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ABSTRACT

This paper presents methods and algorithms for real-tisieViarget detection, recognition and tracking, both éndhse

of ground-based objects (surveyed from a moving airborraging sensor) and flying targets (observed from a ground-
based or vehicle mounted sensor). The methods are highdjlgdened and partially implemented on GPU, with the goal
of real-time speeds even in the case of multiple target obtens. Real-time applicability is in focus. The methods u
single camera observations, providing a passive and egpémdIlternative for expensive and/or active sensors. bisesc
involve perimeter defense and surveillance situationgre/fpassive detection and observation is a priority (e.gialae
surveillance of a compound, detection of reconnaissarareedr etc.).

Keywords: object detection, recognition, tracking

1. INTRODUCTION

Visual surveillance for defensive and offensive purposestieen in continuous research and development duringshe la
decades. Most of the research tries to target the automptissibilities of such fields, since the number of used sensor
increases exponentially, while the ever increasing gtiastdf data obtained from such sensors just can not be Hdhhylle
sole manpower anymore. Such automatism possibilitiesidiechutomatic target detection, tracking, recognitiomsuial
behavior detection, certain levels of situation assessmath the goal of aiding Command and Control decision mgkin

A tendency also easily recognized is the turn towards démdog high number of cheap sensors instead of a low number
of expensive nodes. Deploying passive sensors is also tergdn several situations. The above considerations were
among the motivation for the work presented in this paper, ¢reating methods that use cheap visual sensors (normal
electro-optical cameras), and provide visual target dietectracking and recognition capabilities, both on grdwamd
aerial sensing nodes.

Regarding works for target detection and recognition, Lal étpresented a small ship target detection method, where
point-like infrared images of small ships are processedutoraatically detect ships on the sea level from a distance.
Simple edge detection on a media-filtered image is used taaossible ship locations. In other woflksnall targets
above a sea or sky background are extracted by infraredgsincgby using directional derivative operators and chirsge
Elsewhere, low flying targets are segme#tadove the sea-sky line, by first locating the skyline, theéngiseighborhood
averaging and directional Sobel operators to enhance fleetdibundaries. Weng et al. present a flying target detectio
method based on infrared processing which is robust against weatmlitions, but is not able to recognize the flying
targets. Other worké 13 present more recent approaches to target tracking andnigiong based on infrared sensing for
detection and adaptive feature selection for recognittorabust infrared based approaéls presented for target detection
and tracking, although it is somewhat constrained sinaagitiired static cameras. Wang et&present target recognition
on aerial imagery by a multi-feature method, sensitive tiows geometrical shapes (circles, lines, etc.) of groangkts.

In our previous work&we have presented approaches for flying target detectiotraciking, combined with shape-based
recognition.

The novelties of the approach presented in this paper ari fltasents visual, real-time methods (i.e. high inforiorat
content at a low cost), it does not require static camerasr@bust against camera movement and zooming), it cangeovi
detection capabilities both for aerial and ground basegetar(i.e. suitable for ground processing units and UAV’s as
well), and contains a shape and texture based recognitiauleo Target segmentations include adaptive foreground
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Figure 1: Basic steps of the presented detection and trgeldproach.

and object extraction steps involving multi-layer Gaus3#ixture Modeling and object segmentation, view regisbrat
based on invariant feature point detection, ground objettafion and tracking. Tracking is implemented on GPU for
high resolution real-time processing. Recognition of tkizaeted targets is based on fused shape and texture informa
providing estimations for the classification of the obsdnargets. Recognition evaluation is presented, by usiragabdse

of extracted and categorized object shapes, collectedreairvideo sources.

Fig. 1 shows the steps of the presented methods and algsrithm

2. TARGET DETECTION

In this work we concentrate on two main types of targets faect®on purposes. On one hand, aerial targets, i.e. flying
objects (mostly planes), on the other hand, ground basgdttafe.g. vehicles). The goal in both cases is to detect the
moving objects, so as to provide a starting point for tragKf®ection 4) and recognition (Section 3) tasks.

2.1 Detection of aerial targets

Detecting airborne targets is not a trivial task. Extensasearch is continuously being conducted, as practicaltsesre
still far from being perfect. Works®8dealing with flying target detection have provided algarithfor various approaches,
including infrared or hyperspectral imagery. In this cageoencentrate on traditional electro-optical generic casydor
multiple reasons: they are cheap, provide passive detectipabilities, and have a high visual information content.

