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Abstract
Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on
accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement
MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of
the location and extent of scar formation, which are important factors for predicting patient
outcome and planning of redo ablation procedures. We have developed an algorithm for automatic
classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and
consistency compared to manual scar classifications by expert observers. Our approach clusters
voxels based on normalized intensity and was chosen through a systematic comparison of the
performance of multivariate clustering on many combinations of image texture. Algorithm
performance was determined by overlap with ground truth, using multiple overlap measures, and
the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined
using the STAPLE algorithm, which produces a probabilistic estimate of the true scar
classification from multiple expert manual segmentations. Evaluation of the ground truth data set
was based on both inter- and intra-observer agreement, with variation among expert classifiers
indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar
classification algorithm performs well for both scar localization and estimation of scar volume: for
ground truth datasets considered easy, variability from the ground truth was low; for those
considered difficult, variability from ground truth was on par with the variability across experts.
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1. INTRODUCTION
Atrial fibrillation (AF) is the most common heart arrhythmia, affecting millions of people
worldwide. AF is associated with a heightened risk of stroke and an overall increase in
morbidity and mortality.1–3 Catheter-based radiofrequency ablation (RFA) therapy is a
promising procedure for treating AF, with the potential to completely cure many patients. A
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successful RFA procedure, however, relies on accurate lesion delivery in the left atrial (LA)
wall. With as many 25%–60% of patients suffering a recurrence of AF after RFA, the
assessment of scar patterning and extent after RFA is important for understanding when and
how procedures fail and for planning redo ablation procedures.4

Late gadolinium enhancement cardiac MRI (LGE MRI) at three months post-ablation has
proven effective for noninvasive assessment of the location and pattern of scar formation
from RFA. Current clinical methods developed at the University of Utah rely on manual
segmentations of scar tissue in the LA wall to produce detailed 3D scar maps.4–6 While
effective for assessing the outcome of RFA, manual scar maps in LGE MRI can be time
consuming and are prone to inconsistencies among different expert image analysts.
Additionally, it is time consuming to train a new technician or researcher to be able to
perform scar segmentations effectively.

A fully automatic scar segmentation algorithm promises faster and more consistent results,
but has been difficult to develop due to the relatively unpredictable and inconsistent mean
intensities associated with scar enhancement across LGE MRI images. Simple intensity
thresholding techniques, for example, have not been demonstrated to be effective for LA
scar segmentation. Automatic segmentation is further complicated by the high variability in
image quality and contrast that is characteristic of cardiac LGE MRI.

To address the problem of variable image quality and scar intensity profiles in cardiac LGE
MRI post-ablation images, we have evaluated a variety of image metrics for unsupervised
clustering of scar tissue and compared the results in each case to a ground truth scar
segmentation dataset. Ground truth was constructed from a cohort of scar maps that have
been segmented by multiple experts, including practicing cardiologists specializing in
cardiac imaging. Each clustering approach uses the k-means algorithm on feature vectors of
voxel texture and intensity values and is compared against ground truth using metrics for
overlap and overall scar volume. From this study, we identified a clustering approach based
on normalized image intensity that performs on par with the expert segmenters. The
proposed algorithm is simple to implement, runs in seconds on a typical image, and can be
used reliably by the less experienced technicians and researchers to produce scar maps in
post-ablation clinical images.

2. RELATED WORK
Current state-of-the-art studies in analyzing post-ablation scar in the left atrium rely almost
exclusively on manual scar classification.4, 7 To date, the authors are not aware of any
published fully-automatic scar segmentation for the LA. Automated scar analysis has been
shown for the ventricle, particularly in clinical evaluation of myocardial infarction,8 but
these algorithms have not been demonstrated to work in the atrium. The atrium has a much
more thin and flexible wall than the ventricle, making detailed image acquisition challenging
and automated analysis more difficult.

