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Abstract

SHI, BIBO, M.S., August 2011, Biomedical Engineering

Regularity-Guaranteed Transformation Estimation in Medical Image Registration (64 pp.)

Director of Thesis: Jundong Liu

In addition to seeking geometric correspondence between the inputs, a legitimate

medical image registration algorithm should also keep the estimated transformation

meaningful or regular. In this thesis, we present a mathematically sound formulation

that explicitly controls the transformation to keep each grid in a meaningful shape

over the entire geometric matching procedure. The deformation regularity conditions

are enforced by maintaining all the moving neighbors as non-twist grids. In contrast

to similar work, we differentiate and formulate the convex and concave folding cases

under an efficient and straightforward point-to-line/surface orientation framework, and

use equality constraints to guarantee grid regularity and prevent folding. The equality

constrained optimization problem is efficiently solved using the augmented Lagrangian

Mulplier method. Experiments on human brain MR images are presented to show the

improvements made by our model over the popular Demon’s and DCT-based registration

algorithms. Extension to develop a clinical registration package including the regularity

guaranteed conditions is also explored.
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1 Introduction

Medical imaging was pioneered by Roentgen through the discovery of the X-ray.

The first non-invasive radiography on part of a human body, Mrs. Roentgen’s hand,

was taken on December 22, 1895, along with tremendous uncertainty or even fears [37].

Since then, medical imaging techniques have been on a booming stage, and have proven

to be a robust and vital tool that assists clinicians in many aspects, including clinical

diagnosis, monitoring disease progression, treatment verification, and surgical planning.

While image acquisition is focused on designing more modalities and speeding up the

imaging procedure, image analysis, the process to extract the useful information from

the acquired image data, has been playing a more and more important role in the entire

application spectrum. At present, research in medical image analysis is mainly focused

on developing computational models and algorithms to analyze and quantify medical data,

thereby exploring and maximizing their utilization in clinical settings.

One of the characteristics of medical data sets is their volume. Take Magnetic

Resonance Imaging (MRI) as an example. During one imaging session, multiple scans,

with different imaging protocols, of the same patient will be obtained. The combined data

size could easily be as large as 1-2 Gigabytes. With the vast amount of medical image data

produced everyday, a problem that commonly arises is how this data can be compared and

effectively utilized.

Usually, the data sets are taken at different times on different machines (for both

single modality or multi-modality cases). Inevitably there will be some motion between

them. Image registration, the process of matching two or more images spatially,

therefore becomes the prerequisite step for the complementary information to be effectively

combined and integrated.

Besides medical applications, image registration has also been widely used in

various other areas [48], e.g., remote sensing (multispectral classification, environmental
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monitoring, change detection, weather forecasting, creating super-resolution images,

integrating information into geographic information systems (GIS)), cartography (map

updating), and computer vision (target localization, automatic quality control), etc.

Registration in medical applications, however, has some unique aspects, which stem from

the unique properties of 3D medical data [18]: the modalities of image information that

are acquired, the fully three-dimensional image data, the non-rigid nature of object motion

and deformation, and the statistical variation of both the underlying normal and abnormal

ground truth.

The following sections illustrate in detail a variety of aspects of the medical image

registration problem. We start with the mathematical definition of image registration, and

will touch upon the regularity issue within the deformation estimation procedure.

1.1 Medical Image Registration

According to a well accepted definition by D.L.G. Hill [17], registration is the process

of “determining a transformation that can relate the position of features in one image

or coordinate space with the position of the corresponding feature in another image or

coordinate space. Typically, this space deformation between two images or coordinate

spaces results from the following three manners of image acquisition [48]:

1. Different viewpoints (multi-view analysis): images of the same scene are acquired

from different viewpoints;

2. Different times (multi-temporal analysis/ longitudinal analysis): images of the same

scene are acquired at different times, possibly under different conditions;

3. Different sensors (multi-modal analysis): images of the same scene are acquired by

different sensors.
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The latter two types of analysis are usually of more practical use in the modern clinical

setting. Regarding longitudinal analysis, time series of medical images are acquired for

various reasons [31], such as monitoring of brain shrinkage (long interval), monitoring of

tumor growth (medium internal), post-operative monitoring of recovering (short interval),

or relocating the mesh of virtual reality with organs of the patients during operation (ultra-

short interval). On the other hand, multi-modal analysis provides the medical practitioners

with a comprehensive base that usually merges both anatomical and functional information.

Currently, the conventional anatomical imaging modalities are Ultrasound (US), X-Ray,

Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), while functional

MRI, Positron Emission Tomography (PET), and Single Photon Emission Computed

Tomography (SPECT) are used to depict the functional activities.

Figure 1.1 shows the structure and function combined in an individual with the

posterior cortical atrophy variant of Alzheimer’s disease. The structure is given with MRI

(top), the function with PET (middle) and the two modalities fused together (bottom).

1.1.1 Registration Framework as an Optimization Problem

Typically, the process of image registration is formulated as an optimization problem,

as shown in Figure 1.2. The inputs to the registration are: a reference (or static) image

R(x), and a floating (or moving) image F(x), which will be changed over the deformation

estimation process. An objective function J will be optimized to determine a transformation

field T (assigned to each point x) that minimizes the difference between F(T (x)) and R(x),

where F(T (x)) is the transformed floating image.

J(T (x)) := D(R(x), F(T (x))) (1.1)

Most registration algorithms contain the following four crucial components [9]:
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Figure 1.1: Multi-modal analysis: registration of MRI and PET images, from up to down: MRI,
PET, and after fusion; from left to right: horizontal plane, coronal plane, and sagittal plane (from
the webpage of Department of Clinical Neurosciences, University of Cambridge, available online
at http://www.neuroscience.cam.ac.uk/).

1. Feature Space: The first step in registration is to decide what type of information

extracted from the image would be used as the basis for matching. The common

features used in registration are: raw intensity (most cases), edges, salient features

(e.g., points of locally maxium curvature on contour lines, line intersections),

statistical features (e.g., moment invariants), higher-level features, etc. In this thesis,

we are mainly focused on intensity-based registration.

2. Similarity Metrics (term D): The second step for designing a registration method

is the selection of a similarity metric, which is closely related to the chosen feature

space. Similarity metrics are of significance for quantifying the similarity (or



13

Figure 1.2: Components of image registration

difference) of two input images, measuring how well they are matched together. Sum

of Squared Differences (SSD), Correlation Coefficient (CC), and Mutual Information

(MI) are among the widely used metrics for medical image registration. The selection

among them is highly dependent on the specific problem.

3. Transformation (term T ): The transformation that needs to be determined through

the optimization is the goal and outcome of the registration solution, which spatially

maps the pixels/voxels of the floating and reference image. Usually, different

models of transformation indicate different assumptions about the deformation and

other variations presented in the images. Models can be grouped under different

perspectives: global vs local, linear vs non-linear, or parametric vs non-parametric

transformation. Details of two exemplary transformation models used in this thesis

will be given in chapter 2.
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4. Optimization/numerical strategy: Due to the large computational costs stemming

from the volume of the medical images and/or the chosen dense transformation

model, the numerical strategy to solve this optimization problem plays a determining

role for both the efficiency and viability of the whole procedure. Starting with an

initial set of parameters for the transformation field, the numerical strategy would

iteratively search for the optimal transformation field by evaluating the similarity

metrics at each step. Generally speaking, current popular strategies can be classified

into two categories: function value based, e.g., Powell’s method, and gradient based,

e.g., steepest descent or conjugate gradient. In practice, those strategies are tailored

to fit in certain specific circumstances, in order to either speed up convergence, or to

avoid local minima.