One of the hardest steps in aerial object detection and segtion is the robust separation of the objects from the
background, which in this case includes the sky, cloudskemeapor trails, etc. In earlier worksve introduced a single
Gaussian and a Gaussian Mixture Model (GMNMased approach for separating flying objects, an approaahwie
now use for extracting various sized flying objects in réalet with adaptivity to support changes in lighting coratits,
sky color changes, presence of clouds, single or multieqt objects. In the following we will present a short oiemw
of the flying object segmentation approach, for further itletee Ref®

The reason behind developing an extended GMM-based backgjrmodel was that most other approaches require a
static camera for robust modeling. In our approach the canmm@vements are not restricted, the only assumptions are
that the object is smaller than the background and that thlkegipaund is not completely homogeneous. For background
estimation we collected all pixel values (CIEW*v* uniform color space was used) in a moving time window anch&ai
statistical models using maximume-likelihood estimationtbe pixel values. LeK denote the number of video frames
with h height andw width, leti; denote a particular framd (< k£ < K) andr the radius of the moving time window
centered arount),. F{ = [fi—r,..., f&,--., futr] denotes the frames selected aroypdh the radius of-. Let N denote
the number of pixels in the time window, which can be cal@dasN = (2 x 7 + 1) x w x h. Let P*¥) = [p;, ..., py]
denote the set of pixels of the frames.

To model the background in an environment where the camevaments are not restricted and the background can
consist of different clutter (e.g. clouds, vapor trails ok, etc.), we use a mixture of Gaussians (MOG) approachsevhe
the model has the following form:

M
p() =Y wiN (5, %) 1

=1
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(b)
Figure 2: Examples for extracted foregrounds without (a aith (b) background clutter (white: foreground, black:
background, gray: clutter belonging to the backgroundriaye

where M is the number of components; are the weightsy,; and; are the parameters (mean and covariance) of
the Gaussiand/ (-; 1, ¥). Denoting withp; € P(¥) thei*" pixel of frame P, the mean and covariance parameters of the

. N N
Gaussians arg = 1+ > ;—; p; andX = = >0 [ — pil 2.
The MOG model is trained wit®(*) sample set, using iterative Expectation Maximization. iBgithe segmentation

the distributions are ordered according to the rdtjoand the firstB distributions are chosen as the background model,
where thel parameter controls the modality:

b
wq .
R = ——, B = argmin E wy>1| . (2)
V Zc Ulc b (l_l )

For a particular pixelp; we select first the matching distribution, then the pixel lsssified as background if the
matching distribution is an element of the background mdgieFor removing clouds from the background we used the
observation that real moving objects (planes) have a cle@toar while clouds do not. For video frani we extract
horizontal ¢;), vertical ;) and the total edge magnitudes:= |h;| + |v;|. The output of the foreground separation step
producesB connected regions. If; denotes thg*" region and”; = [c}, ..., K] the set ofK” contour points ob;, then
the energy ob; will be:

A Y @

ckeC; (z,y)eNF

whereNJ’.C denotes the neighborhood of contour pix?landW is the size of the neighborhood area. After obtaining
the region energief = [E4, ..., Eg], the energy values are linearly classified into layers. Egions with the highest
energy will be taken as targets. Fig. 2 shows examples odieben foregrounds.

2.2 Detection of ground targets

The detection of ground based moving objects from an aidoamera (e.g. from an UAV) involved multiple steps. The
presented approach consists of:

o frame stabilization and registration,
o foreground extraction,
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(a) (b)
Figure 3: Samples from the process of registered and warpetkes from video sequences.

e object detection.

The frame stabilization and registration step involvesdleulation of the homography mattxbetween consecutive
frames. The perspective transformation between two imedesn of a plane surface can described by the homography
matrix H. One pointpy is transformed te, by the following equation:

X1 Hyy, Hip Hps Zo
p1= |yl| = |Ha1 Hzs Hpgoz| X [yo| - 4)
z1 H3z; Hzy Hpss 1

We use a feature based registration approach to calcukde thatrices. We extract feature points that can be used to
align two imagesS; andS., by finding the transformatio® that fits to the feature points, thé = H - S;. In case of
aerial images the transformation can not be restrictedattstation or rotation, thus the more general affine or petise
transformation has to be used. Therefore, we use the fdzasesl method to find the homography matrix of the perspective
transformation.

