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Abstract
Numerical estimation of the size of the kidney is useful in evaluating conditions of the kidney,
especially, when serial MR imaging is performed to evaluate the kidney function. This paper
presents a new method for automatic segmentation of the kidney in three-dimensional (3D) MR
images, by extracting texture features and statistical matching of geometrical shape of the kidney.
A set of Wavelet-based support vector machines (W-SVMs) is trained on the MR images. The W-
SVMs capture texture priors of MRI for classification of the kidney and non-kidney tissues in
different zones around the kidney boundary. In the segmentation procedure, these W-SVMs are
trained to tentatively label each voxel around the kidney model as a kidney or non-kidney voxel
by texture matching. A probability kidney model is created using 10 segmented MRI data. The
model is initially localized based on the intensity profiles in three directions. The weight functions
are defined for each labeled voxel for each Wavelet-based, intensity-based, and model-based label.
Consequently, each voxel has three labels and three weights for the Wavelet feature, intensity, and
probability model. Using a 3D edge detection method, the model is re-localized and the segmented
kidney is modified based on a region growing method in the model region. The probability model
is re-localized based on the results and this loop continues until the segmentation converges.
Experimental results with mouse MRI data show the good performance of the proposed method in
segmenting the kidney in MR images.
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1. INTRODUCTION
Polycystic kidney disease (PKD) is a genetic disease that passed down through families,
usually as an autosomal dominant trait. In early stages of the disease, the cysts cause the
kidney swelling, disrupting kidney function and leading to chronic high blood pressure and
kidney infections. This disease leads to enlarged bilateral kidneys with multiple cysts. The
severity of the renal functional impairment is correlated with the size of the kidneys. Usually
a larger kidney accompanies with more sever renal failure [1-4, 5]. Serial MRI evaluations
can provide high-resolution anatomic structure of the kidneys and thus could be a useful tool
for the assessment of different treatments [6-9].
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In this paper, a new automatic segmentation method is proposed and evaluated to segment
the kidneys in MR images that may be utilized for noninvasive monitoring and assessment
of the kidneys. A variety of methods for semi-automatic or automatic segmentation of
kidney MR images have been proposed. Our group previously proposed three approaches to
segment the kidney in MR images [8-10]. A semiautomatic segmentation method was
proposed, where the average of the manually segmented boundaries from different images
was used as an initial model for automatic segmentation [9]. To segment a new image, a
point was manually placed within the kidney and the model was then deformed to the renal
boundary using spline curves by optimizing the intensity gradients along the boundary. A
minimal path segmentation method was developed for segmenting mouse kidneys in MR
images [8]. A dynamic programming and a minimal path segmentation approach was used
to detect the optimal path within a weighted graph between two end points. In this minimal
path method, the energy function combines distance and gradient information to guide the
marching curve and thus to evaluate the best path and to span a broken edge. Initial end
points were placed automatically and dynamic programming was used to optimize and
update end points during the searching procedure. Principle component analysis (PCA) was
used to generate a deformable model, which serves as the prior knowledge for the selection
of initial end points and for the evaluation of the best path [8]. In this paper, we propose a
3D method for automatically segmenting the kidney in 3D MR images using Wavelet
features and kidney geometry.

2. METHODS
This method is based on our segmentation method for prostate ultrasound images [11]. The
proposed method in this paper consists of the training and application stages. Figure 1 shows
the flowchart of the method. Ten training MR images were employed to train the wavelet
feature classification and to make a predefined model. The kidney boundaries have been
manually defined.

A kidney shape model is created based on the allowable models of shape variations and its
probability. This model is employed to modify the kidney boundaries. The kidney textures
are captured by training the Wavelet-based support vector machines (W-SVMs). With
integrating texture features and geometrical data, W-SVMs can robustly differentiate the
kidney tissue from the adjacent tissues. The trained W-SVMs are employed to tentatively
label the respective voxels around the surface into kidney and non-kidney tissue based on
their texture features from different Wavelet filters. Subsequently, after the translation of the
shape model to the kidney region that are defined by intensity profiles of the MRI, the
surface of the kidney is driven to the boundary between the tentatively labeled kidney and
non-kidney tissues based on defined weighting functions and labeled voxels. The intensity
profiles is calculated using the intensities of the cube passes the center of mass of the MR
images in sagittal, coronal, and transverse planes. Figure 2 shows the intensity profiles of
MR data from in five mice. A 3D edge detection method is employed based on Canny edge
detection. The high-intensity regions in the MR images are combined with the detected
edge. The combined image is used to localize the model using the lower edge of the kidney.
The segmented kidney is modified based on a region growing method in the model-defined
region. The model is then re-localized based on the new detected region.

2.1 W-SVMs
MR image textures can provide important features for accurately defining the kidney,
especially for the regions where kidney boundaries are not clear. Daubechies 2, Symlets 2,
Symlets 2, Coiflets 1, Biorthogonal 1.3 and 1.5 are employed to extract the texture features
of the kidney. Designing biorthogonal wavelets allows more degrees of freedom comparing
to orthogonal wavelets. One additional degree of freedom is the possibility to construct
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symmetric wavelet functions. Using different types of Wavelet can detect different texture
properties of the kidney. The W-SVMs are trained to adaptively label the tissue based on its
texture and location. The W-SVM is composed of six wavelet filter banks, voxel
coordinates, and a Kernel Support Vector Machine (K-SVM). Figure 3 shows 6 wavelet
filters that were employed for feature extraction. The wavelet filters are employed to extract
texture features from MR images, and the K-SVM is used to nonlinearly classify the
Wavelet texture features for tissue differentiation. The trained W-SVMs are employed to
tentatively label each voxel into kidney and non-kidney tissues in the application stage.