1.1.2 Registration as an Ill-Posed Problem

Figure 1.3: Infinite solutions for image registration

When formulated with the similarity metrics alone, image registration is an inherently

ill-posed [21] problem with infinitely many solutions for a pair of inputs. Figure 1.3

presents a very simple example, showing a gray square on a white background. The

possible transformations between them are limitless: translation firstly along the X-axis



15

direction, then Y-axis direction; rotation about 180 degrees around the center of the image;

or even winding path from the left-bottom to right-top corner. This example indicates

that a mathematically valid solution to the optimization problem may not be accepted

as legitimate under the context of image registration, where unique and meaningful

transformations are highly desired in real world applications, especially in the medical

field. Consequently, regularization for image registration is necessary in order to produce

meaningful matching and integrate users’ (e.g., medical practitioner) domain knowledge

into the framework. Thus, image registration can be further described as a constrained

optimization problem, of which the objective function consists not only of the similarity

metrics D, but also certain soft constraints (penalty) and/or hard constraints (guarantee).

The implementation of soft constraints is to add a penalty term Reg to the objective

function, penalizing unwanted solutions. The overall framework would be:

Minimize: J(T ) = D(R, F(T )) + λReg(T ) (1.2)

where λ is a weighting factor that controls the relative influence of similarity metrics

and regularization. Automatically setting up the optimal value of λ is a nontrivial issue:

too large λ will effectively rule out the unsatisfied solutions, however, probably resulting in

poor registration effect; too small λ will not guarantee the uniqueness of the transformation

in spite of good matching.

In contrast to the penalty approach, approaches based on hard constraints can

completely rule out the unwanted transformations, thus ensuring the uniqueness of the

registration results. The formulation for this approach is usually as below:

Minimize:J(T ) = D(R, F(T ))

Subject to: C(T ) (1.3)
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where the term C(T ) is the constraint condition, which could be either an inequality

or equality equation that describes a specific regularization enforced for different purposes.

Besides the explicit approaches, a group of solutions rely on implicit model of

transformation to achieve regularizations. For example, rigid or affine transformation is

internally smooth. Through these regulating constraints, different aspects of regularization

can be achieved. A detailed literature review of the related regularization approaches will

be given in Chapter 2.

1.2 Motivation for our Regularity-Guaranteed Image Registration

Image registration has been successfully employed in various medical applications,

greatly advancing the development of diagnostic methodologies. Along with the growing

maturity and increasing sophistication of medical imaging techniques, the subjects of study

have also become increasingly complex: from simplex tissues (e.g., bone) to organs (e.g.,

human brain), and from anatomical structures to functional activities.

As the most anagogic organ in the human body, the brain is extremely delicate. It is an

essential organ that directly determines the quality of everyone’s daily life. Each year, more

than 50 million Americans are plagued with neurological illnesses, at costs exceeding $460

billion [22]. Neurodegenerative diseases, including Alzheimer’s Disease (AD), Parkinson’s

Disease (PD), etc, are among the most studied neurological abnormalities across the world.

Continuous brain tissue deformation is one of the common patterns among these diseases,

which gradually leads to various deteriorations in neurological functions. Longitudinal

neuroimaging studies conducted on different groups have helped reveal the development

paths in AD and PD, where the correspondence obtained through image registration is an

essential component to quantitatively observe the changes over time.

Although the importance of the role image registration plays in longitudinal studies

is well recognized, the specific regularization regarding the unique characteristics of
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neurodegenerative diseases has not been extensively researched. When it comes to

registering human brain images, we believe two particular requirements should be

put as the first and foremost considerations: topology preservation and registration

accuracy. The reasons are multifold. For neurodegenerative diseases, especially AD,

the shrinkage and expansion in various brain areas are gradual and continuous, where

the topological relationship among different cortical and subcortical structures is relatively

well maintained, at least in the early stage of the disease. In order to recover meaningful

correspondence and deformations over time, topology preserving image registrations that

guarantee the regularity of the estimated deformation fields are highly desired.

Accurately capturing disease progression process is another vital component of a

reliable longitudinal study. The Jacobian determinants (details will be given in chapter

2) of the estimated deformation fields provide a biologically interpretable measure of

local volumetric expansion or compression. After removing the global effects of size,

the combined voxelsize Jacobian can be used to reveal certain global variations among

different, e.g, age or gender, population groups. This is the foundation of a very popular

quantitative image analysis technique called Deformation-Based Morphometry (DBM)

[16].

As a summary, designing topology preservation and regularity guaranteed registration

frameworks is highly desirable for conducting longitudinal neuroimaging studies, which is

the focus of this thesis.

1.3 Thesis Contribution

In this thesis, we review the current regularization methods associated with medical

image registration, and develop a novel and robust regularization method for easily

integrating prior knowledge about neurodegenerative diseases into an efficient constrained

optimization framework. The major contributions can be summarized as:



18

• An extensive and comprehensive literature review regarding the regularization

methods in medical image registration is summarized;

• A novel and robust regularization method is developed and validated;

• In contrast to previous work, we point out and differentiate the Convex/Concave

transformation cases;

• An efficient constrained optimization framework based on the Augmented Lagrangian

Multiplier method is carried out under two representative transformation models.

1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 will give a comprehensive

literature review of the regularization involved in image registration, as well as the

specific requirement for neurodegenerative diseases. In Chapter 3, the details of our

novel regularity-guaranteed method will be described, and the corresponding registration

component of the framework will also be examined, including the detailed numerical

solution used in this thesis. In Chapter 4, experimental results using our model are

presented, together with the comparisons made with other models. Chapter 6 concludes

this thesis and lays out the steps to complete the future work.
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2 Related work

In this chapter, we will conduct an extensive literature review of regularization

methods in medical image registration. The advantages and limitations of each method will

be closely examined, followed by the specific requirements of neurodegenerative diseases

(subjects of interest in this thesis) for topology regularization.

2.1 Regularization in Image Registration

It has been realized for a long time that image registration is an inherently ill-posed

problem [21]. Regularization constraints are needed to limit the number of possible

solutions. The existing regularization methods can be roughly classified into two classes:

regularity constraints on transformation smoothness and on transformation topology.

Those two types of regularizations have been extensively researched. To smoothe

the transformation, either basis function based, or physical model based methods can be

utilized; to preserve the topology, the majority of current work mainly relies on limiting

the Jacobian, which will be illustrated in section 2.1.2.

