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ABSTRACT

Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the local-
ization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of
the prostate reduces computational complexity and improves the multimodal registration accuracy. However,
accurate and computationally efficient segmentation of the prostate in TRUS images could be challenging in
the presence of heterogeneous intensity distribution inside the prostate gland, and other imaging artifacts like
speckle noise, shadow regions and low Signal to Noise Ratio (SNR). In this work, we propose to enhance the
texture features of the prostate region using Local Binary Patterns (LBP) for the propagation of a shape and
appearance based statistical model to segment the prostate in a multi-resolution framework. A parametric model
of the propagating contour is derived from Principal Component Analysis (PCA) of the prior shape and texture
information of the prostate from the training data. The estimated parameters are then modified with the prior
knowledge of the optimization space to achieve an optimal segmentation. The proposed method achieves a mean
Dice Similarity Coefficient (DSC) value of 0.94±0.01 and a mean segmentation time of 0.68±0.02 seconds when
validated with 70 TRUS images of 7 datasets in a leave-one-patient-out validation framework. Our method per-
forms computationally efficient and accurate prostate segmentation in the presence of intensity heterogeneities
and imaging artifacts.

Keywords: Prostate Segmentation, Active Appearance Model, Texture, Local Binary Patterns

1. INTRODUCTION

More than 670,000 people are diagnosed with prostate cancer every year worldwide1 accounting for over 32,000
deaths in Noth America.2 In clinical practice, TRUS guided needle biopsy is performed to confirm the presence
of cancerous tissues in prostate. However, localization of malignant tissues in TRUS is difficult due to the low soft
tissue contrast in TRUS images. Multi-core prostate biopsy is performed from 6 to 12 cores to improve positive
detection of malignant tissue.3 MR images provide higher contrast for soft tissues of the prostate that allows a
better localization of cancerous tissues. However, interventional MRI guided biopsy is expensive and complicated.
The localization of malignant tissues could be improved by real-time registration of a 2D TRUS video sequence
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Figure 1. Prostate segmentation challenges , A=Low SNR, B=Micro Calcification, C=Intensity heterogeneity inside
prostate, D=Shadow Artifacts, E=Speckle Noise.

with a 3D pre acquired MRI during TRUS guided biopsy.4 Registration performed on segmented contour of
TRUS and MR images will aid in designing computationally efficient and accurate registration procedures.5Thus,
2D segmentation of the prostate from TRUS video sequence is necessary for the process. However, automatic
or semi-automatic accurate segmentation of the prostate in TRUS image is a challenging task due to low SNR,
intensity heterogeneities inside the prostate gland and presence of imaging artifacts like the speckle noise and
shadow regions. Low SNR produces spurious and broken edges with traditional edge detection filters and
intensity heterogeneities inside the prostate gland inhibit the design of a global descriptor for the prostate.
Added to these shadow artifacts, speckle noise and micro-calcifications is a hindrance to accurate segmentation
for the segmentation algorithms. The challenges involved in accurate prostate segmentation in TRUS images are
illustrated in Fig. 1.

To address the challenges of prostate segmentation in TRUS images Shen et al.6 and Betrouni et al.7 proposed
to use prior prostate shape information in their models. Prior shape information made the models robust to
imaging artifacts and detected true prostate edges in low SNR. Yan et al.5 proposed to incorporate prior shape
information of the prostate in a partial active shape model framework. The model selectively discarded salient
points for building the shape model to improve segmentation accuracy in presence of shadow artifacts in TRUS
images. Gong et al.8 proposed to use deformable super ellipse to segment the prostate. Shape constraints of the
model was effective in achieving impressive segmentation results. It has been demonstrated by Zhan et al.9 that
incorporating shape and intensity prior information in prostate segmentation methods improve the segmentation
accuracy. Cootes et al.10 provided an efficient framework for combining shape and intensity prior in their Active
Appearance Model (AAM). AAM framework was used by Medina et al.11 to segment prostate in 2D TRUS
images with an overlap ratio of 96%. However, time complexity involved with AAM is high making the model
unsuitable for real-time procedures.12 Larsen et al.13 proposed to use truncated wavelet coefficients in AAM
framework to improve on segmentation accuracy of facial images and achieve reduction in segmentation time.

