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Abstract
Multi-parametric MRI is a new imaging modality superior in quality to Ultrasound (US) which is
currently used in standard prostate biopsy procedures. Surface-based registration of the pre-
operative and intra-operative prostate volumes is a simple alternative to side-step the challenges
involved with deformable registration. However, segmentation errors inevitably introduced during
prostate contouring spoil the registration and biopsy targeting accuracies. For the crucial purpose
of validating this procedure, we introduce a fully interactive and customizable simulator which
determines the resulting targeting errors of simulated registrations between prostate volumes given
user-provided parameters for organ deformation, segmentation, and targeting. We present the
workflow executed by the simulator in detail and discuss the parameters involved. We also present
a segmentation error introduction algorithm, based on polar curves and natural cubic spline
interpolation, which introduces statistically realistic contouring errors. One simulation, including
all I/O and preparation for rendering, takes approximately 1 minute and 40 seconds to complete on
a system with 3 GB of RAM and four Intel Core 2 Quad CPUs each with a speed of 2.40 GHz.
Preliminary results of our simulation suggest the maximum tolerable segmentation error given the
presence of a 5.0 mm wide small tumor is between 4–5 mm. We intend to validate these results
via clinical trials as part of our ongoing work.
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1. INTRODUCTION
The definitive diagnostic method for detecting prostate cancer, the most common non-
cutaneous cancer in men1, is image-guided needle biopsy. Surprisingly, cancers as large as a
sugar cube are routinely missed in standard trans-rectal Ultrasound (TRUS) biopsy
procedures2. Multi-parametric MRI is a novel imaging modality offering superior soft tissue
contrast and high spatial resolution, making it both a useful diagnostic and navigational tool.
The procedure involves several hours of pre-operative imaging for the ultimate purpose of
precisely determining the ideal biopsy target locations. During the intervention, the pre-
operative images are spatially registered with newly acquired intra-operative images in real-
time.

Differing patient positions (supine during planning and prone during intervention) make the
registration difficult. Specifically, large anatomical misalignment and organ deformation
necessitates a costly deformable registration. A simple and fast approach would be to
segment the prostate in both images and apply surface-based registration. However, prostate
segmentation is prone to errors, which spoil the registration accuracy and, ultimately, lead to
targeting errors. It is not yet known how errors in segmentation affect intra-prostatic
targeting errors.
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It is possible that biopsy targets may be extracted successfully despite targeting inaccuracies.
For instance, targeting errors that are less than the diameter of the needle tip (approximately
2.5 mm) are deemed clinically insignificant as they do not affect the extraction. The
question is: when does segmentation error become large enough as to significantly affect the
final targeting? To that end, the purpose of this work is to introduce a piece of software that
determines the resulting targeting errors of simulated surface registrations when given
parameters for organ deformation, segmentation, and targeting.

2. BACKGROUND
The current gold standard for image-guided prostate biopsy is TRUS3. TRUS-based
procedures inherently rely on US images for needle guidance. Unfortunately, the soft-tissue
contrast in US images is poor and cannot be used to locate cancerous lesions. The work
presented in this paper is the first stage in a validation study of MRI-guided prostate biopsy,
an attractive alternative to TRUS currently undergoing clinical validation. This study aims to
prove the reliability of the procedure in the presence of human error introduced in image
segmentation. There have already been proof-of-concept studies for the procedure4,5 as well
as research into the partial automation of the prostate segmentation phase6.

A similarly-motivated study has been undertaken by Kim et al.7 where they validate a
mutual information-based registration method for digitally reconstructed radiographs. They
quantified the set-up error by recording the physical offsets of fiducial marker placements
with the ground truth. Another study by Quarantelli et al.8 introduces a method for
increasing accuracy in the registration of PET and MRI brain images. The method was
refined using simulations of PET scans with the introduction of increasingly larger
experimental errors. Lastly, Wu and Zipes9 investigate the relationship between
segmentation errors and the resulting excitation parameters for cardiac membranes. Our
work is the first to focus on quantifying the relationship between segmentation error and
targeting accuracy in the MRI-guided prostate biopsy procedure.

