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Abstract
By definition, an ensemble is a set of surfaces or volumes derived from a series of simulations or
experiments. Sometimes the series is run with different initial conditions for one parameter to
determine parameter sensitivity. The understanding and identification of visual similarities and
differences among the shapes of members of an ensemble is an acute and growing challenge for
researchers across the physical sciences. More specifically, the task of gaining spatial
understanding and identifying similarities and differences between multiple complex geometric
data sets simultaneously has proved challenging. This paper proposes a comparison and
visualization technique to support the visual study of parameter sensitivity. We present a novel
single-image view and sampling technique which we call Ensemble Surface Slicing (ESS). ESS
produces a single image that is useful for determining differences and similarities between
surfaces simultaneously from several data sets. We demonstrate the usefulness of ESS on two real-
world data sets from our collaborators.
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1. INTRODUCTION
We are collaborating with researchers studying high-energy physics, meteorology,
cosmology, galaxy formation, microbiology, and biomedical data at Duke University,
Michigan State University, and Sandia National Laboratories * who have developed models
describing physical phenomena in their domain of interest. Each domain has generated data
sets from simulations or experiments that they need to understand. These experiments or
simulations are used to develop and/or validate the design of data mathematical models.
Typically, the same simulation is run a number of times with different parameter settings to
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test the feasibility and stability of the model as well as its parameter sensitivity. This set of
data is referred to as an ensemble. The data generated from a single simulation run is an
ensemble member. From their data, our collaborators are interested in answering the
following questions: Where do extracted surfaces from the ensemble agree, and where do
they differ? When they do agree, what is the shape of the surface (at a large scale and in
detail)? Where they disagree, which members are different and by how much do they differ?
What are the surface features showing either similarity or the deviation among ensemble
members?

In this paper we present ESS (Ensemble Surface Slicing) as a technique that has been
designed for the direct visual comparison of surfaces extracted from 3D ensembles. ESS
enables effective direct comparison of a handful of data sets, suitable for the exploration of
the impact of varying a small number of parameters. It enables the comparison of multiple
data sets over time. Our proposed technique has been demonstrated to be effective for model
debugging and identifying shape variations due to parameter modifications. We show that
ESS accelerates and improves the visual analysis of surfaces extracted from ensembles.
Additionally, we discuss how it satisfies the scientists’ goals of large–scale and local
difference estimation, shape comprehension, and surface identification.

The display of these members in a single visualization communicates more information per
unit area when compared to standard side–by–side viewing of each individual surface. When
compared to classical side–by–side display, ESS removes the effect of change-blindness and
also minimizes the impact on visual working memory’s limited capacity1 by placing all
relevant information in a single image. In this paper we discuss the development and
application of this technique as well as the perceptual and cognitive principles guiding its
efficacy.

The main contributions of this paper are:

• ESS: A new ensemble display technique that enables rapid identification of a
handful of ensemble surfaces, rapid location of regions where surfaces are
different, and determination of the interior/exterior relationship between neigh-
boring surfaces at locations where they differ.

• Real-world validation: Effective application of ESS to the domains of RHIC
hydrodynamics data and weather and its generalization to other ensemble domains.

• User Feedback: Feedback from domain scientists and users indicating the
effectiveness of the technique compared to standard side-by-side display of
ensembles.

2. RELATED WORK
ESS builds on principles of perceptual psychology as well as common visualization
techniques to optimize the display of ensembles with more than two members. Below we
describe several existing approaches to comparative visualization that influence ESS.

2.1 Comparative Visualization
Side–by–side—A generous body of work on techniques for simultaneous visualization of
multiple parameters exists. Simple side–by–side views are a first approach to this class of
comparative visualization. Spotting differences in traditional side–by–side visualizations of
ensemble data appears trivial, but it is in fact quite challenging. Research has shown that
image details across separate scenes cannot be remembered except where viewers have most
recently focused their attention.2 When the viewer switches attention from one image to the
other, change blindness occurs. This is not a failure of the visual system per se, but rather is
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a result of inappropriate attention guidance due to different areas of the eye and brain
responding differently to the scene once a visual interruption is introduced3.4