We use the Harri$ corner detector which is suitable in man-made environmehtse corners are abundant, also, it
is less computationally expensive than the other featuiet pietectors (e.g. SIFT, SURF). Then, corresponding point
from the following are searched by Lucas-Kanade optical,flelich yields the positions of the feature points on the next
image, thus the transformation between the frames can belatd. Having obtained the transformation, frames can be
aligned into a common coordinate system. For that we needhornwgraphies, one for consecutive framds (,—1), and
one for aligning frames to a reference frantg,(y), where:

Hn,O = Hn,nfl ' anl,nfl et Hl,O- (5)

The current frame gets transformed into the coordinatesysf the reference image by the homogragpfy

It = ©)

Hyjx + Hipy + Hiz Hojx + Hooy + H22>
Hsyx + Hsoy + Hsg' Hsix + Haoy + Hss

wherel,; denotes the pixels of the destination apaf the source frame. Fig. 3 shows examples for warped frames.

The foreground-background separation step is based onlimgttee background and extracting the moving foreground
segments. The background image is modeled and updateddartiraon coordinate system, calculating the pixel-by-pixel
running average and variance of the consecutive alignegbvichmes. Mixture of Gaussians (MoG) approaélusinot
be used in the case of UAV images, since usually because dsheamera motions the observed samples (per surface

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Author manuscript, published in IS&T/SPIE Electronic Imaging, San Francisco, California, USA, 23 - 27 January 2011

@) (b) (c)
Figure 4: Example of extracted foreground mask: (a) inpam, (b) current registration, (c) current foreground mask

point) are not enough to create a MoG model. The mean valugaiahce for the frames are (withbeing a refresh rate
constant):

Tp,=(1—a)Tph_1+azx, (7
o, =(1- 04)0'%_1 +a(zy —Tn)(Tn — Tn-1) (8)
The pixels of the actual frame are classified either as foregt or background based on the normalized Euclidean

distance from the background pixel values in the CHe'tv* color space. This is the Mahalanobis-distance for diagonal
covariance matrix:

3 2

dlpn) = | 3 Bt Pomrd)” ©)

i=1 nfl,z

Fig. 4 shows examples for such detected foreground mastsphjiect areas shown in white.

3. TARGET RECOGNITION

The above presented steps provide detected and extracéguidond object blobs that can be used for further procgssin
The next step is to extract features from these blobs thabearsed for classification and recognition purposes. Maltip
previous works deal with general and specific object feaubeaction. Here we focus on feature based recognitiorhémat
the goal of extracting and comparing object features fgeiarecognition purposes. In one work aerial images (tat@n f
airborne platforms or satellites) are the basis of groungktarecognitio®® where specific feature sets are pre-calculated
that are sensitive to certain object parameters and canrhditection. Such features include geometric descriftors
rectangular, circular features) and context features (bentain features generally relate to each other). Genperdd|ect
based recognition methods use one or more features for thgatization steps, and this is also the path we follow in
this work. The features we use are shape (based on extralgfect aontours), texture and histogram (object internal
parameters) descriptors, which provide a fast and genbjgcbcategorization capability.

Traditionally, contours/shape descriptors have beemetdd and compared with a series of methods, including Hidde
Markov Models, comparisons based on Scale Invariant Feaiints, tangent/turning functioh$gurvature maps, shock
graphs, Fourier descriptot8 polar coordinatéd and so on. They all have their benefits and drawbacks, regaedimpu-
tational complexity, precision capabilities, implemeitta issues, robustness and scalability. Other edge bagedaches
include Chamfer distance based metiféaisrecognizing objects through smaller shape fragmenkss& methods gen-
erally work by converting the high level metrics into a dista function based comparison, which in turn works by using
some kind of chain code shape representation. They incatgecale and rotation invariance on the high level.
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Figure 5: From left to right: section of the input frames wathject; extracted object blob; extracted object contaegian
of the original frame with texture.

Figure 6: An object and its contour’s turning function regmetation.

3.1 Featureextraction, indexing

We use two object features as a basis for recognition taske. i©the shape/contour of the detected objects, another is
the texture information of the image region of the object: $ftape extraction we use a simple blob shape extraction step
by going over the boundary points of each object and stotintpe contour points. For texture information, we use the
standard MPEG-7 homogeneous texture descritdfig. 5 shows some examples of extracted shapes from theybinar
foregrounds obtained in above presented sections and wgabns will be used for texture feature extraction.