3. METHODS
The main workflow of the simulator, shown in Fig. 1, begins with the generation of the
ground truth pre-op prostate contour instantiated from a statistical shape atlas. The ground
truth pre-op target points are then placed within the contour according to user-specified
parameters. Deformation is then applied to the ground truth pre-op contour by means of a
random deformation field simulating the change in organ shape between the time of pre-
operative and intra-operative imaging. The resulting ground truth intra-op target points are
then determined by applying the deformation field to the ground truth pre-op target points.
Next, the two contours are segmented automatically and individually, with segmentation
errors introduced by our segmentation error introduction algorithm. The segmented contours
are then registered in deformable fashion, with the resulting deformation field applied to the
ground truth pre-op target points generating the registered target points. Finally, the
registered target points are compared with the ground truth intra-op target points and the
targeting error statistics are recorded. The individual steps in the workflow are discussed in
detail in this section.

3.1 Generation of 3D prostate contours with a statistical shape atlas
One main requirement of the simulator is the ability to run an infinite number of test cases
given a finite number of input data. Using the method described by Tsai et al.10, we obtain
and align a set of 3D prostate contours, constructed from stacks of segmented axial slices
and modeled as voxelized binary volumes. From this set, we obtain the mean shape, Φ, and
three eigenshapes, σ1, σ2, and σ3, using the technique developed by Leventon et al.11. We
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then generate three weights, w1, w2, and w3, obtained randomly from within the
corresponding eigen-value bounds. A statistical shape atlas creates a new contour, C = Φ +
w1σ1 + w2σ2 + w3σ3, at the beginning of the simulation.

3.2 Simulating deformation
The ground truth intra-op contour, representing the true geometry of the prostate during the
intra-operative imaging phase, is created by applying a deformation field to the contour
generated above. Deformation is randomly applied slice-wise to the surface of the prostate.
Three parameters are set by the user for controlling the process: the probability of
deformation, p, the minimum deformation magnitude in mm, md, and the maximum
deformation magnitude in mm, Md. Deformation proceeds at each extremal contour pixel of
each slice with probability p as follows: Determine the vector leading from the centroid of
the axial section of the prostate contained in the slice to the current pixel i, transform this
vector to metric space and normalize it. Call this vector Vc. Obtain a random number, r,
between md and Md, and generate the vector Vv by transforming rVc to pixel space. Then,
with probability of inversion 0.5, invert Vv, and call this final vector Vf.. Compute the
discretized path from the current pixel i, to the pixel i + Vf using Bresenham’s line
algorithm12. If this path points towards the centroid of the slice, remove each pixel
corresponding to the prostate along the path. Otherwise, create new pixels corresponding to
the prostate along the path. This algorithm deforms an input contour with random forces
applied parallel to the axial plane towards (or from) the centroid of each image slice.
Example outputs obtained from running this algorithm on a particular contour can be seen in
Fig. 2.

3.3 Introduction of segmentation error
The ground truth contours are segmented slice-wise as follows: Separate the axial section of
the prostate in the current slice into N radial segments (Fig. 3 a). Mark the extremal pixels
where the rays at the boundaries of the segments intersect the surface of the prostate as {S1,
S2, … , SN}. Let c be the centroid of the axial section of the prostate contained in the slice.
For each pixel Si, determine the offset vector v with endpoints (c, Si,). Compute the pixel Si′
some random distance di between dmin and dmax (in millimeters) away from Si along v (with
probability 0.5, use the vector –v instead) (Fig. 3 b). Convert each Si′ to polar coordinates (ri,
θi) with respect to c. Next, determine the curve ζ: θ→r using natural cubic spline
interpolation between the points (ri, θi) taking r as a function of θ (Fig. 3 c). This curve ζ,
with points (r, θ) transformed to Cartesian coordinates and plotted in pixel space, represents
a smooth segmentation of the input contour with accuracy determined by the parameters N,
dmin, and dmax (Fig. 3 d).

