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Abdominal arteries recognition in X-Ray using a structural
model

Olivier Nempont, Raoul Florent

Medisys Research Lab, Philips Healthcare, 33 rue de Verdun, 92156 Suresnes, France

ABSTRACT

The automatic recognition of vascular trees is a challenging task, required for roadmapping or advanced visual-
ization. For instance, during an endovascular aneurysm repair (EVAR), the recognition of abdominal arteries in
angiograms can be used to select the appropriate stent graft. This choice is based on a reduced set of arteries
(aorta, renal arteries, iliac arteries) whose relative positions are quite stable.

We propose in this article a recognition process based on a structural model. The centerlines of the target
vessels are represented by a set of control points whose relative positions are constrained. To find their position in
an angiogram, we enhance the target vessels and extract a set of possible positions for each control point. Then,
a constraint propagation algorithm based on the model prunes those sets of candidates, removing inconsistent
ones. We present preliminary results on 5 cases, illustrating the potential of this approach and especially its
ability to handle the high variability of the target vessels.

Keywords: Medical image interpretation, automatic recognition, structural model, abdominal arteries, X-Ray
imaging.

1. INTRODUCTION

Endovascular aneurysm repair (EVAR) is a minimally invasive surgical intervention for the treatment of abdomi-
nal aortic aneurysms (AAA), i.e. a widening of the aorta below the renal arteries. The interventionist introduces
a stent graft through the femoral arteries under X-Ray guidance. This endoprothesis is then deployed just below
the renal arteries and above the common iliac bifurcation. Therefore the choice of the appropriate stent graft
depends on the subject anatomy and is based on a reduced set of arteries (aorta, renal arteries, iliac arteries).
The intervention planning could thus benefit from the automatic interpretation of abdominal angiography. For
instance approaches were proposed to automatically or semi-automatically segment the abdominal aorta in CTA
or MRA, e.g. in1–3. The diameter of the lumen or of the outer wall are then estimated along the aorta, providing
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Figure 1. Angiograms of abdominal aorta.



Figure 2. Synthetic view of the proposed approach.

relevant information to assess the risk of rupture. However to the best of our knowledge, automatic interpretation
processes including the collateral arteries were not proposed.

During the intervention, several angiograms are performed in order to validate the choice of the stent graft
and then to position and to deploy the device. Four angiograms of different subjects are shown in figure 1. Their
aneurysms are located on the aorta (the large vertical dark vessel) between the renal arteries (the lateral vessels
in the upper part of the angiogram) and the iliac arteries (the two branches in the lower part). We are interested
here in the automatic recognition of the main arteries in those angiograms.

To automatically perform the recognition, a model of the target anatomy has to be used. Due to the high
variability of shapes, the registration of an iconic atlas4 may not be robust. Statistical shape models5,6 could
deal with this variability but the available optimization schemes generally require a good initialization of the
pose parameters. On the other hand, approaches based on structural models7 and constraint propagation8

were proposed in9,10 to perform the recognition of brain structures. Those models represent the structures to
be recognized, some of their properties and their relations (in particular their relative position). To obtain
a solution (i.e. to assign regions of the image to the structures of the model), the constraints propagation
algorithms proposed in9–11 iteratively prune the set of possible regions for each structure, removing the ones that
are inconsistent with the structural model. We propose here to use a structural model to perform the recognition
of abdominal arteries. It represents the vessel centerlines by a set of control points and their relative positions.
We then propose a constraint propagation algorithm to obtain the position of the model control points in an
angiogram.

The proposed approach is illustrated in Figure 2. First the vessel centerlines are enhanced using ridge filters.
Then the matching of the anatomical model is performed by a constraint propagation algorithm. In Section 2,
the structural model representing the target abdominal arteries is presented. In Section 3, we briefly describe
the filtering process used to enhance the vessel centerlines and to extract possible positions for the model control
points. Section 4 is the core of this paper. It presents the constraint network derived from the model. The
chosen mathematical formulation of the constraints is then detailed along with operators that prune inconsistent
candidates according to the constraints. The operators are iteratively applied to achieve constraint propagation.
Finally in Section 5, we present some preliminary results.

2. STRUCTURAL MODEL

To perform the recognition task, we rely on the structural model of the abdominal arteries illustrated in Fig-
ure 3. The centerlines of the target abdominal arteries are represented by a set of control points. For in-



stance, the aorta is represented by 9 control points (A1 . . . A9) in that case. A9 represents the aortic bifur-
cation. A3 and A4 are respectively the points of the aorta in front of the branching points of the left and
right renal arteries (RL1 and RR1). In fact the control points are associated with specific anatomical points

Figure 3. Structural model of
the abdominal arteries.

and their relative position is quite stable. For instance Ai is below Ai−1. RL1 is
on the left of A3 and their distance is almost equal to the aorta radius.