For the purposes of this work we collected an object datas#himing 27 classes of object shapes, 9140 shapes in
total. The shapes have been automatically extracted frahiif@videos of flying planes.

For the comparison of the features, two distance metricsisgd. In the case of shapes, we use the turning function
representation for speed considerations, where the coodoudinate lists get transformed into a 2D function basethe
directions of the contour at all of its points. Fig. 6 showseaample. Comparison if performed by calculating the point
wise distance between scaled and shifted versions of tvmintyifunctions, thus obtaining a scale and rotation inveria
distance. In the case of texture, we use the standard hormogsiexture descriptor distance metric from the MPEG-7
descriptor reference software. This texture descripttraeis local statistics of the image, by filtering the regieith
orientation and scale sensitive Gabor filters, and comgutieans and standard deviations of the results in frequency
domain. Comparison is done by calculating the Euclideataxi® between two feature vectors containing mean and
deviation values. Experimerfshave shown an average accuracy of 77% for this descriptor.

In this work we use the above two features in a complementanyner. First, a shape based query is performed for an
object, then a texture based query, and the two results d@ghigd in the favor of the shape descriptor, which generally
performs higher. The role of the texture feature is to aidréfe®gnition step in cases when the shape based recognition
performance is low.

To be able to perform content based queries (either withesbapexture), we need an indexing structure, on which
the queries can be run. Thus, we build index trees for thectdhjeontaining shape and texture features. The trees we
use are customized BK-treedraditionally BK-trees have been used for string matchilggethms. Essentially they are
representations of point distributions in discrete metpiaces. For classical string matching purposes, the thedliso as
to have each subtree contain sets of strings that are atriediatance from the subtree’s root, i.e. foreléaves below
sub-rootr thed(e, ) = ¢ is constant. In our case, the used structure contains taesribat can have an arbitrary number
of children (V), where the leaves below each child contain elements fochwie distancd falls in a difference interval:
d(e,r) € [ei;e:41), Wherei € [0, N] N N. The distance intervals in the child nodes (denotee;by; . ; above) depend on
the maximum errof,,,.,. that the feature-dependent distance metric can have, pedfisally,||c;+1 — €;||= Fmaz/N,
thus the difference intervals are linearly divided buckets
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Figure 7: The aggregated first 3 recognitions are continyquesented (numbers at the end show current recognition
probabilities).
Table 1: The object classes and the number of objects in dash ¢

class 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 14
objects| 108 | 505 | 207 | 316 | 665 | 854 | 549 | 682 | 300 | 603 | 325 | 258 | 79 | 184
class 15| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | total
objects| 104 | 233 | 451 | 120 | 124 | 12 | 344 | 644 | 395 | 96 | 75 | 285 | 622 | 9140

The indexing of the used 9140 shape dataset takes about @dse(®n a single thread, Core i7 2.8GHz). Retrieval
time (time to return results for a query) are in the range of48I0 ms. Since we are trying to stay as close as realtime as
possible, the recognition steps are not performed on eadegsed frame, but as a parallel process in an SMP archéectu
Basically one thread processed the foreground separattbalgect extraction steps, another thread processesthertg,
and new threads are spawned at specific intervals (typieadlyy 20-30 frames) to query the indexed dataset. One query
thread is run for each object present on the frame, thus theva speed depends on the number of the objects and on
the number of available threads on the CPU. The recogniéisults are aggregated over the processing of the input, and a
statistics is built from the first 3 most probable recogmiti@nd continuously presented to the user (example in Fig. 7)

3.2 Retrieval, performance

For evaluating the recognition rates and performance gbitesented approach, we use the above mentioned objeattatas
with 9140 objects (Table 1 shows the number of classes antbewofi objects, and Fig. 8 shows a few examples from the
first 5 classes).