The segmentation algorithm introduced above offsets each pixel Si from the surface of the
contour independently. This is unattractive as it may result in fluctuations in the contours
which would not appear in sketches by a real physician. To remedy this, two more
parameters are introduced: the parameter M, which is the minimum amount of pixels Si to be
perturbed before the offset vector switches signs, and the parameter D, which is the
maximum allowable difference between the current offset distance di and the previous offset
distance di-1. Moreover, there are different values for the parameter pair (dmin, dmax) for the
base, mid, and apex regions, allowing each individual region a different level of contouring
certainty. Fig. 4 shows the smoothing effects of the parameters M and D when the algorithm
is applied using the same values of N, dmin, and dmax.

3.4 Targeting parameters and targeting error
The ideal biopsy locations are placed on the ground truth pre-op contour according to user-
specified parameters. There are two targeting schemes in the current version of the
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simulator: (1) target points are placed systematically in the peripheral zone of the prostate
(systematic targeting), or, (2) target points are placed in all locations reachable by a needle
using the trans-rectal MRI-guided manipulator employed in our procedure (global targeting).

For the systematic approach, the user specifies the number of biopsy regions along the left-
right and inferior-superior axes. For instance, if the user selects 2 regions along the left-right
axis and 3 regions along the inferior-superior axis, then the targeting method approximates
the classical sextant biopsy scheme originally popularized by Hodge et al.13. The user also
specifies a percentage, P, indicating the height of the peripheral zone with respect to the
overall height of the prostate volume.

For the global targeting, all points are targeted except those falling in a slice-wise radial
sweep of angle θ (inputted by the user) centered on the anterior side of each slice’s centroid.
The area contained in this sweep approximates the fibro-muscular tissue on the anterior side
of the urethra which is not targeted during the procedure. The user also selects whether the
targeting is to be randomized and whether or not the target points are to be confined to the
surface of the prostate. If random global targeting is chosen, the user also inputs the
percentage of target points to be selected. A random systematic targeting places each target
point in a random location in its corresponding biopsy region whereas systematic targeting
alone places each target in the midpoint of the region. Fig. 5 displays a summary of the
simulator’s possible targeting methods.

After registration, the targeting error for each target point is calculated by finding the
Euclidean distance between the registered and ground truth target points. Targeting error
statistics, including minimum error, maximum error, mean error, mean deviation, and
standard deviation are reported at this time.

3.5 Simulator output
Upon completion of the simulation, a screen summarizing the results and the parameters
used is displayed for the user. All prostate volumes are displayed, including those without
deformation as well as the volumes showing the difference with the ground-truth. This
screen also displays the percentage of targeting errors that were significant and insignificant.
The threshold values for insignificant and significant targeting errors are selected by the
user. Fig. 6 is an example of the simulator’s summary screen.

Finally, the simulator outputs a 3D color-coded heat map which visually summarizes the
magnitudes of the targeting errors. On the map, green represents clinically insignificant error
(i.e. ≤ 2.5 mm), red represents significant error (e.g. ≥ 5.0 mm) and errors in between are
represented via a smooth color gradient. The user may run multiple simulations. If so, each
voxel on the heat map represents the mean error over all simulations. Fig. 7 shows two
views of a particular heat map outputted by the simulator.

The output of the simulation may be used to answer a number of queries on the relationship
between segmentation error and targeting accuracy. The main query the simulator was
designed to answer is “what is the maximum tolerable segmentation error for the
procedure?” The maximum tolerable segmentation error would be the threshold where the
targeting errors reach unacceptable proportions. To answer this query, set the threshold for
significant error to be the maximum tolerable targeting error. This value would be set to, for
example, the radius of the suspected cancer tumor. Next, the simulator would be run with
differing segmentation parameters. The maximum segmentation error inputted in this
fashion with the resulting targeting errors in acceptable range would be the maximum
tolerable segmentation error. We ran this workflow on our simulator with the results
summarized in section 4.
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4. RESULTS AND DISCUSSION
The simulator has been implemented in C++ using Kitware’s Insight Segmentation and
Registration Toolkit (ITK) for image processing with the Visualization Toolkit (VTK) and
KWWidgets used for display. The simulation is fully automated and takes approximately 1
minute and 40 seconds to complete on a system with 3 GB of RAM and four Intel Core 2
Quad CPUs each with a speed of 2.40 GHz. Simulations were run with increasing values of
dmax with global surface targeting (θ = 120°), deformation parameters {p = 0.25, md = 0.5
mm, Md = 2.0 mm} and segmentation parameters {N = 31, M = 5, D = 0.5 mm}, with dmin =
0 mm for all three regions of the prostate. The threshold for insignificant error was set to be
less than or equal to 2.5 mm (the diameter of the needle tip) and the threshold for significant
error was set to be greater than or equal to 5.0 mm (representing the width of a small tumor).
The frequency of significant error in targeting reached unacceptable rates (> 10%) with
values for dmax at approximately 4.8 mm suggesting the maximum tolerable segmentation
error, given the existence of a tumor with a 5.0 mm width, is between 4–5 mm. These results
should be validated with segmentation and deformation parameters obtained via clinical
trials.

