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ABSTRACT

Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical activity in the atrial chambers
of the heart, is a rapidly growing problem in modern societies. One treatment, referred to as catheter ablation,
targets specific parts of the left atrium for radio frequency ablation using an intracardiac catheter. Magnetic
resonance imaging has been used for both pre- and and post-ablation assessment of the atrial wall. Magnetic
resonance imaging can aid in selecting the right candidate for the ablation procedure and assessing post-ablation
scar formations. Image processing techniques can be used for automatic segmentation of the atrial wall, which
facilitates an accurate statistical assessment of the region. As a first step towards the general solution to the
computer-assisted segmentation of the left atrial wall, in this paper we use shape learning and shape-based image
segmentation to identify the endocardial wall of the left atrium in the delayed-enhancement magnetic resonance
images.
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1. INTRODUCTION

Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical activity in the atrial chambers
of the heart, is a rapidly growing problem in modern societies. Electrical cardioversion and antiarrhythmic drugs
are used to manage this condition, but suffer from low success rates and involve major side effects.1–4 In
an alternative treatment, known as catheter ablation, specific parts of the left atrium are targeted for radio
frequency ablation using an intracardiac catheter.5 Application of radio frequency energy to the cardiac tissue
causes thermal injury (lesions), which in turn results into scar tissue. Successful ablation can eliminate, or isolate,
the problematic sources of electrical activity and effectively cure atrial fibrillation.

Magnetic resonance imaging (MRI) has been used for both pre- and and post-ablation assessment of the
atrial wall.6 MRI can aid in selecting the right candidate for the ablation procedure and assessing post-ablation
scar formations. Image processing techniques can be used for automatic segmentation of the atrial wall, which
facilitates an accurate statistical assessment of the region. As a first step towards the general solution to the
computer-assisted segmentation of the left atrial wall, in this paper we propose a shape-based image segmentation
framework to segment the endocardial wall of the left atrium.
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A powerful approach in medical image segmentation is active contour modeling wherein the boundaries of
an object of interest are captured by minimizing an energy functional.7, 8 The segmentation of the endocardial
wall of the left atrium in delayed-enhancement magnetic resonance images (DE-MRI) using active contours is
a challenging problem mainly due to the absence of clear boundaries. This usually leads either to contour
“leaks,” where the contour expands beyond the desired boundary, or partial segmentation, where the contour
only captures the desired area partially. A shape-based segmentation approach can overcome this problem by
using prior shape knowledge in the segmentation process. In this paper, we use shape learning and shape-based
image segmentation to identify the endocardial wall of the left atrium in the delayed-enhancement magnetic
resonance images.

The outline of the paper is as follows. In Section 2, we present the shape learning and shape-based image
segmentation framework. Next, in Section 3, this framework is applied to the problem of segmentation of the
endocardial wall of the left atrium. Finally, in Section 4 we state conclusions and directions for future research.

2. SHAPE LEARNING AND SHAPE-BASED IMAGE SEGMENTATION

In this section, we propose a shape-based image segmentation framework using the work of Refs. 9 and 10
to segment the endocardial wall of the left atrium. Our proposed approach involves two steps; namely, shape
learning and image segmentation. To elucidate this, let the training set be composed of N binary images
Bi : Ω → {0, 1}, i = 1, . . . , N , where Ω ⊂ R

3 is the image domain. The binary image Bi corresponds to the
segmentation of the endocardial wall of the left atrium for the image Ii : Ω → R, i = 1, . . . , N , performed by a
human expert. For i = 1, . . . , N , Bi(x) = 1 if x falls inside the left atrial chamber and Bi(x) = 0 otherwise.

The first step in shape learning involves image registration. The goal in image registration is to align two
given images, namely, the fixed image and the moving image, by finding a homeomorphism that maps the points
in the moving image to the corresponding points in the fixed image. One of the most widely used techniques in
image segmentation is the energy-based technique, where an energy functional describing the similarity between
the two images is maximized (or, equivalently, an energy functional describing the discrepancy between the the
two images is minimized) subject to a regularization constraint.11 Here, we consider a special class of energy-
based registration techniques, namely, the mean-square-error affine registration scheme, which is implemented
in the insight segmentation and registration toolkit (ITK).12 While we consider binary images in this paper, the
mean-square-error affine registration scheme is applicable to any gray-scale image and is not limited to binary
images.

Mean-Square-Error Affine Registration. Given the fixed image Bf : Ω → {0, 1} and the moving image
Bm : Ω → {0, 1}, where Ω ⊂ R

3, the goal of the mean-square-error affine registration scheme is to find an affine
transformation M : Ω → Ω such that the cost functional

J(A, T ) �
∫

Ω

(Bm(M(x)) − Bf(x))2 dx (1)

is minimized, where M(x) � Ax+ T with A ∈ R and T ∈ R
3 denoting a rotation matrix and translation vector,

respectively, and R ⊂ R
3×3 denoting the set of rotation matrices.

