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Abstract
We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and
transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid
approach that simultaneously optimizes the similarities from point-based registration and volume
matching methods. The 3D registration is obtained by minimizing the distances of corresponding
points at the surface and within the prostate and by maximizing the overlap ratio of the bladder
neck on both images. The hybrid approach not only capture deformation at the prostate surface
and internal landmarks but also the deformation at the bladder neck regions. The registration uses
a soft assignment and deterministic annealing process. The correspondences are iteratively
established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid
spatial transformation. In this study, we tested our registration with pre- and post-biopsy TRUS
images of the same patients. Registration accuracy is evaluated using manual defined anatomic
landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the
reference and floating images was decreased by 62.6±9.1% after registration. The mean target
registration error (TRE) was 0.88±0.16 mm, i.e. less than 3 voxels with a voxel size of
0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and
accuracy of the 3D non-rigid registration algorithm.
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1. INTRODUCTION
Prostate cancer is the second leading cause of cancer death in men in the United States [1].
Transrectal ultrasound (TRUS)-guided biopsy is the clinical standard for definitive diagnosis
of prostate cancer. While 2D TRUS-guided biopsy is routinely performed, however, 2D
TRUS images do not provide 3D location of the biopsy sample. Consequently, the physician
must mentally estimate the 3D location of the biopsy needle based on limited 2D
information, thus leading to suboptimal biopsy targeting. As combined PET/CT can offer
metabolic, functional, and anatomic information, the metabolic images from PET would be
able to be used to direct targeted biopsy of the prostate by registering PET/CT images with
TRUS images.
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Image registration has become a useful tool for various applications such as longitudinal
studies [2], population-based disease studies [3], image information fusion [4,5,6], and
image guided intervention [7,8]. Multimodality image registration can help to provide a
comprehensive understanding of anatomic or pathologic structure by integrating information
gained from different imaging modalities. Non-rigid registration [9,10] is the building block
for a variety of medical image analysis tasks, such as multi-modality information fusion,
atlas-based image segmentation and computational anatomy. Existing non-rigid registration
methods can be generally classified into two main categories: voxel-wise/intensity-based
methods [11] and landmark/feature-based methods [12]. Feature-based registration methods
use sparse features extracted from images, such as points [13], curves, and surface patches.
Registration is find their correspondences and compute an optimal transformation. The key
for feature-based methods is to find true correspondences between two feature sets. Most of
them use Euclidean distance-based geometric features to solve correspondences, for
example, the iterative closest point algorithm [12,14,15], the soft-assign method [16,17],
shape context-based methods [18] and kernel correlation-based methods [19,20]. Some of
them use intensity-based local similarity measures, such as cross correlation, mutual
information to determine correspondences [21,22]. Some hybrid methods integrate
geometric features and intensity based local similarity measures for computing
correspondences [23,24]. In this paper, we combine point-based registration and volume
matching method in order to improve accuracy and robust of prostrate registration.

2. METHODS
Our non-rigid registration method includes three terms: (1) surface landmark matching, (2)
internal landmark matching, (3) volume overlap matching. The schematic diagram of our

registration method is shown in Figure 1, where  are surface landmarks of the

prostrate from the segmented CT and TRUS images, respectively,  are internal
landmarks e.g. urethra and calcification within the prostrate on the CT and TRUS images,
respectively. BCT and BUS represent the bladder neck region on the CT and TRUS images,
respectively.

Inspired by [25,26,27], we design an overall similarity function to integrate the similarities
between same type of landmarks and add smoothness constraints on the estimated
transformation between segmented CT and TRUS images. The transformation between CT
and TRUS images are represented by a general function, which can be modeled by various
function basis. In our study, we choose B-splines as the transformation basis. The similarity
function is written as:

where
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α, β, γ, and λ are the weights for each energy term. ESS is the similarity for surface
landmarks, and EIS is the similarity for internal landmarks, and EVM is the energy term for
the bladder-neck volume matching; and ES is the smoothness constraint term. δ and τ are
called the temperature parameter and its weighted term is an entropy term comes from the
deterministic annealing technique [28]. ξ and η are the weight for the outlier rejection term.
Matrixes pij and qkl are the fuzzy correspondence matrixes [25]. f denotes the transformation
between CT and TRUS images [29].

The overall similarity function can be minimized by an alternating optimization algorithm
that successively updates the correspondences matrixes pij and qkl, and the transformation
function f. First, with the fixed transformation f, the correspondence matrixes between
landmarks are updated by minimizing E(f). The updated correspondence matrixes are then
treated as the temporary correspondences between landmarks. Second, with the fixed
temporary correspondence matrixes pij and qkl, the transformation function f is updated. The
two steps are alternatively repeated until there are no updates of the correspondence
matrixes.

In order to evaluate the accuracy and robustness of the registration method, we calculate the
root mean squared (RMS) difference between the original and registered images [27].
Second we used target registration errors (TRE) [30] to evaluate the registration accuracy.
We used eight visible calcifications that were identified on both images as the anatomic
landmarks.

3. RESULTS
Our registration method has been evaluated using simulated and real TRUS images. We
used the original TRUS images as reference images, deformed the images to simulate the
floating images, and then registered the deformed images to the original images. Figure 2
illustrates the visual assessment of the registration results in three directions. There is
significant difference between original and deformed images before registration. However,
after our registration the registered images are matched to the original images. It
demonstrates the feasibility of the registration method.

Our non-rigid registration method was also evaluated using five sets of pre- and post-biopsy
TRUS data of the same patients. The size of TRUS data is 244×244×175 voxels and the
spatial resolution is 0.38×0.38×0.39 mm3. We used pre-biopsy images as the reference
images and registered the post-biopsy images of the same patient. Figure 3 illustrates the
visual assessment of the registration results of one patient. For five sets of patient data, the
RMS and TRE are shown in Figure 4 and 5. The RMS difference was decreased by
62.6±9.1% after registration. The TRE was 0.88±0.16 mm and the maximum TRE is
1.08±0.21 mm.

Yang et al. Page 3

Proc SPIE. Author manuscript; available in PMC 2013 September 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. CONCLUSION
We develop and evaluate a 3D non-rigid registration method that combines point-based
registration and volume overlap matching methods. The registration method can be used to
register 3D TRUS images acquired at different time points and can be used for potential use
in TRUS-guided prostrate re-biopsy. We have tested 3D non-rigid registration algorithm for
pre- and post-biopsy TRUS images. Our next step is to apply this method to CT and TRUS
images and then incorporate PET/CT images into TRUS-guarded prostrate biopsy in
patients.
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Figure 1.
The schematic diagram of our registration method.
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Figure.2.
Registration between original (left column) and simulated images (second column) with
deformation. The third column is the registered images after deformable registration. The
fourth column is the fusion between the original and registered images.
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Figure.3.
Registration results of pre-biopsy (left column) and post-biopsy (2nd column) of the same
patient. 3rd column: Registered post-biopsy images. The fusion of pre- and post-biopsy
images before registration (4th column) and after registration (5th column) shows the
improvement of the matching between the two images.
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Figure.4.
The root-mean-squared (RMS) of the intensity of the difference image between the
reference and floating images before and after registration.
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Figure.5.
Target registration errors (TRE) between pre-biopsy and post-biopsy TRUS image. For each
patient eight anatomic landmarks were selected to calculate the TRE. Note the voxel size of
the TRUS images is 0.38×0.38×0.38 mm3. Error bars are standard deviations.
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