“Spot-the-difference” puzzles that appear in the Sunday paper alongside mathematical and
word puzzles testify to the fact that rapidly locating differences between images placed side
by side is an inherently challenging visual task (see Fig. 1). Executing a “spot-the-
difference” task on scientific data is similarly difficult due to its characteristic high feature
density. This makes it extremely difficult to rapidly identify characteristic differences when
viewed side by side. The limitations of using side–by–side presentation to visualize
ensembles is two-fold. First, rapidly identifying the difference(s) between data sets in an
ensemble is inherently challenging. Second, beyond the problem of initial difference
detection, the simple task of determining which surface is in front of the other in 3D
between two views suffers from the lack of a common spatial reference frame. These two
shortcomings make it difficult to conduct even a simple pairwise comparisons.

Translucency—Interrante provides an excellent description of the relevant perceptual
issues for using translucency in comparative visualizations.5 Even though it is a common
and simple method to display overlapping surfaces, it turns out that uniform translucency
confounds surface shape perception away from object silhouettes. This makes any setting of
uniform translucency ineffective for the display of surface features or inter-surface
distances: either the outer surface is opaque and so hides all inner surfaces, or it is
translucent and shape and distance between surfaces are imperceptible.

Slicing—Two methods that are closely related to ESS are planar contours and ribbons.
Planar contours display the 1D curves in 3D that are the intersection of surface geometry
with evenly-spaced parallel planes. The contours remove the geometry between planes while
providing good overall understanding of shape without occluding interior structures.
Ribbons, on the other hand retain more of the surface, removing the geometry between
alternating pairs of planes. Bauer-Kirpes et. al. used a ribbon-like technique, called “barrel
hoops” for the display of the outer surface in multiple surface medical applications.6 ESS
generalizes slicing techniques to apply to more than two surfaces. This allows for it to be
used for displaying small ensembles. This “ribboned” display of the surfaces provides good
overall shape relationship comprehension because similar to tangent ribbons, ESS slices
retain more of the surface, removing the geometry between alternating pairs of planes. This
leaves axis-aligned surface patches with their internal features visible. The addition of
animation of these slices over each ensemble member respectively minimizes loss of
topology and ensures that the entire shape is seen.

Sparsely-Opaque Textures—Techniques have been developed that make use of textures
with small, linear opaque features (sometimes in multiple orientations) to display the large-
scale shape of outer surfaces while enabling the viewer to see past them to opaque inner
objects. Interrante used curvature-directed strokes to display radiation dose surfaces above
tumors5 (see Fig. 2). Weigle extended this technique to work on a pair of non-nested
surfaces, rendering the interior surface opaque with nearest-approach curves dropped from
opaque cross-glyphs on the exterior surface.7 Rheingans retiled irregular surfaces so that
uniform circular and hexagonal textures could be applied8 (see Fig.2). Along the same lines
as Interrante, Bair et. al. used a genetic algorithm with user-supplied fitness evaluation to
determine the optimal parameters for texture generation to display one surface above
another.9 This system produced an upper texture that had well-separated parallel lines of
opacity along the outer surface, quite similar in appearance to those found in slicing
methods. ESS extends this concept of upper texture to multiple other surfaces in a manner
that enables the perception of a single surface when there is agreement among the members
of an ensemble. ESS also facilitates the rapid determination of different surfaces where
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members differ. By adopting the use of color, as presented in research, to distinguish
surfaces, ESS extends findings from Weigle and Interrante’s techniques to nested as well as
non-nested geometries while providing consistency of tiling between data sets (required
where ensemble sets agree).

Other comparative visualization methods attempt to counter the limitations posed by side-
by-side and translucency comparative visualizations. These methods either replicate, codify
or fuse data in space for a concurrent display of parameters.10 For simultaneous display of
parameters, Kirby et al. combine multiple values in a 2D flow image and attempt
simultaneous display.11 Bokinsky uses color coding and size of simple glyphs to visualize
multiple data sets on a single surface.12 Laidlaw et al. utilized ellipsoids and brush strokes of
varying intensity to visualize tensor images.13 Healey and Enns proposed accomplishing
multiple parameter visualization by varying color and texture attributes.1 Urness et al. use
color weaving for flow visualization14 while Gosset and Chen use color blending for the
presentation of fusion of multiple parameters.10 For most of these techniques, the conclusion
was that with more than four parameters, the technique’s ability to convey information
reduces considerably.10 ESS uses a similar sparse-surface display approach, but aims at a
different goal: rather than attempting to display multiple variables on the same surface, ESS
displays multiple instances of similar surfaces.