In this paper, we propose a novel AAM that is propagated by texture features of Local Binary Patterns
(LBP)14 transformed images in a multi-resolution framework. The motivation behind such an approach is to
provide precise and concise texture information for the propagation of the AAM to improve on computational
time and segmentation accuracy. The performance of our method is validated with 70 TRUS images of 7 datasets
in a leave-one-patient-out validation framework. Experimental results show that our method is unaffected by
low SNR, intensity heterogeneities and shadow and speckle noise. The key contributions of this work are:

• Enhancement of texture information of the prostate region from local binary patterns.14

• Use of the texture information in training and propagation of an active appearance model that improves
on computational time and segmentation accuracy when compared to the traditional active appearance
model.10
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Figure 2. Schematic representation of our approach. The final segmentation is given in red contour and ground truth in
green. Abbreviations used AAM = Active Appearance Model, PDM = Point Distribution Model, GPA = Generalized
Procrustes Analysis, LBP = Local Binary Patterns, RIU = Rotational Invariant Uniform.

To the best of our knowledge this is the first attempt to use enhanced texture features of the prostate from
LBP in training and propagation of AAM. The rest of the paper is organized as follows. The texture driven
AAM is formulated in Section 2 followed by quantitative and qualitative evaluation of our method in Section 3.
We finally draw conclusion in Section 4. The working schema of the model is illustrated in Fig. 2

2. METHOD

In our method the traditional AAM is adapted for the incorporation of texture information extracted from the
LBP transformed image. Traditional AAM is presented here, followed by a comprehensive discussion about
enhancement of texture information using LBP.

2.1 Active Appearance Model

Generalized Procrustes Analysis of the Point Distribution Model (PDM)15 built from manually segmented con-
tours aligns the PDM in a common reference frame. Principal Component Analysis (PCA) of the aligned PDMs
is used to identify the principal modes of shape variations. Similarly, PCA of the intensity distribution warped
into correspondence using a piece wise affine warp and sampled from shape free reference is used to identify
the principal modes of intensity variations. Principle modes of shape and intensity variations are combined and
a third PCA ensures that primary components of combined model variations are identified. On completion of
building the combined model, an unseen test image is segmented exploiting the prior knowledge of the nature of
the optimization space.13
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The model could be formalized in the following manner. In eq. 1 and 2 let E {s} and E {t} represent the
shape and intensity models where s and t are the shape and the intensities of the corresponding training images,
s and t denote the mean shape and intensity respectively, then Φs and Φt contain the first p eigenvectors of the
estimated joint dispersion matrix of shape and intensity and θ represents the corresponding eigenvalues.

E {s} = s+ Φsθ (1)
E {t} = t+ Φtθ (2)

In addition to the parameters θ, four parameters, two translations, rotation and scale are represented by
ψ. In order to infer the parameters of θ and ψ of a previously unseen image, a Gaussian error model between
model and pixel intensities is assumed.13 Furthermore, a linear relationship between changes in parameters and
difference between model and image pixel intensities Δt is assumed as shown in eq.3.

Δt = X

[
Δψ
Δθ

]
(3)

X is estimated from weighted averaging over perturbation of model parameters and training examples. Eq.3
is solved in a least square manner fitting error as shown in eq.4.

[
ψ̂

θ̂

]
= (XTX)−1XT δt (4)

The problem is computationally expensive. To reduce computational burden we propose to use a truncated
basis for the representation of the pixel intensities achieved with LBP. However, this will introduce the additional
time requirement of transformation of the image into a new representation. Since the transformation is based
on sparse matrix, the computational burden can be considerably reduced as stated by Larsen et al.13

2.2 Local Binary Patterns

Ojala et al.14 proposed LBPs as computationally efficient discriminative transformations for texture analysis.
Given a pixel in the image, LBP is computed by thresholding the neighborhood of the pixel. LBP of a pixel is
defined as,

LBPP,R =
P−1∑
p=0

s (gp − gc) 2P , s (x) =
{

1, x ≥ 0
0, x < 0

}
(5)

where, gc is the gray value of the centered pixel, gp are the gray values of the neighborhood pixels, P is the
number of neighbors and R is the radius of the neighborhood. Signed difference gp − gc is unaffected by change
in mean luminance that provides gray scale invariance to the operator. Rotational invariance (RI) is defined as,

LBP ri
P,R = min {ROR (LBPP,R,i) |i = 0, 1....., P − 1}| (6)

where ROR (x, i} performs a circular bit-wise right shift on the P -bit number x, i times to assign a unique
identifier to each rotation invariant local binary pattern. Ojala et. al.14 observed some fundamental patterns
depicting the texture properties of an image under study. They named these patterns as uniform circular patterns
of LBP transformed image. Uniform circular pattern is defined as in eq. 7 and 8

LBP riu2
P,R =

{ ∑P−1
p=0 s (gp − gc) if U (LBPP,R) ≤ 2

P + 1 otherwise

}
(7)
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(a) (b) (c) (d)

Figure 3. Variants of LBP transformed image using radius=2 and sample=16 (a) 2D TRUS image of the prostate, (b)
LBP transformed image, (c) Uniform LBP transformed image, (d) Rotational invariant uniform LBP transformed image.