The mean-square-error affine registration scheme is an optimization problem which can be used to register
the training images. Specifically, given the training set {B1, . . . , BN} with Bi : Ω → {0, 1}, i = 1, . . . , N ,
the mean-square-error affine registration scheme is used to register all binary images in the training set to an
arbitrary binary image from the training set denoted by Bk, k ∈ {1, . . . , N}. Hence, for k ∈ {1, . . . , N}, Bk is
regarded as the fixed image and Bi, i = 1, . . . , N , i �= k, is regarded as the moving image. This results in N − 1
mean-square-error registration problems given by

min
(Ai,Ti)∈R×R3

Jk
i (Ai, Ti), Ai ∈ R

3×3, Ti ∈ R
3, i = 1, . . . , N, i �= k, (2)

where
Jk

i (Ai, Ti) �
∫

Ω

(Bi(Aix + Ti) − Bk(x))2 dx.
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We denote the registered binary moving images by B̂i(x) � Bi(A∗
i x + T ∗

i ), i = 1, . . . , N , i �= k, and the binary
fixed image by B̂k(x) � Bk(x), x ∈ Ω, where A∗

i and T ∗
i , i = 1, . . . , N , i �= k, denote the optimal solutions to

the optimization problem given by (2).

Next, we use principal component analysis (PCA)13 to learn the registered shapes and create a statistical
model for the shape. We need the following definition before stating the shape learning algorithm.

Definition 2.1. Given a closed surface C (which could correspond to the boundary of a region of interest), the
signed distance function φ : Ω → R is the mapping defined by

φ(x) �
{

dist(x, C), x �∈ V ,
−dist(x, C), x ∈ V ,

(3)

where V is the volume enclosed by the closed surface C and dist(·, ·) is the distance operator defined by dist(x, C) �
infy∈C ‖x − y‖, x ∈ Ω.

In Ref. 9, the authors use the signed distance function to implicitly represent the training shapes, where the
boundary of the training shape B̂i(x), x ∈ Ω, i = 1, . . . , N , is given by the zero-level set of the signed distance
function. In this paper, we use a specific discrete approximation to the signed distance function, referred to
as sparse field level sets (SFLS),14 for the numerical implementation. Let Ωs ⊂ R

3 denote the sampled image
domain, where we use the N1 × N2 × N3 image grid to sample Ω with Nj , j = 1, 2, 3, denoting the number of
grid points in the j-th coordinate. In this case, the SFLS function Ψi : Ωs → R, i = 1, . . . , N , associated with
the binary image Bi satisfies

Ψi(x) > 0, if x �∈ Ai, (4)
Ψi(x) = 0, if x ∈ ∂Ai, (5)
Ψi(x) < 0, if x ∈ Ai, x �∈ ∂Ai, (6)

where Ai � {x ∈ Ωs : Bi(x) = 1} and ∂Ai denotes the boundary of Ai. Sparse field level sets, which can be
regarded as a variation of narrow-band methods,15 are an approximation to signed distance functions where the
SFLS function assumes the same value as the signed distance function in the vicinity of the zero-level set. For
points x �∈ Ai (resp., x ∈ Ai, x �∈ ∂Ai) which are sufficiently far from the zero-level set ∂Ai, Ψi(x) = 3 (resp.,
Ψi(x) = −3).

Although the SFLS method was originally proposed in Ref. 14 to reduce the computational complexity
of solving the partial differential equation governing the evolution of the level set, we use SFLS for shape
representation in the shape learning stage to control the variability of the level sets for points far from the
zero-level set. Using SFLS to implicity represent the shape, as opposed to the more traditional signed distance
function, is particularly important in PCA shape learning. Among all possible subspaces of a fixed dimension,
PCA identifies the subspace in which the projection of the data has the maximum variance. Since we are only
interested in the shape represented by the zero-level set, it is desired that PCA only reflect the variations in the
zero-level set and not be influenced by the variations of the level set function at points far from the zero-level
set. The SFLS function reduces this variability in the value of the level set functions Ψ1, . . . , ΨN by assigning a
constant value to points far from the level set. Note that SFLS representation is also used in the implementation
of the localized region-based active contour described later in this section to reduce the computational complexity
of the level set evolution.