2.1.1 Regularization on Smoothness

The transformation field sought for during the image registration is firstly required to

be smooth enough, when the deformation type for objects of interest in images has been

analyzed from a global scale to a local one. Strictly speaking, the mathematical definition of

a “smooth” transformation field means it is differentiable, while in practice, this condition

may be compromised due to either a soft constraint, or computational expense. Broadly, the

smoothness can be imposed into transformation field by two ways, basis function expansion

based, and physical model based.
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2.1.1.1 Basis Function Expansion based

As explained in section 1.1, the transformation field T (X) should be applied to each

pixel of the images, while basis function expansion based transformation models use a set

of basis functions, the coefficients of which are adjusted so that the combinations of them

can fit the transformation field. The majority of these models are stemming from the theory

of function interpolation [32] and approximation [38, 42]. As a result, the approximation

function is usually much smoother than the originally dense transformation field. Several

well-used basis function expansion based models are introduced as following:

1. Global transformation [48]

Rigid: a transformation model is called rigid, only when the relative distances among

points within the images are preserved. This means there are just translations and

rotations during the transformation, which is described as:
u(x,y)=(cos(φ)x − sin(φ)y + dx) − x

v(x, y) = (sin(φ)x + cos(φ)y + dy) − y
(2.1)

where u(x, y) and v(x, y) denote the displacement at point (x, y) along the X-axis and

Y-axis direction. φ stands for the rotation angel, and (dx, dy) is the translation vector.

Affine: an affine transformation model can preserve the parallelism of two lines,

which can be expressed as:


u(x,y)=(a11x + a12y + dx) − x

v(x, y) = (a21x + a22y + dy) − y
(2.2)

where

 a11 a12

a21 a22


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is called the affine matrix, specifies the scaling and shearing changes of the

transformation.

Those global transformation models are always used in the first step before more

refined non-rigid models during registration, so that the local minimum can be

avoided, and the optimization can be sped up.

2. Radial basis function [48]

A radial basis function is an univariate continuous function of the distance ||x − xi||

between the interpolation point x and the basis function centers (or control points,

land positions) xi. A standard radial basis function is defined as:

T (x) =

n∑
i

ωiφ(||x − xi||) (2.3)

where i indexes the control points, n is the total number used, and ω are weights

determined by solving a set of linear equations. φ is standing for different forms

of radial basis functions, such as multiquadrics, weighed mean, thin-plate splines

(TPS), etc.

Multiquadrics: in multiquadric form, the φ(||x − xi||) is defined as follows [10]:

φ(||x − xi|| =

√
r2

i + d2 (2.4)

where ri is the Euclidean distance. The parameter d controls the degree of

smoothing, with larger d leading to stronger smoothing.

Weighed mean: in weighted mean, the φ(||x − xi||) is defined as:

φ(||x − xi|| =
Gi(|||x − xi|)∑n
i Gi(||x − xi||)

(2.5)
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where Gi stands for a monotonically decreasing radial basis function, such as

Gaussian or Cubic Gi.

TPS: TPS was originally used to design structures such as aircraft wings, and was

then applied to functions and interpolations [6, 25]. The φ(||x − xi||) here is defined

as:

φ(||x − xi|| =

n∑
i=1

Fir2
i ln r2

i (2.6)

3. B-splines

Originally proposed by Schoenberg [41], B-splines were often used to interpolate and

approximate scattered data. Recently, several papers, [30, 40] argued that B-splines

are optimal as approximating functions that can be used to model deformations

in registration. The most common form of B-splines used in registration is the

cubic B-spline, which is C2 continuous. For a control point Pi, j,k (3D) in a grid P

(i = −1, 0, . . . , l+1, j = −1, 0, . . . ,m+1, and k = −1, 0, . . . , n+1), the transformation

field (3D) is calculated as:

T (x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+lφ j+mφk+n (2.7)

where B are the coefficient functions:

B0(u) =
(1 − u3)

6

B1(u) =
(3u3 − 6u2 + 4)

6

B2(u) =
(−3u3 + 3u2 + 3u + 1)

6

B3(u) =
u3

6
(2.8)
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The B-splines basis functions can be extended to multivariate ones using tensor

products, of which FFD-based B-spline is a very common example [12].

4. DCT/DST

Mathematically, a discrete cosine/sine transform (DCT/DST) expresses a sequence

of finitely many data points in terms of a sum of cosine/sine functions oscillating at

different frequencies [3]. A set of low frequency 2D DCT basis functions are given in

Figure 2.1 . The choice between DCT and DST usually relies on the restriction of the

image boundaries: if points at the image boundaries are required to be stable during

the registration, DST are selected; if no constraints are imposed on the boundaries,

DCT is preferable. Here, we would just introduce DCT.

Figure 2.1: The lowest frequency basis functions of 2D DCT
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In one dimension, the DCT of a function is generated by pre-multiplication with the

matrix DT , where the elements of the M by N matrix D are defined by:

dm,1 =
1
√

M
m = 1 . . . M

dm,n =

√
2
M

cos(
π(2m − 1)(n − 1)

2M
) m = 1 . . . M, n = 1 . . .N. (2.9)

In two dimensions, the DCT of a I by J matrix A is generated by the production:

A = D1 ∗ Q ∗ DT
2 (2.10)

where D1 is a I by M matrix, which can be obtained using the equation 2.9; and D2

is a J by N matrix, which can also be obtained in the same way. And, Q is a M by N

coefficient matrix. Consequently, if T (x) is considered as two I by J matrices Tx(x)

and Ty(x) respectively for X-axis and Y-axis direction, the transformation field would

be constructed by D1 ∗Q1 ∗DT
2 and D1 ∗Q2 ∗DT

2 . Therefore, the optimization process

would seek the appropriate coefficient matrices Q1 and Q2, which, in the end, T (x)

can be easily calculated.

2.1.1.2 Physical Model based

Another group of regularization models are formulated under certain physical laws.

With various materials as the assumed underlying medium, different levels of regularization

smoothness can be achieved.

1. Linear elastic model

Linear elastic model is derived from the theory of linear elasticity based on notions

of stress and strain [44]. Generally speaking, when a body is subject to an external

force, this would lead to internal forces within it, causing deformation. The internal

forces are classified into body and surface forces. When they are balanced with each
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other, a linear elastic material is in equilibrium, which could be described by the

Navier-Cauchy linear elastic equation [44]:

µ 52 ~u + (µ + λ) 5 (5·~u) + ~f = 0 (2.11)

where µ and λ are Lame parameters [20], u is the displacement field, the change of

transformation at each step (∆T ). And f denotes the body force, here, standing for

the driving force for registration (numerically, the first order derivative of the cost

function). To implement this model, one has to solve the elastic linear equation 2.11

to obtain the update of transformation field u at each step, until the similarity metrics

are minimized.

This linear elastic model based on the Navier-Cauchy equation is essentially an

optimization process involving the balance of the external force and the internal

stress, thus imposing smoothness on the update of transformation. This model can

be integrated with different methods, such as variational frame [33], finite difference

[4, 8], FEM [24], and Fourier transform method [32]. Due to the restrictive linear

elasticity, this model may not be plausible for many biological materials that have

a non-linear stress-strain relationship. Meanwhile, it is only accurate for small

deformations.