This knowledge is represented in the model by a set of relations between the
control points on their relative position. We consider 3 types of relations:
• Directional relations between two control points represent a prior on the orien-
tation of their relative position. Those relations are characterized by a direction
and a tolerance around that direction that are defined in the coordinate system of
the X-Ray imaging system or with respect to the local vessel orientation.
• Distance relations between two control points represent a prior on their distance.
It can be expressed as an interval in centimeters or with respect to the local vessel
diameter.
• Geodesic distance relations are defined between control points that belong to the
same vessel. They assume that the geodesic distance with respect to the vessel
has to be smaller than a given value (related to the upper endpoint of the distance
interval in a distance constraint).

In addition we include priors on the radius and on the orientation of the vessels.
For instance abdominal aorta’s diameter normally ranges from 1.4 cm to 2.4 cm and
is quite vertical in the X-Ray images. As the subrenal aorta normally contains an
aneurysm, we consider a wider interval on this part. Thus for each control points,
we include a prior on the local diameter and orientation of the vessel.

3. CANDIDATES EXTRACTION

For each control point, we want to extract a set of possible positions. As control points represent centerline points
of dark vessels (whose radius and orientation are roughly known), we first apply multi-scale ridge filters12–14 to
enhance the centerlines of ridges whose radius and orientation fit the prior hold by the model. Besides a ridgeness
score, we also obtain the optimal local orientation and radius. From those maps, we then extract a set of possible
positions for each control point.

This process is illustrated in figure 4. In (d) and (e) we consider the control points representing the renal
arteries. The ridgeness map is presented in (d). The associated set of possible positions is shown in (e). Those
candidates are then associated with all the control points representing the renal arteries.

4. CONSTRAINT PROPAGATION

4.1 General definitions on constraint propagation
We recall here the definitions and notations used in the sequel. Comprehensive surveys on constraint networks
and constraint propagation can be found for instance in8,15,16. A constraint network is defined by a triplet
N = ⟨χ,D, C⟩ where:
• χ = {x1, . . . , xn} is the set of variables of our problem,
• D is the set of domains associated with those variables. A variable xi ∈ χ takes values in the domain D(xi),
• C is the set of constraints. Each constraint C = (vars(C), rel(C)) involves a set of variables vars(C) ⊆ χ
and is represented by a relation rel(C) defined on the Cartesian product of their domains.
An instantiation I = {(x1, v1), . . . , (xk, vk)} on the variables Y = {x1, . . . , xk} ⊆ χ is valid if ∀xi ∈ Y, vi ∈
D(xi). I satisfies a constraint C such that vars(C) ⊆ Y if I[vars(C)] ∈ rel(C), where I[vars(C)] is the projection
of I on vars(C). I is locally consistent if I is valid and if for each constraint C ∈ C such that vars(C) ⊆ Y , I
satisfies C. A solution of the constraint network N is a locally consistent instantiation I on χ. We denote by
sol(N) the set of solutions of N . A constraint network is said satisfiable if it has at least one solution.

Efficient backtracking algorithms17,18 were proposed to obtain solutions of a constraint network. However
many problems cannot be solved by those algorithms for complexity reasons. To simplify the problem a constraint
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Figure 4. (a) Angiogram. Ridgeness map considering control points on the aorta (b), on the renal arteries (d) and on the
left iliac artery (f). (c-e-g) Associated sets of candidates.

propagation algorithm8 can first be applied. It iteratively transforms an initial constraint network N into a
simpler network N ′ that present the same solutions by: (i) reducing the domains of the variables, (ii) inferring new
constraints. We give below the main definitions and notations related to domain based constraint propagation.
Let N = ⟨χ,D, C⟩. The set PN D of all domain-based tightenings (or reductions) of N is the set of networks
{N ′ = ⟨χ,D′, C⟩} such that D′ ⊆ D. We denote by ≤N the partial ordering associated with the domain
inclusion relation. The set Psol

N D is the subset of PN D of networks that present the same solutions as N , i.e.
∀N ′ ∈ Psol

N D, sol(N ′) = sol(N).
Psol

N D has a least element denoted by GN D whose domains contain only values belonging to a solution. As
computing GN D is NP-hard, domain-based constraint propagation aims at getting an element of Psol