For testing the recognition rate of the above describedcgmies, we used the above dataset, and picked 9 query
videos of planes whose classes were present in the datastitelmuery videos were not included in the indexed database
That is, although the query videos contained objects froowknobject classes, but the specific objects in the queryside
were not part of the dataset. Testing is performed by thevatlg steps:

1. Extract objects from the query video frames.
2. Obtain object shape and texture features.
3. Perform two queries:
(a) Query based on shape (recognition based on shape irnifonna
(b) Query based on combination of shape and texture (retogfiased on shape+texture information).
4. Keep track of first 3 results of each query, accumulate ttheoughout the query video, and continuously show the
3 most probable recognition candidates.
5. At the end of the query video, take the candidate with tighdn probability as the overall best recognition (if an
object has been correctly recognized 7 out of 10 querieswiitidbe a0.7% recognition rate).

Fig. 9 shows recognition rates for 9 query videos contaimitgtal of 1573 frames, for shape only and shape+texture
based recognitions. Fig. 9a and 9b show the same resultsifer frequency queries (querying every 20 frames) and highe
frequency (every 10 frames) respectively. These resutte/ shat the average recognition rate for shape based qusries
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class 1

class 2

class 3

class 4

class 5

Figure 8: A few examples from dataset classes 1-5 (from Z&efain total).
Table 2: Numerical recognition rates for different quergeds, for shape only and shape+texture based queries.

id of query video 1 2 314 5 6 7 8 9
frames in video 322 | 134 | 67 | 55| 134 | 132 | 130 | 143 | 75
nr. of queries 15 6 2 2 6 6 6 6 3
shape only recog.rate | 0.71| 08| 0 | O | 0.66| 0.67| 0.5 | 0.6 | 0.5
shape+texture recog. rate0.87 | 0.8 | 0.8 | 1 | 0.62| 0.69| 0.6 | 0.83| 1

0.49 while for combined shape+texture itds’ for Fig. 9a (for higher frequency querying in Fig. 9b theskiga become
0.85 and0.83 respectively). That means, that in almost all cases textdoemation can help the shape-based recognition
process. When comparing the lower and higher frequency ongecases (see Fig. 10), it turns out that querying more
frequently can make the recognition rates better (bothdsiane and combined) — but we have to keep in mind that more
frequent querying means (much) higher computational cerilgland stress on the real time system, especially in the ca
of multiple objects being present (as we wrote above, kettigme can be in the range of 80—400 ms per object, and the
queries run in parallel threads). Table 2 also shows nu@legcognition rates for the above used query examples

The point we wish to make with these results is that the gaal isake less frequent, but better performing queries for
object recognition, and for such goals the shape-+textumaeed recognition solution performs better than shapeda
recognition alone.

Of course, there are cases when the recognition can failytouch misclassification generally happens when the
query object is very similar to objects belonging to othasssks than its own (at least from a certain viewing angleje He
we show two examples, where both the shape and shape+téeseel queries returnéds recognition rates, but the
reported results are very close (visually) to the queries.

4. TARGET TRACKING

In both research and practice, there are quite a number etotoacking algorithms for different purposes. Most ofithe
use either robust background modeling and/or object featiar obtaining objects and descriptors to serve as thefbase
keeping track of their movements. E.g. the FPSS algofitlpresents a combined approach where background modeling
combined with image filters for equalization and noise sapgion are used to obtain the foreground containing themgovi
objects, then using a predictor to build a destination poditya density map which aids the tracking process.
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Figure 9: Comparison of shape only and shape+texture basedgmition rates for a query lower frequency (every 20
frames) (a) and higher frequency (every 10 frames) (b).
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Figure 10: Comparing shape and shape-+texture based réoagmites w.r.t. increased querying frequencies. (a) show
shape-based rates for queries performed every 20 and 1@dramhile (b) shows similar data for shape+texture based
queries. Higher frequency querying can result in improwgéds, but also increases computation time.

Table 3: Example for failed recognition. Queries from the samples (with id 10 and 11) resulted in falsely reportirgy th
objects in the videos as belonging to classes 11 and 27ahsfel9, 22. The sample objects show that in these cases the
in-dataset objects and the query objects have been verasiftausing the misclassification).

id of query video 10 11
ground truth class of query objects 19 22
reported recognized clagsshape 11 27
(false positives) shape+texture 11 27

query object sample

reported (false positive) object sample

true positive object sample (from dataset)-

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Author manuscript, published in IS&T/SPIE Electronic Imaging, San Francisco, California, USA, 23 - 27 January 2011

@ (b) ()
Figure 12: Example of flying object tracking, with both olijand camera movements.

