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ABSTRACT 
The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions 
based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in 
providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative 
to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine 
is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL 
reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray 
images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the 
proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image 
contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function 
and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using 
a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) 
algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment 
using a plastic phantom showed accurate results with errors of (−0.43°±1.19°, 0.45°±2.17°, 0.23°±1.05°) and (0.03±0.55, 
−0.03±0.54, −2.73±1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained 
with high accuracy of 0.53±0.30 mm distance errors. 
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1. INTRODUCTION  
The importance of tunnel placement in anterior cruciate ligament (ACL) reconstructions has received much attention 

recently since proper tunnel placement is essential with respect to both short-term and long-term outcomes. Validating 
the tunnel position is a prerequisite to the evaluation of clinical results following the ACL reconstruction. Thus, accurate 
assessment of the tunnel position is important for the evaluation. Most anatomical studies have involved cadaveric 
dissections that require destruction of the specimen as measurements are taken. This kind of studies cannot be used in 
clinical routine on live patients. 

In clinical practice, tunnel position is routinely evaluated using postoperative anteroposterior (AP) and lateral (LAT) 
X-ray. However, plain X-rays only provide 2D projections of the 3D anatomic bone geometry. Accurate measurement 
from them may be difficult to achieve reliably. Moreover, the entry points are hard to be accurately located manually due 
to its high dependency of the image on the rotation in the notch view. Assessment can also be performed intraoperatively 
using fluoroscopic images. But it has been shown1 that the intraoperative fluoroscopic measurements were not sufficient 
for the decision with respect to tunnel placement. These difficulties introduce errors in the direct correlation of the 
measurements to surgical procedures, and in turn limit its ability to determine optimal tunnel placement, to assess new 
protocols for improved tunnel placement and to correlate tunnel positions to biomechanical functions of the knee. They 
may also limit the usefulness of the data obtainable from retrospective studies. The use of CT scans is preferred in recent 
studies2. However, the postoperative CT is not available for most ACL reconstructions while intraoperative CT increases 
the radiation exposure to patients and surgical staff. Intraoperative open MRI and postoperative MRI are time consuming 
and not a routine procedure for ACL reconstruction nowadays. Thus, they are suitable for retrospective and follow-up 
patient studies of the long-term effects of tunnel positions on the clinical outcome. Knee scoring systems are frequently 
used in follow-up studies. They do not include criteria on tunnel position, though graft positioning has been identified as 
one of the most important factors. To include tunnel position as a parameter in studies of clinical outcomes, it is 
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image points associated with their image gradients, (xn , gn ) , and M 3D model points associated with their outer normals, 
(Xm , Nm ) . Without knowing the correspondences between them, we are solving the following problem: 

  (1) 

where  is a non-linear mapping that includes a 3D transformation  and a perceptive projection, and pmn  
denotes the probability that xn  corresponds to Xm . We consider the registration problem in (1) as a probability density 
estimation problem. The projections of the 3D points represent the centers of a von Mises-Fisher-Gaussian (vMFG) 
mixture model and the 2D points are observations drawn from the model. The correspondence probability between a 2D 
point xn , gn( )  and a 3D point Xm , Nm( )  is modeled by a vMFG distribution with mean , variance σ 2 , 
central direction  and concentration κ > 0  as 

 p xn , gn m( ) = 1
(2πσ )2 I0 (κ )

exp κgnn
Tνm −

xn −  μm
2

2σ 2

⎛

⎝
⎜

⎞

⎠
⎟  (2) 

where gn = gn gn , νm = νm νm  and I0 (κ )
 
denotes the modified Bessel function of the first kind and order 0. 

The optimization is solved using an expectation maximization (EM) algorithm by defining the surrogate function 

  (3) 

Here, the first term is related to the spatial positions, and the second term is about gradient directions. In E-step, 

 pmn =
eκgnn

Tνm− xn− μm
2 (2σ 2 )

eκgnn
Tνm− xn− μm

2 (2σ 2 )

m=1

M

∑ + (2πσ )2 I0 (κ )wM
(1−w)N

.  (4) 

In M-step, the maximum likelihood estimate (MLE) of σ 2  is obtained conditioned on  analytically4. The expression of 
κ  is however given in terms of the ratio of modified Bessel functions, and it is not possible to get an analytical solution. 
An approximation of κ  is obtained by iterating the Newton method a few (e.g. 2-3) times through calculating 

 κ update =κ −
A2 (κ )− r

1− A2
2 (κ )− A2 (κ ) /κ

 (5) 

where A2 (κ ) = 1
C pmngnn

Tνmn=1

N∑m=1

M∑  and C = pmnn=1

N∑m=1

M∑ . Therefore, we have the following method:  

1) Initialize  and σ (0) , and set κ (0) = 0  
2) Compute pmn

(t+1)  
3) Compute σ (t+1)  and κ (t+1)

 conditioned on  
4) Compute  by a numerical optimization approach, conditioned on the updated variance  and κ (t+1)  
5) Check convergence. 

In our current implementation, Step 4 uses the particle swarm algorithm6 to estimate . 

2.3 The Estimation of 3D Tunnel Positions 
After performing the single-image 3D-2D registration described above respectively on the two X-ray images, 3D 

tunnel position is estimated using the estimated transformations between the knee model and the X-ray images. Without 
losing any generality, let us simply start from an arbitrary view of the two, and assume that there is only one tunnel in the 
image. For multiple tunnels, we merely need to repeat the procedure described in the subsection until all tunnels have 
been processed. The estimation of a bone tunnel includes the calculations of the tunnel central axis and the tunnel entry 
point on the inner wall femoral condyle. It is achieved through the following five steps. 

Step 1. Two boundaries of a tunnel marked on the image are converted into two 3D planes, which we call “boundary 
planes” since each one corresponds to one boundary of the tunnel marked in the image. A boundary plane is defined by 
the estimated X-ray source and two rays that connect the estimated X-ray source with two different points on the 

σ (t+1)
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4. CONCLUSION 
Accurate estimation of tunnel position is a prerequisite for evaluating the ACL reconstruction postoperatively, and 

the confirmation of tunnel placement intraoperatively. The evaluation results, in turn, could be used to design better 
protocols and evaluation criteria for surgical procedures. The proposed method only requires two X-ray images, which 
are part of the standard diagnostics procedure in clinical routine, to estimate the tunnel positions. The most significant 
advantage of the present approach is the elimination of the necessity of acquiring a CT image of the patient. Therefore, 
our proposed technique is more appropriate for retrospective studies as well as long-term follow-up studies. By 
providing 3D tunnel location within the knee, it also allows clinicians to analyze the relationship between each tunnel 
wall or outlet location and the reference landmarks from all viewpoints, including the axial viewpoint. 

The preliminary results reported in this paper are very encouraging, and we are planning a more extensive evaluation 
study. The method promises to be a very useful tool for providing accurate 3D ACL tunnel positioning assessment data 
intraoperative and postoperatively with minimal X-ray imaging. We also are working on extending the proposed method 
to a 3D-2D deformable registration method using a statistical shape model. This will greatly facilitate the usefulness of 
our technique in retrospective studies, where preoperative CT images are not commonly available. 
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