N D, as small
as possible in polynomial time. Such a process iteratively removes values that cannot belong to a solution, for
instance by applying propagators. A propagator f is an operator associated with a constraint C ∈ C. It
tightens the domains (∀N ′ ∈ PN D, f(N ′) ∈ PN ′ D) regardless of the other constraints. f is:
• correct if ∀N ′ ∈ Psol

N D, f(N ′) ∈ Psol
N ′ D,

• increasing if ∀N1, N2 ∈ PN D, N1 ≤N N2 ⇒ f(N1) ≤N f(N2),
• idempotent if ∀N ′ ∈ PN D, f(f(N ′)) = f(N ′).
A constraint propagation process that iteratively applies a set of propagators ends up when no propagator can
further reduce a domain. If the propagators are increasing (this is generally the case), the result does not depend
on the order of application of the propagators, and is then called the least fixed point.

In the following a propagator f will then be described as follows:

⟨vars(C);D; C⟩
⟨vars(C);D′;C⟩ ,

where D and D′ are the domains associated with the variables vars(C) and D′ ≤N D.



4.2 Constraint network based on the anatomical model

Based on local characteristics, we have associated a set of possible positions with each control point. To prune
those candidates, we rely on the spatial relations hold by the model. To this aim, we derive a constraint network16

from the structural model and we set up a constraint propagation algorithm to remove as many inconsistent
candidates as possible according to the spatial relations of the model.

We denote by N = ⟨χ,D, C⟩ the constraint network. Each control point
of the model is associated with a variable n ∈ χ. As illustrated besides, a
variable n represents the position of the control point, the local orientation
and the radius of the vessel to which it belongs. A value for n is then
the combination of a position x in the image spatial domain X ⊆ Z2, a
local orientation d⃗ and a radius s. Therefore each variable takes values in a
domain D(n) which is a subset of Z2 × [−π, π[×R+.

We limit the set of possible values of n to the set of candidates previously obtained (cf Section 3). This
defines the initial domain of n. As the low-level filters also provide the optimal angle d⃗ ∈ [0, π[ and radius s,
the initial domain contains for each possible position x the values (x, d⃗, s) and (x,−d⃗, s). Therefore the domains
can be represented on X × {0, 1}. The constraint propagation algorithm will iteratively tighten the domains. If
during the process a domain is empty, we can conclude that the problem is not satisfiable.

The constraints C of N are obtained from the relations of the model. For instance if the model contains a
distance relation between n1 and n2, we define a constraint C satisfied by values (x1, d⃗1, s1) and (x2, d⃗2, s2) such
that ||x2 − x1|| belongs to a given interval. A value of n1 (resp. n2) that does not satisfy the constraint with
any value in D(n2) (resp. D(n1)), is inconsistent with respect to C and can be remove from the domain. In
fact that value cannot belong to a solution. With each constraint C we associate a propagator that tightens the
domains by removing inconsistent values. In Section 4.3, we present the chosen mathematical formulation of the
constraints and the associated propagators.

4.3 Constraints

4.3.1 Directional constraint

The anatomical model contains relations to represent stable directional relative positions between control points
as highlighted in Section 2. To model the associated constraints, we rely on the mathematical morphology
approach∗ introduced in19, that characterize a directional relation by a direction −→ud and an angle k representing
a tolerance around −→ud. With respect to the origin of space, a point x is in the specified direction if arccos x�−→ud

∥x∥ ≤ k.
If we denote by ν a structuring element associated with that condition, the dilation δν(y) represents the set of
points that are in the specified direction with respect to a point y. Therefore we consider that two points x1 and
x2 satisfy the directional relation if x2 ∈ δν(x1).

Definition 4.1 (Directional constraint). Let A and B be two control points of the model satisfying a
stable directional relative position characterized by a structuring element ν. The constraint Cdir ν

A,B is defined as
follows:

rel(Cdir ν
A,B ) : D(A)×D(B) → {0, 1}

((x1, θ1, σ1), (x2, θ2, σ2)) 7→
{

1 if x2 ∈ δν(x1),
0 otherwise.

An instantiation I = {(A, (xA, θA, σA)), (B, (xB , θB , σB))} that does not satisfy the condition xB ∈ δν(xA) is
inconsistent with respect to Cdir ν

A,B and cannot be extended to a solution. Moreover a value (xA, θA, σA) of A that
only belongs to inconsistent instantiations (∀(x, θ, σ) ∈ D(B), {(A, (xA, θA, σA)), (B, (x, θ, σ))} is inconsistent)
cannot belong to a solution and can be removed from D(A). Therefore we associate with Cdir ν

A,B a propagator
that removes as many inconsistent values as possible from D(A) and D(B).

∗In19 the authors propose a fuzzy representation. We consider here the binary version.