(a) (b) (c) (d) (e)

Figure 4. Multi-resolution functioning of the model (b) Manual initialization of the mean model by clicking on the center
of the prostate, (b) Level 4 segmentation result, (c) Level 3 segmentation result, (d) Level 2 segmentation result, (e)
Final segmentation result. Manual segmentation shown with white contour and the black contour show the segmentation
achieved.

where (
LBPU

P,R

)
= |s (gp−1 − gc) − s (g0 − gc)| +

P−1∑
p=1

|s (gp − gc) − s (gp−1 − gc)| (8)

Superscript riu2 refers to rotational invariant uniform patterns. Examples of LBP transformed images are
given in Fig. 3

We have used LBP, uniform LBP and rotational invariant uniform LBP to produce LBP transformed rep-
resentation of the image and used the PCA of the texture of the prostate region to propagate our AAM in a
multi-resolution framework. The LBP transformed representation of the image is a truncated representation of
the original intensity and hence fitting of the new image after LBP transformation is computationally efficient.
Multi-resolution fitting improves segmentation accuracy and reduces the computational time of the process. The
multi-resolution fitting of the model is illustrated in Fig. 4

3. RESULTS

We have validated the accuracy and robustness of our approach with 70 TRUS images of prostate in leave-one-
patient-out evaluation strategy. The images are of resolution 538 × 418 obtained from 7 prostate datasets. Our
method was implemented in Matlab 7 on an Intel Quad Core Q9550 processor of 2.83 Ghz processor speed and
8 GB RAM. We have used most of the popular prostate segmentation evaluation metrics like Dice Similarity
Coefficient (DSC), 95% Hausdorff Distance (HD), Mean Absolute Distance (MAD), Maximum Distance (MaxD),
specificity, sensitivity, accuracy and mean segmentation time to evaluate our method. We have used two different
values for the number of sample points (P = 16, 8) and three different radii (R = 1, 2, 8) for the LBP and presented
the best results in Table 1. LBP16,2 corresponds to the traditional LBP as given in eq. 5, LBPU

16,2 represents
the uniform LBP as given in eq. 8 , and LBP riu

16,8 represents rotational invariant uniform LBP as given in eq. 7.
Subscript values denote neighbors and radius respectively. The results are given in Table 1

In Table 1 we observe that; in general LBP and different variants of LBP guided AAMs perform better than
the traditional AAM comparing the distance metrics HD and MAD. This could be attributed to the fact that gray
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Table 1. Quantitative Comparison of AAMs

Method DSC HD(mm) MAD(mm) MaxD(mm) Specificity Sensitivity Accuracy Time(sec)
AAM 0.93±0.03 6.92±2.96 2.15±0.94 6.8±2.48 0.89±0.03 0.993±0.006 0.97±0.009 0.87±0.02
LBP16,2 0.94±0.01 6.01±2.14 1.66±0.46 5.87±2.23 0.91±0.02 0.995±0.004 0.98±0.005 0.68±0.02(
LBPU

16,2

)
0.95±0.01 5.09±1.90 1.50±0.41 5.07±1.93 0.91±0.01 0.997±0.003 0.98±0.004 1.2±0.02

LBP riu
16,8 0.94±0.02 6.15±2.38 1.78±0.75 6.01±2.53 0.90±0.03 0.995±0.005 0.97±0.01 1.19±0.02

(a) (b) (c)

Figure 5. (a)Artifacts in TRUS image of the prostate, A=Low SNR, B=Micro Calcification, C=Intensity heterogeneity in-
side prostate, D=Shadow Artifacts, E=Speckle Noise. (b) Manual initialization of the mean model, (c) Final segmentation
result.

scale invariance of the LBP operator helps gray-scale normalization of AAM, suppressing intensity heterogeneities,
speckle noise and micro-calcifications in the process. LBP enhance underlying texture information of the prostate
region. PCA of the LBP enhanced texture information reduces noise and helps in identifying principle modes of
texture variation inside the prostate region. Surprisingly, computational complexities involved with traditional
LBP method is less compared to traditional AAM considering the fact that the image had to be transformed into
LBP map before fitting. On closer inspection it was revealed that average time for transforming 70 images into
LBP map was 0.025 seconds and it produced an accurate representation of the prostate texture thereby reducing
differences with the mean model. This in turn reduces the time for computationally expensive procedure of fitting
a new image. The performance of uniform LBP (LBPU

16,2) is better compared to the other variants of LBP. This
is due to the fact that uniform LBP produces a uniform profile of the prostate region that is different from
the neighboring tissue textures and therefore facilitates in improving the accuracy of segmentation. However,
the procedure is computationally expensive compared to other variants of LBP. It is also observed that the
performance of rotational invariant uniform LBP (LBP riu

16,8) is almost comparable to traditional AAM.