Some work has been published for automatic segmentation of the LA wall,9, 10 but this
paper is concerned with the classification of scar within the LA wall, and not with
determination of LA wall boundaries. Here the scar classification is done within manual
wall segmentations, but the proposed scar segmentation approach could be used equally with
little or no modification within an automatic wall segmentation.
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3. METHODS
3.1 Ground truth data set

To construct our ground truth dataset for LA scar segmentation algorithm development and
validation, we chose 34 patients who underwent RFA for AF at the University of Utah
Hospital. This group was selected on the basis of patients who completed MRI scans at
roughly three months post-ablation. Scanning was performed using a 3-T Verio MR scanner
(Siemens Medical Systems, Erlangen, Germany). LGE MRI images were acquired about 15
minutes after gadolinium contrast agent injection using three-dimensional inversion-
recovery-prepared, respiration-navigated, ECG-gated, gradient-echo pulse sequence with fat
saturation. Typical parameters for this acquisition in post-ablation AF patients are given in
McGann, et al.4 This work was conducted under approval by the institutional review board
at the University of Utah and was compliant with the Health Insurance Portability and
Accountability Act of 1996.

A ground truth LA scar map for each patient data set was created from multiple manual scar
segmentations in the LGE MRI images by 5 expert segmenters at the University of Utah
Hospital and the Comprehensive Arrhythmia Research and Management (CARMA) Center.
The segmenters consisted of two cardiologists with specialties in medical imaging and three
lab technicians with significant experience analyzing clinical cardiac LGE MRI images. To
measure intra-observer variability, 8 of the 34 patient scans were randomly chosen and
presented to the segmenters three separate times. All data was anonymized prior to
segmentation and repeated scans were given in a random order so that segmenters could not
easily tell which scans were repeated.

Each expert segmenter used a threshold tool in the Corview image processing software11 to
select a lower and upper threshold range of voxel values that corresponded to LA wall
scarring in each scan. The threshold selected by each expert was then used to generate a scar
map within a segmentation of the LA wall. For this study, all LA wall segmentations were
done manually by a single expert technician using contouring tools in the Corview software.
LA wall segmentations were not visible to the expert observers during scar threshold
selection.

The general process of LA scar segmentation is illustrated in Figure 1. The panel at the left
shows a detail of a single slice of an LGE MRI image of the heart. The panel in the middle
shows one slice of a segmentation of the LA wall region. The LA wall segmentation
excludes the pulmonary veins, the mitral valve, and the left-atrial appendage. The aorta (Ao)
is also indicated in this image for reference. The panel at the right shows the regions within
the LA wall that are classified as scar.

We used the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm12

to compute an estimate of true ground truth from the 5 manually generated scar maps for
each patient dataset. The STAPLE algorithm produces a probabilistic segmentation from a
set of expert segmentations. Pixel values in this segmentation represent the probability that a
given pixel location represents scar. For this study, we thresholded each STAPLE
probability map at 90% probability to create a binary ground truth segmentation.

3.2 Automatic scar classification approach
3.2.1 Scar Segmentation

LGE MRI is highly variable with respect to image quality, contrast, and mean intensity of
gadolinium enhancement in the LA, so we used an experimental approach to identify an
effective automatic scar segmentation algorithm. We evaluated K-means clustering13, 14 on
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14 different texture metrics proposed by Haralick,15 in combination with both normalized
voxel intensity and a Sobel edge map,16 for their ability to classify scar voxels in our ground
truth datasets.

Clustering provides a mechanism for statistically separating voxels into groups that are
analogous to different tissue types (scar, blood, healthy cardiac wall tissue, etc.). K-means
clustering was chosen as a simple, unsupervised approach that lets us explicitly vary the
number of tissue classes, but doesn’t require tuning other free parameters. In this work we
assume that scar tissue corresponds to the cluster with the highest mean voxel intensity,
which is a reasonable assumption when the LGE MRI image has been acquired after an
appropriate gadolinium washout period. In this analysis, the number of discernible tissue
types in any given LGE MRI image is also unknown, and so the number of clusters is varied
in our experiments.

For each of the ground truth patient LGE MRI images, we ran K-means clustering multiple
times using each image feature alone, and then in vector combinations of up to three
features. Parameters were also varied in separate runs as follows: Size of the texture feature
neighborhoods were varied from 3 × 3, 11 × 11, to 21 × 21, and the number of clusters
(tissue classes) was varied from 3 to 10. Clustering was limited to image features derived
from voxels within the LA. In all, we tested a total of 2304 combinations of features and
parameters on all ground truth images. Test runs were scripted and took several days to
process on a standard desktop machine using the implementation of K-means found in the
OpenCV toolkit.17

For each of the K-means runs described above, we chose the cluster with the highest mean
raw voxel intensity as the scar segmentation. Each segmentation result was compared to the
ground truth scar map using the performance metrics for overlap of segmentations and total
percentage of scar in the left atrial wall, as described further in Section 3.3. Our goal was to
explore the parameter space to identify the combination of image features and parameters
with the best resulting score.