2.2 Uncertainty Visualization
Scientific data sets often have associated estimates of local accuracy. Uncertainty
visualization techniques present data in a manner that enables the data to be visualized along
with its uncertainty. The goal is often to make the viewer aware of locations and degrees of
uncertainty in their data. This desire draws a correlation between comparative visualization
and uncertainty visualization—the comparison of one surface geometry to another (e.g. an
uncertainty percentile surface to estimated base surface). Several researchers have developed
techniques for the display of surfaces with positional uncertainty. Pang et. al. categorize a
number of approaches to this problem including modulating the properties of a single
surface and adorning the surface with glyphs.15 Wittenbrink et. al. address surface
uncertainty by rendering fat surfaces (translucent envelope of uncertainty sliced with a
cutting plane to show cross-section of difference). Grigoryan and Rheingans also add point-
wise displacements to the surface to indicate the spatial region in which it might lie.16 Other
methods include oscillating surfaces and line glyphs.17 Most of these techniques
intentionally occlude or hinder the perception of the original surface in regions of high
uncertainty (thus preventing unwarranted reliance on surface position). ESS is designed to
preserve the perception of surface geometry for each member of an ensemble in regions
where they differ.

2.3 Perception
2.3.1 Perceptual Features—The goal of visualization is to map features such as hue,
intensity, spatial location and size to individual data elements in a manner that maximizes
the perceptual salience of relationships among the relevant features. This, of course, relies
heavily on the understanding of visual perception from perceptual psychology. For a
visualization to be effective, the contrast-saliency relationship between its encoding features
needs to be matched in importance to the purpose of the visualization.

ESS makes use of the perceptual features of luminance contrast, shape and color to
communicate shape boundaries, identify salient features belonging to a particular surface,
and differentiate between surfaces, respectively. Research has shown that these features
“pop out” during visual search while minimizing feature interaction. Thus, rapid
identification of salient information is possible with little or no increase in the time required
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to complete a search task as the number of distractors increase. ESS avoids luminance
contrast (isoluminance) in regions where differences are not present to avoid drawing
attention to them, and to avoid distorting the perception of their shape.

2.3.2 Color—One of the most important and often used perceptual features is color. Healey
proposed using the CIELUV color space to choose colors that allow an observer to rapidly
and accurately search a display for any given set of colors based on their linear separability,
color category, and color distance.18 Based on this, ESS chooses colors along a path in
perceptual color space. A parametric increment is chosen to pick discrete colors along the
specified path and then each ensemble member is arbitrarily assigned an isoluminant color.
The colors mapped to each surface falls outside the convex hull of colors chosen to represent
all others, thus maximizing the efficacy and speed of visual search. This ensures maximum
separability and distinct differentiation between datasets while maintaining isoluminance on
each surface.

3. ESS METHODOLOGY
ESS uniformly slices the overlapping spatial extent of all surfaces in the ensemble along one
world-space axis. The surface from one member of the ensemble is visible in each slice.
Which surface is visible alternates from slice to slice, iterating through the available
ensemble members several times over the spatial range. The technique is shown on dis-
similar surfaces in Fig. 3 and on similar surfaces in Fig. 4. In each case, it lets the user
rapidly locate differences between the surfaces and estimate the magnitude of separation
between surfaces. User feedback indicated that the choice of slice width enhanced certain
properties of the ensemble. When fewer slices are chosen, the silhouette of the shapes in the
view are rapidly processed. Larger slices, however, ensure that the features of the ensemble
members are visible and not obscured by slicing artifacts. The selection of slice width is
reliant on the particular query posed by the viewer. If overall shape silhouettes are of
interest, thinner slices are desirable; if understanding the variation across ensemble members
at boundaries of a particular surface is required, then thicker slices are desirable. When the
surface normals at slice pair contours differ, a luminance discontinuity is observed between
strips. Such luminance edges are easily detected visually and draw attention to regions of
difference in the space. These axis-aligned contours also provide direct visual display of the
separation between the surfaces; interactive control over the slicing direction enables the
user to align this with the local surface normal if estimation of the 3D separation is desired.