The robustness of the proposed method against low SNR, intensity heterogeneities, shadow artifacts, speckle
noise and micro-calcification is illustrated in Fig. 5. On initialization, a section of the mean model is located in a
region of shadow artifact. The model successfully avoids the artifact and segments the prostate (black contour)
with an accuracy of 97%.

The mean model is initialized by clicking on the center of the prostate judged from visual inspection. However,
the model could be initialized automatically with the assumption that the prostate is located at the center of
the TRUS image. A more sophisticated approach would be to use an initial classification to initialize the mean
model. Low standard deviation value associated with sensitivity, specificity and accuracy indicate that the final
segmentation result is not affected by the manual initialization. To further validate our claim ten images were
selected randomly and the mean model was initialized for 10 times in ±5 pixels around the center for uniform
LBP (LBPU

16,2). Mean accuracy of these initializations is 96.778±0.006%. Low standard deviation associated
with accuracy metric indicates that the process is indifferent to manual initialization as long as the initialization
is close to the prostate center. To provide qualitative result of our method we present a subset of results obtained
using uniform LBP operator (LBPU

16,2) in Fig. 6
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Figure 6. Qualitative segmentation results. The white contour gives the ground truth and the black contour gives the
obtained result.
Table 2. Prostate Segmentation Evaluation: A Qualitative Comparison with the state-of-the-art algorithms for TRUS
Images
Reference Year Area Overlap Accuracy Contour Accuracy Datasets

Yan5 2009 - Average MAD 1.79±0.95 mm 10 datasets
Abolmaesumi16 2004 Average Area overlap 98% - 6 images
Gong8 2004 - Mean error 1.36±0.6 mm 125 images
Betrouni7 2004 Average Area overlap 93±0.9% Average distance 3.77±1.3 pixels 10 images
Shen6 2003 Average Area overlap error 3.98±0.97% Average distance 3.2±0.87 pixels 8 images
Ladak17 2000 Average Area accuracy 90.1±3.2% Average MAD 4.4±1.8 pixels 117 images

Our
Method

Average DSC 0.95±0.01 Average MAD 1.50±0.41 mm 7 datasets/70
images

Comparison of different prostate segmentation methodologies is difficult in absence of public datasets and
standardized evaluation metrics. In addition, the methods are developed with a wide variety of algorithms with
specific application requirements. Nevertheless, to have an overall qualitative estimate of the functioning of our
method we have compared our uniform LBP AAM with some of the state-of-the-art works in the literature (see
Table 2) for TRUS images. Please note ‘-’ in Table 2 means information is not available.

The average DSC value of our method with 0.95±0.01 is comparable to mean DSC values achieved by Betrouni
et al.7 and Ladak et al.17 and inferior to the area overlap measure of Abolmaesumi et al.16 of 98%. However,
it is to be noted that we have used more images (24 images) compared to 6 images of Abolmaesumi et al. Our
MAD value of 1.50±0.41 mm is comparable to Gong et al.8 average distance value of 1.36±0.6 mm and to Yan
et al.5 MAD of 1.79±0.95 mm. From these observations we can safely conclude that qualitatively our method
performs well in overlap and contour accuracy measures over some of the works in literature.

4. CONCLUSION AND FUTURE WORKS

A novel approach of AAM propagation using LBP enhanced texture profile with the goal of segmenting the
prostate in 2D TRUS images has been proposed. Our approach is accurate, computationally efficient and
robust to low SNR, intensity heterogeneities of the prostate tissues, shadow artifacts, speckle noise and micro-
calcification in TRUS images. While the proposed method is validated with prostate mid gland images, effec-
tiveness of the method against base and apical slices is yet to be validated. Computational time of the process
is fast but not suitable for real time segmentation of the prostate. We would like to explore the possibilities of
optimization of our code and use CUDA platform to achieve necessary parallelization and hardware acceleration
to achieve real-time segmentation of the prostate. We would like to explore the possibilities of automatic model
initialization and extend the model for 3D segmentation of the prostate.
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