Future work includes incorporating the ability for the user to select and move target points in
a 3D view. Other work includes improving the deformation method with the implementation
of a simplified FEM-based deformation model based on current techniques14. The
simplification of the model is due to the fact that important physical parameters such as
boundary constraints15 are not yet known for the prostate with great confidence. The
segmentation method will be improved by means of an observational study which will
include the gathering of multiple physician-segmented prostate contours. These contours
would then be used as inputs to a PCA model where the resulting atlas would generate the
segmented contours themselves.

We have presented the framework for a fully interactive and customizable simulator which
is able to plausibly predict the resulting targeting errors in an MRI-guided prostate biopsy
procedure given specific segmentation, organ deformation and targeting parameters. We
have described the algorithms used in detail, including an algorithm which introduces
statistically realistic segmentation errors. Preliminary results, based on the confines of our
deformation and segmentation models, suggest the maximum tolerable segmentation error
given the presence of a small tumor of width 5.0 mm is between 4–5 mm. When given
clinically-produced segmentation and deformation models obtained in future work, the
simulator may be used to determine the true correlation between segmentation error and
targeting accuracy.
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Figure 1.
The workflow of one simulated surface registration between programmatically-generated
prostate volumes as executed by the simulator.
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Figure 2.
Sample outputs obtained from our deformation algorithm. From left to right with parameters
(p, md, Md): original contour, (0.25, 0.5 mm, 1 mm), (0.5, 0.5 mm, 2 mm), (0.5, 1 mm, 4
mm), (0.75, 2 mm, 8 mm).
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Figure 3.
Workflow of the segmentation error introduction algorithm. a) Axial MRI slice separated
into N radial segments b) Perturbed segment endpoints c) Natural cubic spline interpolation
of the endpoints transformed into polar coordinates d) Curve resulting from transformation
of spline interpolation to voxel space
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Figure 4.
Contours obtained after running our segmentation error introduction algorithm. From left to
right with parameters (M, D): original contour, (1, ∞), (2, 0.5 mm), (4, 0.3 mm), (8, 0.2
mm). All instances were run with N = 31, (dmin, dmax)apex = (0 mm, 2.5 mm), (dmin, dmax)mid
= (0 mm, 1 mm), and (dmin, dmax)base = (0 mm, 2.5 mm).
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Figure 5.
Summary of the possible targeting methods implemented in the simulator. Top: systematic
targeting with 4 regions along the left-right axis and 3 regions along the inferior-superior
axis and P = 25%. From left to right: surface targeting, randomized surface targeting, regular
targeting, randomized regular targeting. Bottom: global targeting with θ = 120°. From left to
right: surface targeting, randomized surface targeting (25%), regular targeting, randomized
regular targeting (1%).
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Figure 6.
Simulation summary screen. Images in first column from top to bottom: ground-truth pre-
op, pre-op with segmentation error, difference between pre-op and ground-truth pre-op.
Images in second column from top to bottom: ground-truth intra-op, intra-op with
segmentation error, difference between intra-op and ground-truth intra-op. Image in third
column: contour resulting from registration with targeting points. Image in fourth column:
difference between resulting contour and the ground-truth intra-op contour. This example
was run with global surface targeting with θ = 120°.
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Figure 7.
Two views of one outputted heat map. Threshold for insignificant error was set to 0.5 mm
and the threshold for significant error was set to 5.0 mm. The simulation was run with global
surface targeting with θ = 120°. Left: Side view (near side is the apex). Right: Inferior view
(top is the apex, bottom is the base).
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