2. Viscous fluid flow model

Viscous fluid flow model was proposed to recover large deformations, which cannot

be done by linear elastic model that relies on the assumption of an infinitesimal

small deformation [15]. The underlying foundation for the viscous fluid model

is continuum mechanics, which brings up physical laws conforming to Newtonian

mechanics, such as the conservations of mass, energy, and linear and angular

momentum. To put it simply, in contrast to the linear elastic model that is

characterized by a spatial smoothing of the transformation change u, the viscous fluid
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model is characterized by a spatial smoothing of a special fluid term - fluid velocity

v, which can be obtained through:

v(x, t) =
∂u
∂t

+ v 5 u. (2.12)

Similarly like the Navier-Cauchy equation, the Navier-Stokes equation describes

the equilibrium state of a given region of the fluid, where the changes in momentum

balance with the changes in pressure and dissipative viscous forces, as expressed:

µ 52 v + (µ + λ) 5 (5· v) + f = 0 (2.13)

in which, λ and µ are viscosity constants. At each time step, the velocity field is

calculated in viscous fluid registration, rather than the transformation field in elastic

registration. This model was firstly proposed by Christesen et al. [13–15] to deal

with the large deformation in biomedical materials. Although it allows large local

deformation, solving the Navier-Stokes equation is computationally intensive, which

is a major problem.

3. Optical flow model

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in

a visual scene caused by the relative motion between an observer and the scene

[11, 47]. The basis hypothesis of the optical flow model is based on the intensity

conservation between image frames, which can be described as:

~u· ~5s = m − s (2.14)

where m and s are intensity for two image frames, which, in registration, could be

regarded as floating and reference images separately; u is still the displacement field.
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Thirion [45] was inspired by this, and considered the non-rigid registration as a

diffusion process, bringing up the well known demons algorithm. He introduced

demons that push according to local property of images, in a similar way as Maxwell

did for solving Gibbs paradox. The displacement is calculated through a numerical

stable expression of the equation 2.14, as follows:

u =
(m − s) 5 s

|| 5 s||2 + (m − s)2 . (2.15)

Meanwhile, to reduce the effects of noise, the displacement field u is smoothed by

Gaussian convolution. During the whole algorithm, the displacement at each iteration

is calculated by the equation 2.15, and the reference image is refreshed for the next

iteration.

2.1.2 Regularization on Topology

Comparing with regularization on smoothness, topology preservation is a hard and

more localized constraint, which ensures that connected structures remain connected, and

the relative positions among different structures are well maintained over the deformation

process. In longitudinal studies, topology stability among different brain structures/tissues

is expected for individual subjects. Correspondingly, topology preservation makes a

meaningful and justified requirement, and any reasonable deformation estimation algorithm

should conform to it.

The property of topology preservation is highly related to the continuity and

inversibility of the transformation field. Mathematically, to be a topology-preserving

transformation, T (x) must be: (a) continuous, (b) bijective (one on one) mapping [34].

The continuity of the transformation is to ensure the local neighborhood relationship,

while the bijectivity maintains that each point in the floating image has one and only one

corresponding point in the reference image and conversely.
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To meet the greater challenges of observing and tracking biological deformation, a lot

of work has been done to better preserve topology of transformation in image registration

[15, 26, 27, 34, 35, 39, 43]. Currently, almost all of the topology-preserving approaches

are based on the Jacobian matrix and its determinants.

The Jacobian matrix is consisting of all first-order partial derivatives of a vector-

or scalar-valued function with respect to another vector. In the application of image

registration, it is applied to the transformation field in each direction, which is described as

followed:

J =


∂Tx(x)
∂x

∂Tx(x)
∂y

∂Ty(x)
∂x

∂Ty(x)
∂y

 (2.16)

where Tx(x) and Ty(x) are the Cartesian components of the transformation field T (x)

over X-axis and Y-axis direction. And, its determinant JT is also simply called the Jacobian.

The reason for using the Jacobian is its good preservation of local bijectivity, which is

obtained by enforcing JT to be positive all over the transformation domain. Furthermore,

the transformation is incompressible if JT is equal to one, locally compressible if it is less

than one, and expansible if greater than one.

Christensen et al. [15] firstly embedded the topology-preserving regularity into a

viscous fluid material deformation model, under an Eulerian framework. The Navier-

Stokes partial derivative equations were used to deal with large deformation. The global

positivity of the Jacobian were ensured in this way: when the magnitude of the Jacobian

drops below a certain value, specifically 0.5, the current computation is stopped and a new

propagated template image is generated equal to the deformed template at the previous

instant. Generally speaking, this could be the first time that topology-preservation is

taken into account of during the non-rigid image registration. However, it was not fully

illustrated, which, instead, was regarded as the part of smoothing regularity. Meanwhile,
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both the computational cost and the necessity to tract the discrete Jacobian in order to avoid

numerical divergence are serious problems that we can’t afford to ignore.

In [34] and [35], Armspach et al. proposed a hierarchical model based on B-spline

basis functions, which ensures a topology-preserving deformable mapping in both 2D and

3D space. The topology is preserved by limiting the Jacobian in a positive interval through

a penalty approach. And also, different intervals are analyzed to achieve the best regularity

effect. They clearly elaborated the definition and significance of topology-preservation in

medical image analysis. Nevertheless, their characterization of the Jacobian is valid only

with using the linear interpolating spline.

Especially inspired by the case of pre- and post-contrast MR breast images, Rohlfing

et al. [39] made the assumption that soft tissue is incompressible for small deformations

and short time periods. With a mutual information objective cost function, they penalized it

by adding the absolute value of the log of the Jacobian. Correspondingly, a soft constraint

that regularizes the local volume-preservation is implemented. Blended together with a

smoothness constraint within the overall objective function, the impressibility property is

favored, but not guaranteed.

Karacali and Davatzikos [27] also impose enforcement of the constraint based on

the Jacobian, which is through a general formalism derived with regard to the discrete

approximations to the Jacobian matrix. Although it looses the regularity control, allowing

volumetric change within a prescribed interval, hyper regularity is still existing due to

preventing the concave deformation.

In [26], Haber et al. set upper and lower bounds for the Jacobian during the registration

procedure. A log-barrier function scheme is employed to convert the constraints to an

unconstrained optimization problem, where Gauss-Newton approximation is applied to

solve the system. Along with a new type of discretization, this method successfully

prevents large scale changes of the volume. On the other hand, they have to pay extra
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attention to the discretization of the constraint built on a dense transformation, which is

highly computationally unattractive.

Sdika [43] used B-spline as the global smoothness constraint. The topology regularity

is imposed through the positivity of the Jacobian, as well as bounded Jacobian derivatives.

Meanwhile, instead of the soft constraint used in previous research, he implemented the

augmented Lagrangian Multiplier method to solve the constrained optimization problem.

Generally speaking, these works and their variants have one thing in common: the

enforced regularity cases specified by the Jacobian constraints are all convex, where the

concave cases, allowed in many applications, have been ruled out. Detailed explanation of

the convex/concave regularity cases will be given in Chapter 3.