We use the shape-learning framework proposed in Ref. 9 using PCA. First, the mean shape given by Φ̄ �
1
N

∑N
i Ψi is computed. Then, the mean-offset function is defined by Ψ̃i � Ψi − Φ̄, i = 1, . . . , N . Note that

Ψ̃i : Ωs → R, i = 1, . . . , N , where Ωs is obtained by sampling Ω using the image grid. The N1 × N2 × N3 image
grid can be used to label each point in Ωs, and hence, Ψ̃i can be transformed into an array of the size N1×N2×N3.
Next, we construct si ∈ R

M , i = 1, . . . , N , by forming a vector from the elements of the N1 × N2 × N3 array
associated with Ψ̃i, where M = N1 × N2 × N3 is the number of voxels in the binary image Bi, i = 1 . . . , N .
Define S � [s1, . . . , sN ] ∈ R

M×N and W � 1
N S

T
S. Finally, we use the Schur decomposition to obtain

W = QTΛQ, (7)
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where Q � [q1, . . . , qN ], qi ∈ R
N , and Λ � diag[λ1, . . . , λN ]. The normalized eigenshapes Φi, i = 1, . . . , N , are

given by Φi = 1
‖Sqi‖Sqi ∈ R

M , where we assume that their corresponding eigenvalues λi, i = 1, . . . , N , are in
decreasing order, Sqi �= 0, i = 1, . . . , N , and ‖ · ‖ denotes the Euclidean norm on R

M .

In the framework proposed in Ref. 9, given a new image I : Ω → R, it is assumed that the segmenting surface
represented by a level-set function can be written as a weighted sum of the eigenshapes. Due to the complexity of
the optimization problem and the presence of local minima, the initial guess in the optimization problem affects
the optimal solution provided by the numerical algorithm. In this paper, we introduce an intermediate step in
which we use localized region-based active contours proposed by Ref. 10 to provide a better initialization to the
optimization problem.

The localized region-based active contours provide a framework for segmenting heterogenous objects, where
both global region-based and local edge-based methods fail.10 The contour is implicitly represented by the
signed distance function φ : Ω → R, where in our implementation we use the SFLS to represent φ due to its
computational efficiency. Although we consider the Chan-Vese energy functional16 within the localized region-
based active contour framework, other energy functionals can be used.10

For a given signed distance function φ define the smoothed Heaviside function Hφ : Ω → R by

Hφ(x) �

⎧⎪⎨
⎪⎩

1, φ(x) < ε,
0, φ(x) > ε,
1
2

[
1 + φ

ε + 1
π sin

(
πφ(x)

ε

)]
, otherwise.

(8)

In this case, the derivative δφ : Ω → R of the smoothed Heaviside function with respect to x ∈ Ω is given by

δφ(x) �

⎧⎪⎨
⎪⎩

1, φ(x) = 0,
0, |φ(x)| < ε,
1
2ε

[
1 + cos

(
πφ(x)

ε

)]
, otherwise.

(9)

Moreover, for a given r > 0, define

Br(x, y) �
{

1, ‖x − y‖ < r,
0, otherwise. (10)

The contour C segmenting the region of interest for a given image I : Ω → R is given by

C = {x ∈ Ω : φ∗(x) = 0}, (11)

where φ∗ : Ω → R is the solution of the minimization problem

min
φ∈F

Elrac(φ), (12)

where F � {φ : Ω → R : φ is a signed distance function},

Elrac �
∫

Ω

δφ(x)
∫

Ω

Br(x, y)F (I(y), φ(y))dydx + α

∫
Ω

δφ(x)‖∇φ(x)‖dx, α > 0, (13)

F (y) � Hφ(y)(I(y) − ux)2 + (1 −Hφ(y))(I(y) − vx)2, (14)

ux �
∫
Ω Br(x, y)Hφ(y)I(y)dy∫

Ω Br(x, y)Hφ(y)dy
, (15)

vx �
∫
Ω
Br(x, y)(1 −Hφ(y))I(y)dy∫
Ω Br(x, y)(1 −Hφ(y)dy

, (16)

where ‖ · ‖ denotes the Euclidean norm on R
3, ∇ denotes the gradient operator, and α is a regularization

parameter. Here, we use the mean shape Φ̄ as the initialization for the localized region-based active contour.
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Next, the result of the segmentation process is considered as an initial condition for the shape-based segmen-
tation given by Ref. 9. Specifically, define a new level set function Φw,Tp : Ω → R by

Φw,Tp(x) = Ψ̄ (Tp(x)) +
e∑

i=1

√
λiwiΦi (Tp(x)) , (17)

where w = [w1 . . . , we]T, wi ∈ R, i = 1, . . . , e, e ∈ Z+, e < N , is the number of selected eigenshapes, and
Tp : Ω → Ω is a similarity transformation with parameter vector p ∈ R

7 which includes translation, rotation,
and magnification. Here we use the binary mean model17 for the shape-based segmentation. Finally, note that
the segmented region is given by the zero-level set of the function Φ∗

w,Tp
, where Φ∗

w, Tp
is the optimal solution of

the optimization problem given by

min
(w,p)∈Rk×R7

Ebinary(Φw, Tp), (18)

where

Ebinary(Φw, Tp) � −1
2

(
Su

Au
− Sv

Av

)2

, (19)

Au �
∫

Ω

ĤΦw, Tp
(y)dy, (20)

Av �
∫

Ω

(1 − ĤΦw, Tp
(y))dy, (21)

Su �
∫

Ω

I(y)ĤΦw, Tp
(y)dy, (22)

Sv �
∫

Ω

I(y)(1 − ĤΦw, Tp
(y))dy, (23)

ĤΦw, Tp
(y) �

{
1, Φw,Tp(y) ≤ 0,
0, Φw,Tp(y) > 0.