3.2.2 Image features
As described above, we examined normalized voxel intensity, the Sobel filter, and the 14
texture metrics proposed by Haralick as image features. We use normalized voxel intensity
(NVI) because of the assumption that, in LGE MRI, scar tissue should exhibit higher
intensity values than surrounding normal tissue. Intensity is normalized to zero mean and
unit standard deviation to compensate for the variability in LGE MRI mean intensity and
contrast. The Sobel edge detection filter16 was used to test the usefulness of edges or
boundaries in classifying scar. We also included several statistical measures from Haralick’s
texture metrics including variance, Sum Average, Sum Variance, and Difference Variance to
test whether statistical properties of neighborhoods might be useful in identifying scar.
Texture metrics on distributions of intensity, including Uniformity (angular second
moment), Inverse Difference Moment, Contrast, and Correlation were used to test whether
scar exhibits any particular distribution profile. Finally, we examined information theoretic
metrics such as Entropy, Difference Entropy and Sum Entropy, as well as the Information
Correlation 1 and 2 textures and the Maximal correlation coefficient.

We refer the reader to Haralick’s work on texture metrics15 for specific description and
computation details. We implemented all metrics in C++ using the Insight Toolkit.18
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3.3 Comparison methods
To evaluate performance of the proposed automated scar segmentation algorithm, we
compared results to the ground truth dataset using three different metrics. To evaluate
overlap with ground truth we compute the Dice coefficient for each dataset. To better
account for small overlap differences we next computed the XOR overlap. Finally, we
compared the overall percentage of voxels in the LA wall that are classified as scar, which is
a clinical metric used at the University of Utah.

3.3.1 Dice Coefficient
To measure overlap with ground truth, we used the standard Dice coefficient,19 which is
given by

(1)

where A and B are the two voxel sets for comparison.

3.3.2 XOR Overlap
For the specific case of finding overlap among scar in the LA wall, however, the standard
Dice coefficient overlap is biased by the total amount of scar in the LA wall, which is highly
variable among datasets. Thus, if the scan does not have a significant amount of scar, then
even small differences between maps create large changes in the above ratio. To account for
this bias, we also compute the following overlap measure, which we call XOR overlap:

(2)

where W is the set of voxels that compose the LA Wall. This overlap measure emphasizes
the differences between the overlapping scar maps, and is not affected by the size of the scar
map area.

To further illustrate the idea of bias in the Dice coefficient, consider two scar maps A,B we
wish to compare, and two additional scar maps C,D we wish to compare, where ‖A‖ + ‖B‖
<< ‖C‖ + ‖D‖ and k = ‖A Λ B‖ = ‖C Λ D‖. In the context of scar in the LA wall, we would
expect that the overlap measure of these two scar map comparisons would be close if not
equal, given that ‖A Λ B‖ = ‖C Λ D‖. However, D(A,B) >> D(C,D) because of the size
difference of A,B and C,D. This can be misleading when scoring different automatic and
manual scar maps.

Now consider the same set of scar maps A,B,C,D where ‖A‖+‖B‖ << ‖C‖+‖D‖, j = ‖A⊗B‖ =
‖C⊗D‖, and A,B,C,D ∈ W. Again, in the given context we would expect the overlap
measure of these two scar map comparison to be close if not equal, and indeed

. Even if we relax the constraint A,B,C,D ∈ W so that
A,B ∈ W and C,D ∈ Y, O(A,B,W) ≈ O(C,D, Y) so long as ‖W‖ ≈ ‖Y ‖, which, for our data,
we’ve found to be a safe assumption (patients for the most part have similar LA wall
volumes), in relation to the varying size of scar maps.