2.2 Specific Requirements for Neurodegenerative Diseases

The human brain, though just a spongy, three-pound mass of fatty tissue, is much

more complicated and delicate than what we can imagine. It controls a person’s body

activities, ranging from heart beat and sexual function to emotion, learning and memory. It

is the single most important organ that shapes our thoughts, hopes and characters, which

ultimately defines everyone’s personality.

However, neurodegenerative diseases, resulting in the progressive loss of structure

or function of neurons in the human brain, devastate its normality badly. Many

neurodegenerative diseases including Parkinson’s, Alzheimer’s, and Huntington’s largely

affect the population, e.g., more than 50 million Americans annually, at costs exceeding

$460 billion [22]. Details are given in Table 2.1.

In spite of great efforts poured into this field, robust, safe and effective therapy is

still unavailable at present, while great progress has been made in diagnosis through

genetics, biochemistry, cell biology, experimental treatments, and brain imaging studies.

At present, the final causes and mechanisms are not yet fully understood, but the opinion
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Table 2.1: The Toll of Selected Brain and Nervous System Disorder on Americans

Condition Total Cases Cost per Year (U.S. dollars)

Sleep Disorders 70 million 100 billion

Alzheimer’s Disease 5 million 148 billion

Parkinson’s Disease 1 million 5.6 billion

Stroke 5.2 million 51 billion

· · · · · · · · ·

that those diseases are mainly associated with the accumulation of protein degradation

has been confirmed. Different diseases may enter different protein degradation pathways at

different times, but the commonality among them is the interdependent cell deaths triggered

[7]. Reflected into a large-scale and longitudinal analysis, different parts of the human

brains are undergoing a dramatic morphologic deformation. Therefore, quantifying the

deformation through the medical image analysis would be of great significance in hunting

important bio-markers, e.g., deformation starting position, volume change, and change rate.

Moreover, the deformation is non-homogenous (the deformation cannot be easily separated

into expansion or compression), as shown in Figure 2.2. Obviously, the tissue in the areas

of cortex and hippocampus are extremely shrunk, while a large expansion happens in the

part of ventricles. Thus, the homogenous regularity with respect to volume change is not

suitable.

As stated before, the current topology-preserving works are mainly limiting the

Jacobian to certain values or between certain intervals, which is homogenous with respect

to the volume change. After fully considering the special case in neurodegenerative

diseases, we claim that it is more essential to keep the relative neighborhood relationship

between the tissue cells in the topology preservation of the human brain, rather than to
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Figure 2.2: Comparison of a normal aged brain (left) and an Alzheimer’s patient’s brain (right)
(from the webpage of “Alzheimer’s Disease Education and Referral Center, a service of the National
Institute on Aging.”).

constrain the whole volume. Inspired by this, we propose a new Non-Twist regularization

based on point-line/surface orientation theory, which guarantees the relative position of

each pixel or voxel in registration, thus preserving the topology.
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3 Non-Twist Regularization Framework

In this chapter, we introduce our Non-Twist guaranteed image registration in detail.

Our Non-Twist regularization is fully illustrated from the original derivation of point-line

orientation theory. Besides, the four crucial components of image registration framework

used in this thesis are also explained.

3.1 Non-Twist Regularization

Topology regularity, more specifically the preserved neighborhood relationship, will

be violated if transformation grid corners flip their relative positions during the registration

procedure. Shown in Figure 3.1 are a 2D grid and the associated transformation scenarios.

Let A be the point of interest, and ABCD be the grid to study. After each spatial update,

A might end up in one of the three destination areas in Figure 3.1(a), marked with gray,

orange, and blue colors, respectively. The corresponding resultant grids are shown in

Figure 3.1 (b), (c) and (d). Because it satisfies the positivity of the Jacobian criterion,

scenario (b) is usually taken as a topology preservation case, and we call it the convex case,

as it maintains the convexity of the starting grid ABCD. Scenario (c), which we call the

concave cases, are regarded as illegal and ruled out by most aforementioned works, even

though they are acceptable in reality as no twisting has happened. Cases in (d) are indeed

twisting the grids and they should be prevented from happening.

Identifying the three cases (convex and concave, and twisting) can be easily performed

through the point-line/surface test [19] commonly used in the computational geometry

community, which is illustrated in Figure 3.2.
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(a)

(b) (c) (d)

Figure 3.1: Illustration of possible grid update scenarios. (a) starting grid; (b) convex case; (c)
concave case; (d) twisting case, which should be avoided.

(a) (b)

Figure 3.2: Point-line orientation. (a) Positive orientation: P0 is on the right side of the line P2P1;
(b) Negative orientation: P0 is on the left side of the line P2P1.
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In Figure 3.2, two point-line orientations are given. To decide the orientation

numerically, we use the matrix:

Λ =


X0 Y0 1

X1 Y1 1

X2 Y2 1

 (3.1)

X and Y are coordinates for each point, and the order of the points should be paid

attention to. The orientation of P0 to
−−−→
P2P1 is positive if and only if sign (detΛ) = +1, and

it is negative if and only if sign (detΛ) = -1.

Based on this, the convex case requires a combination of three negative orientations:

A is on the left side of
−−→
BD, left side of

−−→
BC and left side of

−−→
CD. Converting to matrix format,

the following three constraints have to be held to ensure the convex case.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xa ya 1

xd yd 1

xb yb 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xa ya 1

xc yc 1

xb yb 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xa ya 1

xd yd 1

xc yc 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 0. (3.2)

Combing the convex and concave cases together (the gray and orange areas in

Figure 3.1), the overall accepted update scenarios can be translated to a Boolean predicate:

(A is on the left side of
−−→
BD) OR ( (A is on the left side of

−−→
BC) AND (A is on the left side

of CD)).

Furthermore, if this regularity is applied to each corner of each transformation grid

during the whole iteration process, no twist would happen in each step, thus maintaining

the relative neighborhood relationship.

3.2 Integration with Registration Framework

Our Non-Twist regularization can be easily integrated into various registration

algorithms. In this thesis, we choose the Demon’s algorithm and the DCT-based algorithm

(used in SPM [23]) as the testbed to show the effectiveness of our constraint. Justification of
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using these two algorithms lies in the fact that they belong to different algorithm categories

(physical model based and radial basis function based), and both have been widely used

across the neuroimage community. Like many other non-rigid registration algorithms, the

Demon’s and the DCT are also formulated as the optimization of an objective function

to determine transformation field T that minimizes the difference between the reference

image R and floating image F. the Demon’s uses Sum of Squared Differences (SSD) as

the similarity metric, and the squared gradient of the transformation field as smoothness

regularization. Given the transformation field T , it computes a correspondence update

displacement field u by minimizing:

E(u) = |R − F · (T + u)|2 + σ2|u|2 (3.3)

where σ is a constant for intensity and transformation uncertainty.

The DCT-algorithm also uses SSD as the similarity metric. Unlike in the Demon’s,

the smoothness property in the DCT, however, is fulfilled through a linear combination of

lower-frequency components of the DCT. The deformation field can be obtained by solving

a small set of coefficients controlling the basis functions. For more details with respect to

these two methods, we refer readers to Chapter 2.