2.2 Probability model
A kidney probability model was used for modifying the segmentation. In this study, we
registered ten segmented kidneys using an affine transformation. Other registration methods
can also be used to create the model [12-17]. The registration approach that employed for
creating the model is based on the principal axis transformation. This method was chosen
because of its computational properties, speed and simplicity. The kidney volume was
translated and rotated with respect to each other. The principal axis transformation is known
from the classical theory of rigid bodies. A rigid body is uniquely located by knowledge of
the position of its center of mass and its orientation (rotation) with respect to its center of
mass. The center of mass, inertia matrix, and principal axes can be determined for any rigid
body. For simple geometric shapes, the principal axes coincide with the axes of symmetry.
In general, an orthogonal coordinate system is set up with their origin at the center of mass.
When computed in the principal axis coordinate system, the inertia matrix is diagonal [18].

The basic parameters that were used for registration of the kidney are the position of the
center of mass, the rotation of the kidney about the center of mass, and the lengths of the
principle axes. These properties uniquely determine the location and geometry of the kidney
in the three-dimensional space. After overlaying these 10 registered volumes, a probability
model was created for each voxel based on how many kidney models are labeled as kidney
tissue at that region. Figure 4 shows the overlaying of 10 segmented kidneys before and
after registration.

2.3 Edge detection
To detect the edge of the kidney, a 3D edge detection method was defined. It is based on the
Canny edge detection method. This method can detect the edge even in noisy images as
shown in Figure 5. This edge is used for localizing the model. The highest intensity regions
in the MR images are fatty tissue or some regions around the kidney. Therefore, this image
was added to the detected edge to define the kidney edge at the lower location.

2.4 Evaluation
Quantitative performance assessment of the method was done by comparing the results with
the corresponding gold standard data from manual segmentation. The Dice similarity was
used as performance assessment metric in the kidney segmentation algorithm. The Dice
similarity was computed as follows [19-21]:

(1)

where S represents the voxel set of the kidney segmented by the algorithm and G represents
the voxels of the kidney from the gold standard data.

Akbari and Fei Page 3

Proc SPIE. Author manuscript; available in PMC 2013 September 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. RESULTS
The method was evaluated by MR data sets from seven mice, which were different from the
MR data that were used for making model and training. Figure 6 shows an example of
segmentation and its comparison with the corresponding gold standard. The numerical result
of the Dice is shown in Table 1.

4. DISCUSSION AND CONCLUSION
A set of Wavelet-based support vector machines (W-SVMs) and a shape model were
developed and evaluated for automatic segmentation of the kidney MR images. Wavelet
transform was employed for kidney texture extraction. The segmentation results were
incorporate with a probability kidney model to find a robust method for kidney
segmentation. A set of W-SVMs are located on different regions of the kidney to classify
kidney and non-kidney tissues in different zones around the kidney boundary. The method
employs a learning based mechanism, using W-SVMs, to automatically collect texture
features in different regions of the kidney. The probability model was incorporated into the
segmented kidney to adaptively identify kidney and non-kidney tissues. In this way, even if
the kidney has diverse appearance at different parts and has weak boundaries near liver,
pancreas, or spleen, the model is still able to produce a relatively accurate segmentation in
3D MR images.
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Figure 1.
Flow chart of the segmentation method.
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Figure 2.
The intensity profiles of MR data from five mice. The intensity profile is shown in blue
lines. The locations of the kidney boundaries are shown in black, vertical lines. Top: The X-
axis from left to right represents the tail-to-head direction of the mouse. Bottom: The X-axis
represents the left-to-right of the mouse. The vertical lines with different heights represent
the two kidneys.
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Figure 3.
Wavelet filters that were employed for feature extraction: (a) Original image, (b)
Daubechies 2 vertical details, (c) Symlets 2 horizontal details, (d) Symlets 2 vertical details,
(e) Coiflets 1 vertical details, (f) Biorthogonal 1.3 vertical details, (g) Biorthogonal 1.5
vertical details.
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Figure 4.
A section of the 3D probability model. The white voxels indicate that all segmented models
are the kidney voxel. The black indicates that all segmented models are non-kidney voxels.
The voxels in gray shows the probabilities based on their intensities. Left panel shows the
model before registration and right panel shows the model after registration.
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Figure 5.
An example of the edge detection results: (a) Original image with the gold standard showed
with white lines, (b) Coronal 2-D edge detection, (c) Transverse 2-D edge detection, (d)
Sagittal 2-D edge detection, (e) 3D edge detection, (f) The 3D edge.
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Figure 6.
Segmentation results. (a) Original image with the white lines showing the gold standard
boundaries, (b) 3D edge detection, (c) Fatty tissue detection, (d) The segmented result.
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