The desire to understand the total shape of each surface at local scale presents a challenge.
ESS addresses this by animating the slices along the slice. This enables the viewer to
quickly understand the shape of the members of the ensemble at any moment in time.
Animation ensures that the full extent of each ensemble member is visible in the display
over the course of the animation sequence. This has been implemented by adding a time-
varying offset to the slice boundaries that causes each slice to move at uniform speed in the
slicing direction. This overloading of the time dimension provides a means for features on
the surface of all ensemble members to be understood for a single time step while
simultaneously addressing the temporal nature of the data.

4. APPLICATION TO RHIC SIMULATION DATA
One of the domains where ensembles are prolific is in the field of physics. Some of our
collaborators are studying hydrodynamic simulations for relativistic heavy ion collisions.
Our collaborators are particularly interested in Quantum Chrono-Dynamics (QCD) which
describes hadronic matter (matter susceptible to the strong interaction force).
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Background
Relativistic heavy ion collisions offer the opportunity to study strongly interacting matter
under extreme conditions. At high temperatures and/or densities the quantum field theory
that describes the strong interaction—namely quantum chromodynamics (QCD)—predicts a
phase transition to a new phase of matter in which quarks and gluons can move
independently of each other—the so called quark gluon plasma (QGP). The quark gluon
plasma has existed a few microseconds after the Big Bang in the early universe which is
why heavy ion collisions are referred to as being “little bangs in the laboratory”. The driving
problem in the study of QGP is that the deconfined quanta of a QGP are not directly
observable. Finding a clear and unambiguous connection between transitory QGP state and
what is observed as the hadronic final state is a desired goal of relativistic heavy-ion
research. The data resulting from these runs with varying simulation parameters forms
ensembles.

Data
Fig. 5 shows the result of ESS on QGP datasets glauber, urqmd, pcasc representing the
hydrodynamic evolution of a Au + Au collision at Ecm=200 GeV as studied by Hannah
Petersen and Stephen Bass of Duke University. Here, the ESS technique has been applied to
an event-by-event transport + hydrodynamics description of Au + Au collisions at the
highest RHIC (Relativistic Heavy Ion Collider) energies. Different approaches for the initial
conditions are employed and the aim is to explore the differences in the subsequent ideal
hydrodynamic evolution. The different impact parameters (b0 and b7) describe the centrality
of the collision; this refers to either head-on (b0) or off-axis (b7) collisions in the x-direction.
The result of this collision leads to an almond shaped asymmetry in the transverse (x-y)
plane. Our collaborators are interested in seeing differences in the energy density,
temperature, and net baryon density as time progresses. They want, in general, to better
understand how the different initial conditions affect the evolution–especially the evolution
of initial coordinate space asymmetries through the simulation. Fig. 6 shows the results from
a second set of simulation runs representing a single gold-gold nuclei collision event. The
ESS image produced provides insight to the effect of these initial conditions on the
turbulence and momentum centrality and provides more information from which scientists
can test hypotheses or debug code (e.g. when the simulation differs vastly from known and
proven physical condition constraints). After watching a time-animation of this simulation
using ESS, our collaborator was surprised to see that the initial conditions in one of the
simulations (psasc) led to an initially larger region that suddenly disappeared from the
simulation. They looked at both the physics calculations and their simulation codes grid
conditions to locate the cause. The event turned out to be an issue with the simulation grid
resolution, which has since been fixed.