Integrating our Non-Twist constraint with the Demon’s and the DCT is straightfor-

ward. Taking the convex case as an example, the new optimization objective is simply:

Minimize: E(u)

Subject to: (A ⇑ BD) AND (A ⇑ BC) AND (A ⇑ CD) (3.4)

where A ⇑ BD denotes the requirement that A lies on the left side of
−−→
BD.
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3.3 Numerical Solutions for Constrained Optimization Problem

As illustrated in a previous section, our proposed Non-Twist constrained image

registration has been reduced to a typical constrained optimization problem, whose

standard form is as follows:

Minimize: f (x)

subject to:


gi(x) ≤ 0, i = 1, · · · ,m

h j(x) = 0, j = 1, · · · , l
(3.5)

where f (x) is the objective function to be minimized, g(x) are a set of inequality

constraints, and h(x) are a set of equality constraints. Previous approaches based on the

Jacobian usually use inequality constraints to limit the value of the Jacobian in certain

intervals, while our approach takes use of equality constraints to restrain the sign of the

Boolean predicates 3.4 to be either 1 or −1.

3.3.1 Constrained Optimization

In Chapter 1, we have mentioned that optimization constraints can also be divided into

soft or hard types from the algorithmic point of view. Hard constraints are the ones that

must be satisfied at all optimization iterations, and must be feasible at all iterations; soft

constraints are not so strict: they require that the final results are indeed the minimizer, but

during the process, the constraints may be sacrificed to find the shortcut. Consequently,

feasible algorithms using hard constraints are usually slower and more computationally

expensive, and cannot follow shortcuts to the solution that crosses the infeasible territory

[36].

To solve the constrained nonlinear optimization, the Karush-Kuhn-Tucker (also known

as the Kuhn-Tucker or KKT conditions) are necessary for a solution to be optimal,

given that some regularity conditions (KKT conditions) are satisfied [28, 29]. Recall
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the optimization problem in 3.5, where the objective function f (x) is: Rn → R and the

constraints are gi : Rn → R and hi : Rn → R. Meanwhile, they have to be continuously

differentiable at a point x∗. The KKT conditions claim that if x∗ is a local minimum

that satisfies some regularity conditions, then there exist constants µi(i = 1, ...,m) and

λ j( j = 1, ..., l)), called KKT multipliers (or Lagrange multipliers), such that the following

properties will be valid [2]:

Stationarity:

5 f (x∗) +
∑m

i=1 µi 5 gi(x∗) +
∑l

j=1 λ j 5 h j(x∗) = 0, (3.6)

Primal feasibility:

gi(x∗) ≤ 0, for all i = 1, . . . ,m

h j(x∗) = 0, for all j = 1, . . . , l (3.7)

Dual feasibility:

µi ≥ 0, for all i = 1, . . . ,m, (3.8)

Complementary slackness:

µigi(x∗) = 0, for all i = 1, . . . ,m. (3.9)

Although KKT conditions may not lead directly to a very efficient and numerical

algorithm for Nonlinear Program Problems (NLPs), they do contribute in the following

aspects:
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• They give insight into what optimal solutions to NLPs look like;

• They provide a way to set up and solve small problems;

• They provide a method to check solutions to large problems;

• The Lagrange multipliers can be seen as shadow prices of the constraints.

3.3.2 Practical Numerical Solutions

Practically, to solve constrained optimization problems, numerous solutions have

been proposed, which include but are not limited to: penalty function method, Lagrange

Multiplier method, augmented Lagrange Multiplier method, Quadratic programming, etc.

In this thesis, to implement this optimization with our proposed constraint and validate

its expected effect, in the early stage, a large-scale nonlinear algorithm using interior-

point based sequential quadratic programming (SQP) is adopted and adjusted specifically.

Because of its use of a trust region framework that allows for the direct use of second

derivatives and the inaccurate solution of sub-problems [12], this optimization algorithm

is comparably efficient in dealing with the dense transformation field. Since the whole

problem is large and indefinite, previously, we took use of the currently available function

Fmincon in MATLAB®Optimization Toolbox, which attempts to solve problems of the

form:

Minimize: F(X)

subject to:


A ∗ X <= B, Aeq ∗ X = Beq (linear constraints)

C(X) <= 0, Ceq(X) = 0 (nonlinear constraints)

LB <= X <= UB (bounds)

(3.10)

where F(x) is the objective function, and X is the variable of solution. The constraints

include linear, nonlinear, and boundary. To fit our proposed method, we only need to set
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up the nonlinear equality constraint, and satisfy the other constraints by using identical

equations or inequations.

The numerical solution of a registration approach largely determines its practical use.

Although using the embedded function Fmincon is very convenient to validate our proposed

regularization in the early stage, its potential and performance to be applied in 3D is

in doubt. Therefore, implementing the numerical solutions by our own is necessary for

solving the constrained optimization problem in 3D.

An important and widely used class of methods for solving constrained optimization

problems is to convert the original constrained problem to a sequence of unconstrained

subproblems, which includes Quadratic penalty method, Logarithmic barrier method, and

augmented Lagrangian method [36]. The fundamental approach of this class is to replace

the original problem by a new objective function that consists of [36]

• the original objective of the constrained optimization problem, plus

• additional terms for each constraint, which is positive when the current point x

violates that constraint and zero otherwise.

1. Quadratic penalty method

The simplest penalty function is the quadratic penalty [36], in which the penalty

terms are the squares of the constraint conditions. Here, we only discuss the equality-

constrained optimization. Based on the problem described in the equation 3.5, the

new unconstrained quadratic penalty objective function is

Q(x; µ) = f (x) +
1

2µ

∑
i

h2
i (x), (3.11)

where µ > 0 is the penalty parameter. The increasing severity of penalizing the

constraint violations is relying on driving µ to zero. The practical algorithmic

framework is specified in Figure 3.3.
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Figure 3.3: Algorithm of the quadratic penalty method

2. Logarithmic barrier method

A different approach is the logarithmic barrier method, in which logarithmic terms

are used to prevent the optimization path from moving too close to the boundary of

the feasible region [36]. The new unconstrained logarithmic objective function is

P(x; µ) = f (x) − µ
∑

i

log hi(x), (3.12)

where log denotes the natural logarithm. The practical algorithmic framework is

specified in Figure 3.4.

3. Augmented Lagrangian method

Both the quadratic penalty method and logarithmic barrier method are ill condition-

ing [36], and they are not strictly feasible constrained optimization methods using

hard constraints. The augmented Lagrangian method is related to the quadratic

penalty method, but it avoids the ill conditioning inherent in this method by introduc-

ing explicit Lagrange multiplier estimates at each iteration into the objective function

[36]. Also, it tends to yield less ill conditioned subproblems than does the logarith-
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Figure 3.4: Algorithm of the logrithmic barrier method

mic barrier method. Thus, it is a strictly feasible method to maintain hard constraints.

The augmented Lagrangian function is

L(x; λ; µ) = f (x) −
∑

i

λihi(x) +
1

2µ

∑
i

h2
i (x), (3.13)

where λ is the Lagrange multipliers based on KKT theory. The practical algorithmic

framework is specified in Figure 3.5.