For tracking of the extracteftying objectblobs we use a GPU-based KLT tracker implementation basédrbe idea
behind the KLT tracking approach is to extract stable feapgaints from an object, then keep track of their movements
though continuous frames based on Lucas-Kanade opticattimations. On a 470-series Nvidia GPU, the performance
of the tracker is above 60 frames per second for PAL resalwideos, for multiple targets. It works by tracking feature
points obtained by the gradient-based Hafrimrner point extractor. Feature point tracking in itselfisstly local image
processing, thus can be highly parallelized intra-frantactvthis approach exploits.

The original tracker is basically a feature point trackerur @ddition to this method is the object-based tracking
extension. This works by obtaining the feature points aacks of the GPU-based tracker, combining tracks correspgnd
to the same object - since the object regions have alreadydércted -, then dropping the tracks that do not corredpon
to a known object, and combining (by calculating the meansbdl tracks of feature points) the tracks belonging to one
object into one track, which will be assigned and stored thitt object. Fig. 11 contains an example frame (left) shgwin
all the feature points extracted from the original tracked a following frame (right) where only feature points velet
to the object are retained. Fig. 12 shows results on the saee of the used object tracker.

In the case of trackinground objectdrom aerial video sources (e.g. from UAVs), we use a diffeeggproach, mostly
because of the differences in types of background and centéhe videos (e.g. occlusions, more clutter, highereois
more dynamic backgrounds). This method has been first ntexi in1® with the goal of UAV based area surveillance
application.

Object detection is processed for each frame independéhtly the separate detections have to be registered along
the frames to yield object tracks. The difficulty is that ugutne number of object detections for consecutive frarmas ¢
vary also in the case of perfect detections, i.e. objeceramd leave, get occluded. To handle the disappearing serd la
reappearing objects Kalman filtering is used, which is awiefii tool for filtering a noisy dynamic system. It predidis t
new states of the system and then corrects it by the measareme

Motion in this environment can be described by the followéugiations:

#-[2] - e een
=1 0] 7%+ (11)

wherezxy, is the position in one directiony, is the measured positiony, _; is the process noise;, is the measurement
noise.
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@ (b)
Figure 13: (a) Example frame showing tracked objects (itarggles with associated id numbers) and tracks (small dot
series with different colors). (b) highlighted region zcemhin.

On each current frame thiedetected objects have to be assigned toacked objects from the previous frames. If
n = k, this can be done in! ways. The Hungarian meth8d'’ solves this assignment problem in polynomial time. We
solve the assignment problem with a greedy algorithm, wlidomputationally simple and gives good results. The cases
when the greedy algorithm fails can be neglected, sinceighliaused by objects being present for short periods of time
(i.e. noise).

A score matrixS,,; is calculated based on the Euclidean distance of the peetiietd detected positions and the objects
color histograms. The elements of the matrix are fitnessegalvhich describe how good the objects from the previous
frames match the current ones:

1

Sy =0—
7 dpos(0,,0,)

+ (1 - ﬁ)dhist(oi,Dj) (12)

whered,,, is the Euclidean distance of positionsjs a weighting constant); is previous frame objeat D; is the
detected object and},; ,; is the histogram distance:

Gpos 0,0, = | Bie — i.0)? + By — Djy)? (13)

wherep is the predicted position of obje€t.

If the number of detected objects is equal or greater thanuhgber of tracked objects from the previous frames, the
assignment is done forward, this means that the trackedtslgee assigned to the detected ones. Otherwise, the aesign
is done backward, this means that the detected objects sigmed to the tracked ones. Distinguishing between the two
assignments is needed because the algorithm is greedyhthfisst objects in the order have priority.

Fig. 13 shows an example of tracked ground objects.

5. CONCLUSIONS

In this paper we have presented approaches for visual agiaground based object detection, tracking and recognitio
based on shape and texture features. The goal was to uselfagirs running on cheap commaodity hardware, provid-
ing passive (visual) detection and recognition capaedifor area surveillance and protection.The flying objetéat®n
methods are suitable for detection, tracking and recagmitif airborne targets from ground-based sensor statiomie w
the ground object detection and tracking methods can bgrated on flying UAVs for ground area surveillance and ground
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based target tracking applications. Further work involvese robust recognition development, speed enhanceneat, r
life integration onto UAV sensor platforms. The work hasteartially supported by the MEDUSA project of the E.D.A.
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