ESS was also applied to weather fire burn simulation data (see Fig 7). The parameter varied
between experiments is the surface heat flux associated with the fire. As the simulation does
not resolve the actual combustion process (the simulation is at too coarse a resolution), the
effect of the fire is accounted for by examining heat flux surfaces. A larger surface heat flux
implies a greater fire intensity (i.e. the fire is pumping more heat into the atmosphere) and
vice versa. Using ESS, Michael Kiefer and Sharon Zhong were able to identify where the
surfaces are equivalent (characterized in the visualization by continuous banded isoluminant
strips)(see Fig. 7). As increases in heat flux correlate to increases in potential temperature,
examining the resulting potential temperature surfaces given varied heat flux initial
parameters provides a quick way to measure the effect of burn intensity on the atmosphere
given specific atmospheric conditions. The domain scientists used the ESS visualization in
Fig. 7 to determine the effect of the initial conditions on the resulting heat profile and smoke
dispersal of the fire.
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5. USER FEEDBACK AND RESULTS
We collected feedback on our technique from our MADAI collaborators to evaluate the
robustness, practicality and applicability of ESS. First, we compared our system to the
current workflow of domain specialists. Then we asked the same subjects to compare ESS to
side-by-side views on an image level without scene interaction. Participants were specialists
familiar with working with comparative visualization of domain-independent surfaces. All
three participants completed 2 tasks and viewed 16 images, with two users having 15+ years
of experience and one having less than 1 year of experience.

5.1 Workflow
Our domain scientists did not have a standardized workflow for visualizing ensembles of 3D
surface data. Typically, they analyze datasets using Matlab, or some other mathematical or
3D rendering software before performing a side–by– side visualization of the surfaces
extracted. Otherwise the data is analyzed abstractly without direct analysis of physical
shape. More recently, they have been incorporating the use of the open source ParaView
visualization system to generate visualizations. This allows for a more domain-independent,
intuitive and standardized workflow for data assessment. ESS functions as a plug-in to this
system. Our work provides a standardized and extensible visualization tool that utilizes
ParaView’s well-defined and flexible framework in a manner that enables rapid
modifications to future iterations of ESS.

With our collaborators, we arrived at two classes of tasks—identification tasks and
relationship tasks. Identification tasks involve identifying the number of surfaces
independently discernible in an ensemble using a visualization technique as well as the
duration of time required to ascertain the count. Relationship tasks revolve around the “spot-
the-difference” problem: how fast can differences be observed in the visualization? Where a
difference is observed, how does one surface relate to its neighbors (interior, exterior, almost
identical)?

Feedback was first obtained about experience with working with 3D data and comparative
visualization. ESS was then discussed and explained prior to users performing a sequence of
tasks using visualizations created with our software prototype. Participants in our study were
introduced to each visualization condition as well as to the manner in which regions were
classified (globally, or by slice/slice-neighbor proximity). Assistance beyond explanation of
properties of ESS visualizations and their respective implications was not given. This was
meant test whether the system is intuitive and rapidly deployable.

5.2 Evaluation
To demonstrate the efficacy of our technique, ESS was applied to two synthetic ensemble
datasets, one composed of fruits and the other of a set gaussian surfaces. The fruits were
chosen primarily for their easily recognizable form – completing the silhouette of the shapes
of the fruits is pre-attentively processed. The viewer’s attention is quickly directed to
regions in the ESS visualization where there is a surface luminance discontinuity. Similarly,
the gaussian blobs were chosen to show that even with more abstract shapes, the luminance
discontinuity between strips draws attention to regions of difference and allows for
dataset(s) that locally differ from the others to be rapidly identified.

Next, a short two-task questionnaire was administered to determine ESS’s efficiency on
relationship tasks. To ensure that understanding of shape was not obfuscated by specificity
to domain, synthetic series were used. Using a commonly understood shape ensemble (in
this case fruits) eliminated the need for understanding information other than shape class of
a given ensemble. The same study was conducted on arbitrarily generated gaussian surfaces
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to test our claim of ESS’s efficacy even on surfaces of arbitrary geometry (see Fig. 4).
Participants were asked to identify the surface difference in an image and then identify a
surface’s relationship to the other members in the ensembles. Eight ESS images and eight
side-by-side images were provided for each task. Furthermore, the amount of time it took to
complete each was recorded for each participant as well as whether the task was completed
accurately.