(24)

3. APPLICATION TO ENDOCARDIAL WALL SEGMENTATION
In this section, we apply the framework of Section 2 to the problem of segmentation of the endocardial wall of the
left atrium. Our data set includes 20 DE-MRI, namely {I1, . . . , I20}, and their associated hand segmentations of
the endocardial wall of the left atrium B1, . . . , B20. These images are obtained from patients having undergone
catheter ablation three months prior to the scan time. In our study, we use a hold-out method for cross-
validation.18 More specifically, the training set consists of the binary human-expert segmentations B6, . . . , B20

and the test set consists of the DE-MR images I1, . . . , I5. The segmentation results provided by the algorithm
can be compared to the human-expert segmentations B1, . . . , B5.

In the first step of the algorithm, the binary images in the training set {B6, . . . , B20} are registered to an
arbitrary binary image, e.g., B6. Next, the SFLS representation described in the previous section is used to
implicitly represent the training shapes. After subtracting the mean shape from all the training shapes, PCA
learning is used to find the first 8 eigenshapes and their associated eigenvalues. This concludes the training phase
of the algorithm.

Next, the trained algorithm is used for the segmentation of the endocardial wall of the left atrium by applying
it to the test set {I1, . . . , I5}. We assume that the human user can provide the algorithm with an approximate
estimate of the centroid coordinates of the left atrium by a mouse click. Next, a translation transformation is
applied to the mean shape so that its centroid coincides with the approximate centroid coordinates of the left
atrium provided by the human user. The translated mean shape is used as an initialization for the localized
region-based active contour algorithm. In the last step of the algorithm, the segmentation provided by the
localized region-based active contour algorithm is used as an initialization for the shape-based segmentation
algorithm described in the previous section. Table 1 outlines the proposed algorithm. The 3-dimensional and
2-dimensional view of the segmented endocardial wall of the left atrium for Patient 1 are given in Figure 1 and
Figure 2, respectively.
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Table 1. Endocardial Wall Segmentation Algorithm

Step 1. Shape Learning.
a. Register binary images B7, . . . , B20 to B6 using the mean-square-error affine

registration scheme. Denote the registered training images by B̂6, . . . , B̂20.
b. Use SFLS to represent B̂6, . . . , B̂20. Denote by Ψ6, . . . , Ψ20.
c. Compute the mean shape Φ̄. Compute the mean-offset functions Ψ̃6, . . . , Ψ̃20.
d. Construct s6, . . . , s20 by forming a vector from the elements of Ψ̃6, . . . , Ψ̃20.
e. Compute S = [s1, . . . , sN ] and W = 1

N STS.
f. Use the Schur decomposition to obtain W = QTΛQ, where Q = [q1, . . . , qN ]

and Λ = diag[λ1, . . . , λN ].
g. Compute the normalized eigenshapes Φi = 1

‖Sqi‖Sqi.
h. Select the first e eigenshapes corresponding to the largest eigenvalues. Denote

by Φ1, . . . , Φe.
Step 2. Image Segmentation.

a. for j = 1 : 5
b. Initialize the localized region-based active contour evolution for DE-MR

image Ij using the mean-shape Φ̄ found in Step 1c.
c. Evolve the segmenting surface C until some convergence criterion is met.
d. Solve the optimization problem (18). Use the result of Step 2c as an

initial guess for the optimization problem.
e. end for

Figure 1. 3-dimensional view of the segmentation of the endocardial wall of the left atrium.

4. CONCLUSION

In this paper, we proposed a shape-based image segmentation framework to segment the endocardial wall of
the left atrium. The segmentation of the endocardial wall of the left atrium in delayed-enhancement magnetic
resonance images using active contours is a challenging problem mainly due to the absence of clear boundaries. It
was shown that a shape-based segmentation approach can overcome this problem by using prior shape knowledge
in the segmentation process. Our proposed approach involved shape learning and image segmentation.

Future work will include extending this framework to segment the epicardial wall, and ultimately, the au-
tomatic segmentation of the atrial wall. In addition, we will use computer-aided statistical assessment of the
enhanced regions in the DE-MRI which can greatly benefit the study of ablation therapy for atrial fibrillation
patients.
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Figure 2. 2-dimensional view of the segmentation of the endocardial wall of the left atrium.
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