Figure 3.5: Algorithm of the augmented Lagrangian method
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Based on the aforementioned illustration and discussion on the feasibility of the

algorithms, we choose and implement the augmented Lagrangian method, which ensures

the Non-twist constraints during the whole process of optimization. The detailed code

segment can be found in Appendix.A.
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4 Experimental Results

In this chapter, we present several groups of experiments on 2D synthetic image data

to demonstrate the improvement made by our proposed registration regularity. We have

implemented the proposed Non-Twist regulariztion, and tested its effectiveness through

two paired algorithms: the Demon’s vs Demon’s + Non-Twist and the DCT vs DCT +

Non-Twist.

Since non-rigid image registration is an inherently ill-posed problem, where infinitely

many solutions exist for a given input, there is no single best scheme to assess the

performance of various registration algorithms. Numerous methods have been proposed

in the literature attempting to establish a commonly accepted framework, but very few

achieved the goal. An exception is the optical flow evaluation approach proposed by

Barron et. al [5], with the support of an available public database. Vector angles between

the ground truth and the estimated transformation vectors are employed to provide an

indication how well a registration algorithm recovers the deformation field. In this chapter,

we will utilize the same measure to demonstrate the improvements made by our Non-Twist

algorithm, however, it should be noted that: being extremely faithful to the ground truth is

not a prerequisite of a registration result being good, especially for complicated input cases

as in our experiments. Other than making the two input image eventually look alike, our

method has another goal, which is to maintain the regularity of the topology.

4.1 Synthetic Sinusoidal Deformation

In the experiments, the reference image (as in Figure 4.1.a) is a human brain MRI

image, 256×256 demension and 1×1 mm2 resolution, obtained from BrainWeb simulation

[1]. For testing purposes, we can define a particular warp and apply it to an image, so

that the deformation field can be known as the ground truth. Here, we use the sinusoidal

displacement field [46] to deform the reference image:
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
xnew=xold + Ax sin(πxold/32)

ynew = yold + Ay sin(πyold/32)
(4.1)

where xold and yold are coordinates of a pixel in the reference image 4.1.a, while xnew

and ynew are coordinates of the corresponding point in the floating image 4.1.b. Ax and Ay

are the limits of the maximum displacement distances along the x and y directions. The

ground truth of the deformation field and the original differences between them are shown

in Figure 4.1.c and d respectively.

4.2 Comparative Results: Demon’s vs Demon’s + Non-Twist

The Demon’s algorithm uses Gaussian convolution to impose smoothness in the

estimated deformation field, where the level of smoothness is controlled by the σ of the

Gaussian filter. Since the smoothness is evenly applied throughout the image domain, this

penalty approach with a moderate Gaussian σ does not prevent local twists. On the other

hand, it is well-known that increasing σ generally leads to an over-smoothing effect, which

results in deteriorated precision in the registration results, as shown in Figure 4.2.
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(a) (b)

(c) (d)

Figure 4.1: MR brain image. (a) Reference image (b) Floating image (c) ground truth of
the deformation field (d) Original differences
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(a) σ = 2

(b) σ = 4

(c) σ = 6

(d) σ = 8

Figure 4.2: Registration results by the Demon’s alone. (The left figures are registered
floating images, and the right figures are the corresponding transformation fields, with
increasing smoothing- σ.)
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Figure 4.2 shows the registration results using the Demon’s alone, with increasing

smoothing power. From the results, we can directly observe: when σ is small, which means

the smoothing power is weak, the floating image is well registered towards the reference

image. Nevertheless, the transformation field, which are full of obviously unreasonable

twists, is deviated from the ground truth of the deformation field, as shown in Figure 4.1.c.

When the smoothing power is increased, the twists in the transformation field are gone, as

shown in Figure 4.2.d, but in the expense of deteriorating the registration effect.

Considering both the registration effect and the topology-preserved transformation

field, we integrate our Non-Twist regularity into the Demon’s method with σ = 6. The

registration results are shown in Figure 4.3.

Demon’s σ = 6 with NonTwist Regularity

Figure 4.3: Registration results by the Demon’s (σ = 6) with Non-Twist regularity.

Validation: As evident, local irregularities emerge in the upper left and bottom right

brain boundary areas in Figure 4.2.c by using the Demon’s alone, where no sufficient

intensity detail exists to enforce the smoothness property. The estimated transformation

field shown in Figure 4.3 comes from the new Demon’s algorithm with our Non-Twist

regularizer (concave version in this particular example). Obviously, all the irregularities
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have been driven away by the additional regularization component. Meanwhile, the

registration effect is not affected negatively as in Figure 4.2.d.

Besides the direct observation, we also validate our results quantitatively. Since image

registration is an ill-posed problem, where infinitely many solutions exist for a given

input, there is no unique best approach to assess the performance of various registration

algorithms. Nevertheless, we try to validate our proposed method on two purposes for

medical image registration mentioned previously: 1) the decreased differences between

input image pair, 2) and the legitimacy of the transformation field. Therefore, two aspects

of properties are used to compare the results between the Demon’s alone and Demon’s +

Non-Twist. Firstly, the sum of differences between the reference image and registrated

image is used directly as the evidence for good matching, as shown in Table 4.1. Generally

speaking, the smaller the sum of differences is, the better the registration performance is.

Secondly, we try to quantify the accuracy for the deformation estimation. Here, the vector

field of transformation, as shown in Figure 4.5, is used to extract the property: vector

angles’differences [5]. For each pixel in vector field, a vector with certain angle and length

exists to indicate its deformation. By comparing the angles with the ground truth, we

can easily calculate the differences between them. statistical measures can be drawn from

vector field, as shown in Table 4.2, to prove the effectiveness of topology-preservation.

Table 4.1: Sum of Differences: Demon’s vs Demon’s + Non-Twist

Group Sum of Differences Percentage of Improvement

Original Differences 612175

Demon’s alone (σ = 6) 95050 84.47%

Demon’s with Non-Twist 148607 75.72%
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(a)Demon’s alone (b) Demon’s with Non-Twist Regularity

Figure 4.4: Differences between the reference image and registered image.

(a)Demon’s alone (b) Demon’s with Non-Twist Regularity

Figure 4.5: Vector Field between the reference image and registrated image.

Based on Table 4.1 and 4.2, our Non-Twist regularization is not deteriorating the

registration effect: the percentage of matching is as high as 75.72%. Meanwhile, the mean

of the vector angles’ differences for the transformation field is 12.28°deviated from the

ground truth, which is much smaller than by using the Demon’s method alone.
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Table 4.2: Average Angle Error: Demon’s vs Demon’s + Non-Twist

Group Average Angle Error Standard Deviation

Demon’s alone (σ = 6) 18.11° 5.52

Demon’s with Non-Twist 12.28° 5.01

4.3 Comparative Results: DCT vs DCT + Non-Twist

The same input image pair has been used for the comparison of the DCT alone vs DCT

+ Non-Twist. Results are shown in Figure 4.6.a and Figure 4.6.b, respectively. The same

number of coefficients, 32×32, are used in the experiments. It should be noted that the DCT

alone has built-in global smoothness control stemming from its parametric deformation

setup. However, the original method has no guaranteed mechanism to avoid local twists.