3.3.3 Scar Percentage
To evaluate the total extent of scarring in the LA, which is an important measure for clinical
research, we computed the percentage of scar in the LA wall as
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(3)

4. RESULTS
4.1 Top performing metrics

The top performing classification metric was found to be statistically normalized voxel
intensity (NVI) in 4 clusters. Other high performing texture metric combinations included
NVI with Haralicks 2nd Information Correlation Texture (2IC) in 5 clusters, NVI with
Haralicks Uniformity and 2IC textures in 6 clusters, and NVI with Haralicks Maximum
Probability texture in 6 clusters, which all gave similar results, but did not improve the
results significantly over NVI alone.

We note that the Haralick texture metrics did not improve identification of scar regions
significantly over NVI alone. Several factors may contribute to this trend. Expert
segmentations and the resulting ground truth were generated mainly based on voxel
intensity, via visual inspection, thus, it is likely that voxel intensity would be an especially
effective identifier. It is also possible that the resolution of the images compared to the size
of the LA wall (a few millimeters across) is too limited to reliably produce consistent texture
signals across different images.

4.2 Automatic scar map performance
In this section we report results for the automatic scar clustering using NVI in 4 clusters,
which we found to be the best performer. Overall, automatic scar segmentation compared
favorably with the ground truth scar maps in both location and quantity of scar.

The plots in Figure 2 suggest that automatic scar classification using normalized voxel
intensity (NVI) performs favorably in terms of scar localization when compared to manual
expert scar classification. The box plot in Figure 2(a) indicates that automatic scar map XOR
overlap varied about 2% more than manual experts, though we note that expert results are
biased towards higher accuracy given that they were used to produce the ground truth data.
The automatic scar map had a mean of 91.7% and a standard deviation of 5.2%, while the
manual scar map XOR overlap had a mean of 91.6% with a standard deviation of 3.5%.

The scatter plot in Figure 2(b) shows the significant correlation between automatic scar
XOR overlap and manual scar overlap performance, indicating that the automatic algorithm
tends to perform worse on datasets that humans also find difficult to classify (Pearsons
coefficient of 0.48, p=0.0035). The automatic segmentation tends to perform the best on
scans with more consistent manual segmentations.

The plot in Figure 3 shows similar results but using the Dice overlap measure. As described
in detail in Section 3.3, we express some concern about the bias that the Dice coefficient
gives for data sets where the volume of the scar map is large, over data sets where the
volume of the scar map is small. In contrast to the XOR overlap comparison, the Dice
overlap measure reports overlap in one case as low as 60% for both automatic and manual
scar maps. We attribute the less favorable comparison using this measure largely to that
bias, as both of the other measures reported better results.

The automatic algorithm, however, still performed on par with the manual scar map when
measured using the Dice coefficient. The automatic scar map Dice overlap varied about 3%
more than manual scar map as shown in Figure 3(a). The automatic scar map Dice overlap
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measures had a mean of 80.7% with a standard deviation of 10.6%, while the manual scar
map Dice overlap measures had a mean of 78.6% with a standard deviation of 7.2%.

There was no correlation between automatic scar Dice overlap and the manual scar overlap
performance (Pearson’s coefficient of 0.21, p=0.2263), however we present the same scatter
plot for the Dice overlap data in Figure 3(b) for completeness. Again, while this measure did
not show correlation, we conclude this is more a product of the measure than the algorithm,
as the other two measures (one used in clinical research) do show correlation.

Percentage of scar in the LA wall is a clinical measure that has shown potential for
interesting applications in AF research and treatment.4–6 Figure 4 shows the difference of
the automatic scar percentage and the ground truth percentage, as compared to the mean of
the differences between each of the expert scar classification and ground truth. Figure 4(a)
shows how the difference in the automatic scar varies 3% more than the experts. Figure 4(b)
shows a significant correlation between the two (Pearsons coefficient of 0.46, p=0.0056): as
the differences increase with the automatic scar, the manual differences also increase, i.e.,
the performance of the automatic scar classification is on par with the manual classification.
The automatic scar map percentage error mean was 8.1% with a standard deviation of 5.2%,
while the manual scar map percentage error mean was 6.9% with a standard deviation of
2.8%. Automatic scar percentage error varied about 2% more than manual experts.