The results of the study suggest the strength of ESS in conveying spatial and inter-member
orientation information. According to feedback, this was difficult to achieve using side–by–
side visualization. Using ESS, the users were able to accurately and rapidly detect and
compare surfaces in the ensemble that did not locally conform to the shape of other
members in the ensemble. In ensembles with many non-uniform surfaces, providing a global
similarity or difference estimate proved most difficult as this situation resulted in a rather
noisy image. However, this still showed significant improvement on side–by–side views. On
average across all tasks, task completion using ESS took 28% of the time required to
complete the same task using side–by–side. No errors were made in either the ESS or the
side-by-side conditions.

Compared to their earlier workflow, the users indicated that the largest advantage of our
technique stemmed from its ability to rapidly see and recognize which slices in a particular
region differed from its neighbors. While this is more obvious for large differences, even
small scale differences on slice boundaries were pre-attentively assessed. Thus, ESS
provides users with a rapid method for performing visual analytics. Our findings encourage
the use of this technique as a standard and simple way to gain understanding of ensembles.
Furthermore, its implementation on the standardized visualization platform (ParaView)
allows for other standard visualization techniques to be applied.

6. DISCUSSION
Besides the domains of hydro-physics, weather, and biomedicine, other fields such as
geography require the simultaneous display of surfaces and understanding how they relate to
each other spatially on global and local levels. We introduce a new technique called
Ensemble Surface Slicing (ESS) to visualize regions of similarity and difference among
surfaces extracted from ensemble simulations. ESS communicates inter-surface positioning
and relationships while minimizing surface distortion. Drawing inspiration from Escher
drawings in conjunction with Bauer-Kirpes et al.’s “barrel hoops” used for display of dosage
surfaces in medical applications,6 ESS displays spatial relationships of surfaces generated
from ensemble data sets.

6.1 Advantages
The feedback collected from users indicated that they spent less time to complete a given
task using ESS as opposed to side–by–side. All users appreciated the ability to quickly
compare shapes in a visualization. Domain specialists also indicated that a major advantage
of ESS is that the coloring of slices coupled with the per time step animation of slices over
the entire surface of an ensemble member enabled interpolation of overall shapes of
ensemble members in regions where portions of the shape were not being shown at every
instance in time. As such, there was no real need for reference to a legend until a particular
difference was noted. When such a case arose, the user could simply use the color to identify
which member is of interest at that particular instance in time. The ability to see and
compare multiple slices in a single image and the ability for ESS to plug into current
workflow (as a standalone application or as a plug-in for ParaView) received positive
reviews from our domain scientists and other users. The users indicated that prior techniques
of side–by–sidevisualization, or even more advanced techniques like checkerboard
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visualization (and its variants) would have been very time consuming for completing the
requested tasks.

Besides being a rapid way to identify differences between members of an ensemble, ESS
can be applied to the visualization of localized uncertainty. It may be used to display the
uncertainty in a surface by first creating N sample surfaces whose distribution in space
matches that of the uncertainty (perhaps the 25%, 50%, ... percentile surfaces) and then
displaying the set of uncertainty sample surfaces using ESS. Uncertainty is a local measure
so the understanding of global shape is often not as important as understanding the local
shape variation. This plays to our technique’s unique ability provide rapid local visual
analysis.

Users were able to conduct rapid difference detection in at least 4–5 data sets in one view.
Compared to side-by-side views, this is an improvement that saves time as well as screen
space. Our domain specialists in the fields of hydrophysics and weather have used ESS to
recognize important features in their data sets that led to the refinements and improvements
of their simulation code. As mentioned earlier, ESS was able to rapidly display both large-
scale and subtle differences in hydro-data data by identifying unexpected behavior in the
energy surface extracted from a RHIC gold nuclei collision simulation. Similarly, ESS
provided a means for meteorologists studying fire burn simulation to verify the physical
implications of varying parameters.