The improvements with the added Non-Twist are obvious – Figure 2.1.b has much smoother

grids and no visible local foldings. And also, the same quantitative comparisons are given

by Tables 4.3 and 4.4.

Table 4.3: Sum of Differences: DCT vs DCT + Non-Twist

Group Sum of Differences Percentage of Improvement

Original Differences 612175

DCT alone 252973 58.68%

DCT with Non-Twist 212532 65.29%

4.4 Preliminary Design for GUI

For the convenience of expected users, we also use the graphical user interface guide

embedded in Matlab to build a preliminary GUI. The design for the main window, as shown
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(a) DCT 32×32

(b) DCT with Non-Twist 32×32

Figure 4.6: Registration results by DCT alone and DCT with Non-Twist regularity. (The
left figures are regitered floating images, and the right figures are the corresponding
transformation fields. )

Table 4.4: Average Angle Error: DCT vs DCT + Non-Twist

Group Average Angle Error Standard Deviation

DCT alone 10.52° 4.68

DCT with Non-Twist 7.38° 3.90

in Figure 4.9.a, integrates not only the functionalities that are mentioned in this thesis, e.g.

the Demon’s algorithm (as shown in Figure 4.9.b), the DCT algorithm, but also the related

work by other members in our lab, which includes the point or curve registration, graph

cut. Meanwhile, the design also maintains the potential for future deveplopment to be
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(a)DCT alone (b) DCT with Non-Twist Regularity

Figure 4.7: Differences between the reference image and registered image.

(a)DCT alone (b) DCT with Non-Twist Regularity

Figure 4.8: Vector Field between the reference image and registrated image.

a clinical registration package (as a SPM extension [23]) and disseminate it through the

NITRC (Neuroimaging Informatics Tools and Resources Clearinghouse ) community.
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(a) Main interface

(b) Child window for Demon’s algorithm

Figure 4.9: Medical Image Registration Toolbox.
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5 Conclusion and FutureWork

Maintaining regularity and topology legitimacy is an important issue in medical

image registration. Most of the previously published works are focused on using the

Jacobians as the basis to specify regularity constraints, and most of the works only allow

convex grid deformations. We identify the concave case and formulate the new Non-

Twist regularity under a straightforward point-line/surface orientation perspective. Our

experimental results indicate that the added regularization can greatly improve the overall

registration performance, especially in terms of smoothness and regularity.

A submission based on our proposed approach and the completed experiments has

been accepted for publication in the conference of MIUA 2011. However, several aspects

of the theory and implementation of our proposed work are still under development, which

can be summarized as follows:

1. Conduct a more thorough quantitative assessment of the registration results.

Currently, the two quantitative measures are used to evaluate the registration

results on both the differences minimization and the accuracy of the transformation

estimation. The accuracy for the estimation would be potentially improved by

removing the gloab rigid part. Besides, the image segmentation methods could also

be used to extract the contours of brains, that can be used as a quantitative assessment.

2. Identify an application/presentation to demonstrate the difference between Convex

and Concave constraints.

At present, we have theoretically differentiated the differences between the Convex

and Concave gird updates, and also fulfilled the implementations of them. However,

due to the fact that the pixel grid is in a tiny definition, as well as the interpolation

involved in the update, the immediate and straightforward differences in a large

scale can hardly be perceived by human vision. For this reason, a unique approach
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for presentation has to be designed, so that our proposed regularization can be

demonstrated in both theoretical and experimental aspects.

3. Explore efficient approximation solutions (e.g. Generalized Regularization Networks

based on Green function) to develop fast implementations. Also, develop a clinical

registration package (as a SPM extension), and disseminate it through the NITRC

(Neuroimaging Informatics Tools and Resources Clearinghouse ) community.
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Appendix: Matlab Code

A.1 Function for Augmented Lagrangian method

function [x]=ALM(funfcn,x_init,CEQ)

%% input

%% funfcn: SSD objective function

%% x: starting points

%% CEQ: nonlinear equality constraint

%% initialize

%% construct the ALM objective functive

miu = 1;

lamda = 1;

x=x_init;

tol1= 1e-5;

tol2= 1e-8;

for k=0:1000

%gradL = gradALMobjective(funfcn,CEQ,x,lamda,miu);

[c,h] = CEQ(x);

Obj = funfcn(x);
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% if (norm(gradL)<= tol1)&&(ceq<= tol2)

% break;

% end

s=sprintf(’ k=%5.0f; lamda= %13.6g; miu= %13.6g; SSD= %13.6g;

h=%13.6g ’,k,lamda,miu,Obj,h); disp(s);

% Choose between two minimization methods: fminserch and fminlbfgs

% optim=struct(’Display’,’final’,’StoreN’,10,’GoalsExactAchieve’,0,

% ’HessUpdate’,’lbfgs’,’GradObj’,’off’,’MaxIter’,100,

% ’DiffMinChange’,1e-3,’DiffMaxChange’,1,’TolX’,1e-5,

% ’TolFun’,1e-4);

%

% x_temp=fminlbfgs(@(x)ALMobjective(funfcn,CEQ,x,lamda,miu),

% x,optim);

options = optimset(’Disp’,’final’,’MaxIter’,100) ;

x_temp=fminsearch(@(x)ALMobjective(funfcn,CEQ,x,lamda,miu)

,x,options);

[c_star,h_star] = CEQ(x_temp);

Obj_star =funfcn(x_temp);
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lamda = lamda + 2*miu*h_star;

%lamda = lamda-ceq/miu;

miu = 1.1*miu;

x = x_temp;

if (norm(Obj-Obj_star)<= tol1)&&(h_star<= tol2)

break;

end

end

function [fval] = ALMobjective(funfcn,CEQ,x,lamda,miu)

term1 = funfcn(x);

[c,h] = CEQ(x);

term2 = lamda.*h;

term3 =miu.*hˆ2;

fval=term1 + term2 + term3;
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function [grad] = gradALMobjective(funfcn,CEQ,x,lamda,miu)

DiffMaxChange= 10;

DiffMinChange=1;

% Calculate gradient with forward difference

% if not provided by the function

grad=zeros(length(x),1);

%fval=dct_registration_SSD(x,Imoving,Istatic,D1,D2,M,N);

fval=ALMobjective(funfcn,CEQ,x,lamda,miu);

gstep=1;

if(gstep>DiffMaxChange), gstep=1; end

if(gstep<DiffMinChange), gstep=1; end

for i=1:length(x),

x_temp=x; x_temp(i)=x_temp(i)+gstep;

x_temp’;

%fval_g=dct_registration_SSD(x_temp,Imoving,Istatic,D1,D2,M,N);

fval_g=ALMobjective(funfcn,CEQ,x_temp,lamda,miu);

% data.timeExtern=data.timeExtern+toc(timem);

grad(i)=(fval_g-fval)/gstep;

end
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