A value (x, θ, σ) of B exclusively belongs to inconsistent instantiations with respect to Cdir ν
A,B if:

∀(xA, θA, σA) ∈ D(A) , x /∈ δν(xA)
⇔ x /∈ ∪xA∈DX(A)δν(xA)
⇔ x /∈ δν(DX(A)),

where DX(A) stands for the projection of D(A) on X. Therefore the propagator can remove from D(B) all
values fulfilling that condition. Similarly the propagator can remove from D(A) all values (x, θ, σ) such that
x /∈ δν̆(DX(B)), where ν̆ stands for the symmetric of ν.

Definition 4.2 (Directional constraint propagator). The propagator fCdir ν
A,B

associated with the
directional relative position constraint between two control points A and B is defined as follows:

⟨A,B;D(A),D(B); Cdir ν
A,B ⟩

⟨A,B;D(A) ∩ δν̆(DX(B))× [−π, π[×R+,D(B) ∩ δν(DX(A))× [−π, π[×R+; Cdir ν
A,B ⟩

4.3.2 Distance constraint

To model distance constraints, we also rely on a morphological formulation as it allows a simple expression of
the associated propagator. If the model contains the relation “the distance between the control points A and B
has to belong to [d1, d2]”, we add the following constraint to the constraint network.

Definition 4.3 (Distance constraint). Let A and B be two control points whose distance belongs to the
interval [d1, d2]. The constraint C

dist [d1,d2]
A,B is defined as follows:

rel(Cdist [d1,d2]
A,B ) : D(A)×D(B) → {0, 1}

((x1, θ1, σ1), (x2, θ2, σ2)) 7→
{

1 if x2 ∈ δBd2\Bd1
(x1),

0 otherwise,

where Bd stands for the binary ball of radius d and δBd
is the dilation by Bd.

As in the case of directional constraints, we obtain a propagator that removes inconsistent values from the
domains of A and B.

Definition 4.4 (Distance constraint propagator). The propagator f
C

dist [d1,d2]
A,B

associated with the

distance constraint between two control points A and B is defined as follows:

⟨A, B;D(A),D(B);Cdist [d1,d2]
A,B ⟩

⟨A,B;D(A) ∩ δBd2\Bd1
(DX(B))× [−π, π[×R+,D(B) ∩ δBd2\Bd1

(DX(A))× [−π, π[×R+; Cdist [d1,d2]
A,B ⟩

The propagators associated with distance and direction constraints can be applied independently or combined
to reduce the computational cost. For instance the propagator associated with the combination of constraints
“RR1 is on the right of A4 and their distance is almost equal to the radius of A4” is illustrated in figure 5. The
domains of A4 and RR1 at a given step of the propagation process are respectively presented in (a) and (b).
The propagator computes the set of points that satisfy the constraint with at least one element of D(A4) (c) and
updates the domain of RR1 (d) removing all values not in (c).

4.3.3 Geodesic distance constraint

Finally the model contains geodesic distance relations between control points that belong to the same vessels.
Their distance along the vessel has to be smaller than a given value α (related to the prior distance between
their position). As the vessels are not segmented, we consider an approximation of the geodesic distance relying
on the results of the low-level filters (cf Section 3). We first compute a normalized ridgeness map c whose values
range between 0 and 1, 1 representing the membership to the vessel. The geodesic distance is then computed
relatively to 1

c(s)+ϵ .



(a) (b) (c) (d)
Figure 5. (a) D(A4). (b) D(RR1). (c) Values that satisfy the direction and distance constraints with at least one element
of D(A4). (d) Updated domain of RR1.

Definition 4.5 (Geodesic distance constraint). Let A and B be two control points whose geodesic
distance with respect to the vessel has to be smaller than α. The constraint Cpath α

A,B is defined as follows:

rel(Cpath α
A,B ) : D(A)×D(B) → {0, 1}

((x1, θ1, σ1), (x2, θ2, σ2)) 7→
{

1 if inf l∈Lx1,x2

∫
l

1
c(s)+ϵds ≤ α,

0 otherwise,

where Lx1,x2 denotes the set of paths from x1 to x2.

We denote by dg(x, y) the geodesic distance between x and y and by dg(x, S) the geodesic distance between x
and the set S. A value of D(B) satisfies the constraint with at least one value of D(A) if ∃y ∈ DX(A), dg(x, y) ≤
α ⇔ dg(x,DX(A)) ≤ α. As dg(x,DX(A)) can be efficiently computed we obtain the following propagator.

