 48000 by column stacking the grey scale image intensity
matrix. In this case, each image is a point in a 48000-dimension space. In order to segment the images, the
dimension is reduced to D = 5 using the MVU algorithm. Then, the resulting points in the D = 5-dimensional
ambient space are used to identify 2 subspaces of dimension d = 1, 2, 3, 4, where in the GPCA voting algorithm
two subspaces are considered to be the same if the angle between the two subspaces is less than τ = 0.4.17 The
segmentation error for each case is given in Table 2, where it is noted that the best results correspond to d = 3
and 4. In order to visualize the subspace identification, the segmentation for the case D = 2 and d = 1 is given
in Figure 3. Although these parameters result in a poor segmentation performance, it graphically conveys the
main idea of the algorithm.
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Figure 2. A sequence of pictures, where the subject starts with a neutral expression, smiles, and resumes to a neutral
expression.

Table 2. Segmentation Results for D = 5

Subject Number of Images Segmentation Error
d = 1 d = 2 d = 3 d = 4

1 29 3 2 2 3
2 31 13 13 3 7
3 31 6 15 2 4
4 32 13 15 1 1

5. CONCLUSION

In this paper, we considered facial expression recognition within an unsupervised learning framework. Specifically,
given a data set composed of a number of facial images of the same subject with different facial expressions, the
algorithm introduced in this paper segments the data set into groups corresponding to different facial expressions.
Each facial image can be regarded as a point in a high-dimensional space, and the collection of images of the
same subject resides on a manifold within this space. Our results show that different facial expressions reside
on distinct subspaces if the manifold is unfolded. In particular, semi-definite embedding was used to reduce the
dimensionality and unfold the manifold of facial images. Generalized principal component analysis was used to
fit a series of subspaces to the data points and associate each data point to a subspace. Data points that belong
to the same subspace were shown to belong to the same facial expression. In future research we will extend the
results to an unknown number of different facial expressions, and apply the framework to the problem of facial
expression recognition for video imaging.
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Figure 3. Facial expression segmentation with D = 2 and d = 1. The categorization error is 6/30. The solid and dashed
lines are the subspaces corresponding to the neutral and happy expressions, respectively. The points associated with the
solid line and the dashed line are depicted by “+” and “×”, respectively. The points depicted by “◦” are points associated
with the wrong expression. Note that although these parameters result in a poor segmentation performance, it graphically
conveys the main idea of the algorithm.
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