Figure 5 shows an example automatic scar map compared to several manual (expert) scar
maps and ground truth. A relatively inconsistent result (only 82% XOR overlap) is displayed
to better illustrate scar map overlap. Figure 5(a) shows the automatic scar map overlaid on
top of the ground truth scar map. In this case the automatic scar map is smaller than the
ground truth. The manual approach also performed inconsistently, as can be seen in Figures
5(b),(c),(d). This figure also illustrates some of the variability in the manual approach:
Figure 5(b) is more generous in identifying scar than ground truth, while Figure 5(c) is more
particular, and Figure 5(d) is actually an exact match on this slice of the scan (other slices
have some mismatch for this observer).

4.3 Intra observer study findings
As described above, eight of the 34 scans were repeated 3 times to measure intra-observer
variability. Our intra-observer study on the ground truth dataset showed a mean standard
deviation of scar percentage among scar maps of the same image from a single expert to be
4.3% with a standard deviation of 2.7%, a maximum of 9.3% and minimum of 0.9%. We
were unable to show any significant correlation between the intra-observer variability and
inter-observer variability for a single scan.

By contrast, the proposed automatic scar map algorithm exhibited only minimal variability
from differences in random initializations, which can be mitigated using standard
approaches to k-means clustering.13

The variability of different observers in classifying scar for a single scan (see, for example,
Figure 5) indicates that some scans are more difficult for experts to agree on, such scans can
be considered ”difficult to classify”. This difficulty in classification may be related to image
quality, which would explain why the automatic algorithm also performs inconsistently on
those scans, as illustrated in Figures 2(b),4(b).

5. CONCLUSION
We have introduced an automatic algorithm for segmenting scar in the LA of cardiac LGE
MRI that has been verified against a manual ground truth scar map data set generated by
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expert observers. The proposed approach clusters pixels on normalized voxel intensity and
was chosen as the best combination of image features and parameters from several thousand
possible combinations. The proposed algorithm improves the speed and consistency of scar
classification over manual segmentation, and demonstrates accuracy that is comparable to
the expert ground truth in both location and volume. Because of its ease of use, the
automatic algorithm requires less training and expertise than manual segmentation, making
post-RFA LGE MRI analysis more accessible to researchers and clinicians.

One attractive aspect of this algorithm is its simplicity. The algorithm is simple to
implement and its parameters are easy to interpret. Some of its built-in assumptions,
however, such as the equivalence of variance across classes inherent in K-means, are likely
not entirely realistic for scar in the LA wall. In future work we hope to refine those
assumptions and improve results further. For example, relaxing the assumption of equivalent
variance, and allowing each cluster to have a different standard deviation has improved
results in preliminary tests. Relaxing select other assumptions may lead to further
improvements.

As described in Section 4.2, both manual and automatic approaches perform poorly on some
scans - those considered difficult to classify. Most likely due to image quality, future work
will explore why and possible ways of quantifying how difficult the image is to classify, as
well as how to improve classification on those scans.
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Figure 1.
The process of generating a scar map. An LGE MRI is acquired after an ablation procedure
and the LA wall is identified and segmented manually. The voxels in the LA wall
segmentation are then classified as scar or not and a scar map is generated. Current clinical
methods use manual classification of scar tissue, while this paper presents an approach to
automating the final classification step to generate the scar map.
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Figure 2.
(a) The box plots show that automatic scar difference varied about 2% more than manual
experts, when using XOR overlap. (b) The scatter plot shows the performance of the
automatic algorithm follows that of the manual, when measured using XOR overlap.
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Figure 3.
(a) The box plots show that automatic scar using NVI difference varied about 3% more than
manual experts, using Dice overlap. (b) The scatter plot shows no correlation between the
performance of the automatic algorithm and the manual approach, when measured using
Dice overlap.
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Figure 4.
(a) The box plots show that automatic scar percentage error varied about 2% more than
manual experts. (b) The scatter plot shows the performance of the automatic algorithm
tracks that of the manual.
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Figure 5.
A comparison of the automatic and 3 observer scar maps to ground truth overlaid on the
LGE MRI. (a) Automatic scar map (yellow solid) and ground truth (blue stripe) in the LA
wall (green outline). (b) Observer 1 scar map (red stripe) and ground truth (blue solid). (c)
Observer 2. (d) Observer 3.
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