6.2 Limitations
To enable the comparative display of multiple surfaces in the same space, ESS uses more
pre-attentive channels than standard side-by-side display. Beyond the luminance channel
normally required to display surface shape, it uses the hue channel to distinguish between
surfaces; this channel cannot then be used to display data attributes on the surface.
Additionally, when animating ESS on time-varying data sets, the surfaces from the next time
step are not rendered until all the invisible slices of a surface have been shown. Without
prior understanding of this property of ESS, this slow transition could hinder user’s visual
detection of transient features.

There exists a trade-off between the number of ensemble data sets that can be displayed and
the size of the features that can be perceived in regions where the ensemble surfaces differ
(all features are preserved in regions where the ensemble data sets agree). If it is important
that all features on slice that differs from its neighbors are seen, then ESS can be combined
with an interactive toggle or magic lens technique that enables the user to select the display
of just that ensemble member’s surface in the region of difference. This incorporation of the
magic lens technique may diminish the limitation of ESS slices having only two differing
adjacent neighbors. Additionally, differences are only shown at slicing plane positions and
even with shifting of slice planes and animation of slices, the problem still remains
especially if there is high-frequency/high-amplitude difference present in members of the
ensemble.

7. FUTURE WORK
We plan to immediately begin testing the ESS technique on a wider range of ensemble data,
including yeast-mitotic-spindle data from microbiology and data from simulations of
pediatric airway surgical plans from biomedicine. We also plan to carry out a full user study
to quantitatively determine the speed and error rates for ESS task completion (e.g.
identification and relationship tasks), and how they scale with the number of members in an
ensemble.
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Figure 1.
Spot the difference puzzle: There are at least four feature differences between these two
images. Side-by-side visualization does not pre-attentively draw interest to areas of
difference between two images, thus requiring a linear scanning of all potential features in
each image. Scientists viewing side–by–side displays of feature-rich surfaces from
ensembles face the same challenge.
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Figure 2.
(a) Communicating surface shape using principal-direction-driven 3D LIC stroke texture. (b)
Weigle’s technique for visualizing nested surfaces by rendering the interior surface opaque
with nearest-approach curves dropped from opaque cross-glyphs on the exterior surface. (c)
Rheingans surface retiling technique
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Figure 3.
A banana, apple, grape, and orange shown using ESS. Luminance discontinuities between
strips draws attention to areas of difference between neighboring surfaces.
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Figure 4.
Four gaussian blob surfaces: Viewing these surfaces side–by–side requires saccading
between all four views to try to locate the region of difference. ESS simplifies this visual
search by using luminance discontinuity to draw attention to discontinuities/buckling on the
surface. Localized similarity is characterized by adjacent continuous color bands.In the
combined view, viewers can more rapidly see that three of the surfaces are the same, with
the orange one differing.
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Figure 5.
Hydro-physics Fluid Simulation Side–by–side vs. ESS: 4 energy surfaces where e ∈ [0,3].
Leftmost quad (clockwise from top to bottom): pcasc, urqmd, glauber b0, and glauber b7
surfaces. In the side–by–side, it is easy to see which shapes are the same (e.g. pcasc and
urqmd share similar shape while glauber simulation initial conditions results in very
different shapes). Due to a lack of a common frame of reference, it is challenging to
determine where surfaces cross each other in the side-by-side view. ESS (right image)
provides understanding of relative scale, surface orientation, and large and small scale
differences.
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Figure 6.
Hydro-physics Fluid Simulation Side–by–side vs. ESS: 4 energy surfaces where e ∈ [0,3].
In the resulting video, one surface in the simulation disappears for a couple of seconds only
to reappear again. Domain scientists used this visualization to determine that the resolution
of the grid inadequate. Once modified, visualization of the data provided more consistent
results.
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Figure 7.
Weather Fire Burn Simulation Side–by–side vs. ESS: 4 potential temperature surfaces where
t ∈ [287°F,345°F]. The bottom two surfaces in the left quad are almost identical; the other
two surfaces (top row of quad), are the most different in the set. The ESS visualization (right
image) shows both similarities as well as high/low frequency differences between all
surfaces in the ensemble. The large differences near the peak in the upper part of the images
are visible in side-by-side visualization, but the subtle changes in location of the features in
the lower right is difficult to see. Dark gaps between sets rapidly draw attention to both
differences in the ESS view.
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