Definition 4.6 (Geodesic distance constraint propagator). The propagator fCpath α
A,B

associated with
the geodesic distance constraint between two control points A and B is defined as follows:

⟨A, B;D(A),D(B);Cpath α
A,B ⟩

⟨A,B;D(A) ∩ {(x, θ, σ) | dg(x,DX(B)) ≤ α},D(B) ∩ {(x, θ, σ) | dg(x,DX(A)) ≤ α};Cpath α
A,B ⟩

We illustrate this propagator in Figure 6. We consider a geodesic distance constraint Cpath α
A4,A5

between the
control points A4 and A5 belonging to the aorta. The initial domains of those control points are respectively
presented in (a) and (b). First we obtain the normalized ridgeness map c (d) to compute the geodesic distance
from DX(A4): dg(DX(A4)). Then we remove from D(A5) the values that do not satisfy dg(DX(A4)) ≤ α. We
thus obtain the updated domain DX

′(A5) (c).

4.4 Propagation process

The initial constraint network is build from the structural model and the domains are initialized by the results
of the low-level filters. Moreover we assume that A1 is close to the upper border of the X-Ray image and that
IL4 and IR4 are close to the lower border. The propagators associated with the constraints are then iteratively
applied by an AC − 320 like algorithm presented in Figure 7. It sequentially applies the propagators until
convergence. As the propagators do not necessarily commute, they are generally applied more than once. Note
also that the final result does not depend on the ordering of the propagators since they are monotonous.

This process is illustrated in Figure 8. We present the domains associated with the control points RL1, RR1

and A4 (representing respectively the branching points of the left and right renal arteries and the point of the
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(d) (e) (f) (g) (h)
Figure 6. Illustration of the geodesic distance constraint between the control points A4 and A5 belonging to the aorta.
Initial domains DX(A4) (a) and DX(A5) (b). Domain of A5 updated by f

C
path α
A4,A5

: DX
′(A5) (c). (d-h) Zoom on the red

rectangle in (a). (d) Normalized ridgeness map c. (e) 1
c(s)+ϵ

. (f) DX(A4). (g) dg(x,DX(A)). (h) dg(x,DX(A)) ≤ α.

Data: ⟨χ,D, C⟩ an initial constraint network
F = {f1, . . . , fk} a set of propagators Result: ⟨χ,D′, C⟩ with D′ ≤N D
Begin
G← F
While G ̸= ∅ do

select and remove a propagator g from G
if N ̸= g(N) then

G← G ∪ {fi ∈ F \G | vars(f) ∩ vars(g) ̸= ∅}
N ← g(N)

End
Figure 7. Generic AC − 3 like constraint propagation algorithm.

aorta in front of the left renal artery) at several steps of the propagation process. Initially many possible positions
are extracted by the low-level filters. The candidates for A4 are presented in blue, whereas the possible positions
for RL1 and RR1 are presented in yellow. The constraint propagation then progressively tightens the domains.
We can observe that first the distance and directional constraints between A4 and RL1 allow to strongly reduce
the domain of RL1. Then further reductions of D(RL1) allow to conversely obtain a reduction of D(A4) using
those constraints. At the end of the propagation process, only few candidates remain for those control points.



Figure 8. Domains associated with RL1 (green), RR1 (red) and A4 (blue) at some steps of the propagation process.

5. RESULTS

We have manually build a model to perform the interpretation of angiograms centered on the abdominal aorta
and including the renal arteries and the common iliac arteries. It contains 15 control points to represent the
aorta, 15 to represent each renal artery, 10 to represent each common iliac and about 250 relations between those
control points. Using this model, we evaluate the proposed approach on angiograms of 5 subjects acquired on
Philips AlluraXper cardiovascular X-ray systems.

The process did not lead to inconsistency in any case and very few candidates remain in the resulting
domains of the control points of interest. However, in some cases, ambiguities remain at the end of the process.
For instance the domains of control points representing the left renal artery may contain values on left renal
artery and on the splenic artery. The remaining possible instantiations should then be qualified to make a final
decision. The whole process runs in about 2 minutes on a 512× 512 image with a Pentium D 3.20GHz. Most of
the computation time is spent in the constraint propagation algorithm, which may be optimized.

6. CONCLUSION

The use of a structural model allows to deal with the high variability of abdominal arteries. The structural
model and the proposed recognition process based on low-level filtering and on constraint propagation seem
to be well suited to achieve our recognition task. This approach is not prone to local minima, but several
candidates generally remain at the end of the process and the computational cost is rather high. Future works
aim at reducing the computational cost, setting up a final decision process, using fuzzy constraint network to
make the model more specific on usual configurations and considering concurrently several models to perform
the recognition task.
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