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Abstract

In this paper, we examine the problem of using video analysis to assess pain, an important 

problem especially for critically ill, non-communicative patients, and people with dementia. We 

propose and evaluate an automated method to detect the presence of pain manifested in patient 

videos using a unique and large collection of cancer patient videos captured in patient homes. The 

method is based on detecting pain-related facial action units defined in the Facial Action Coding 

System (FACS) that is widely used for objective assessment in pain analysis. In our research, a 

person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional 

Method is trained for each patient individually for the modeling purpose. A flexible representation 

of the shape model is used in a rule-based method that is better suited than the more commonly 

used classifier-based methods for application to the cancer patient videos in which pain-related 

facial actions occur infrequently and more subtly. The rule-based method relies on the feature 

points that provide facial action cues and is extracted from the shape vertices of AAM, which have 

a natural correspondence to face muscular movement. In this paper, we investigate the detection of 

a commonly used set of pain-related action units in both the upper and lower face. Our detection 

results show good agreement with the results obtained by three trained FACS coders who 

independently reviewed and scored the action units in the cancer patient videos.
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1. INTRODUCTION

Research has shown that facial expressions can provide reliable measures of pain across 

human lifespan [1] and there is also good consistency of facial expressions corresponding to 

painful stimuli. The Facial Action Coding System is widely used in pain analysis, because it 

provides an objective assessment to score and recognize Action Units (AUs), which 

represents the muscular activity that produces momentary changes in facial appearance [2]. 

Several studies using FACS have identified a collection of core Action Units, which are 

specific to pain and that occur singly or in combination, such as brow lowering (AU4), cheek 

raise and eyelid tightening (AU6 and 7), nose wrinkle and upper lip raise (AU9 and 10) and 

eye closing (AU43). These results are also confirmed in the study of facial expressions of 

pain in cancer patients [3]. The facial expression coding using FACS is generally performed 
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offline by trained experts on the video of a patient. While the FACS system enables 

assessment of pain at each time step (i.e. each video frame), the Action Unit detection via 

manual observations is very time consuming, which makes its real-time clinical use by 

human observers prohibitive [4]. Therefore, the development of an automated AU detection 

for pain would be a significant and efficient innovation for clinical practice.

1.1 Past work on automated detection of facial expression of pain

Existing research has reported progress on performing automated expression recognition. 

The work has largely focused on general expressions involving six basic emotions [7,8]. 

These methods usually employ 2D spatiotemporal features in the recognition task. The 

methods involve the use of geometric features that refer to the shapes of the facial 

components (eyes, mouth, etc.) and appearance features that refer to textural image 

information such as wrinkles, bulges, and furrows. There are many publicly accessible 

general facial expression databases as tabulated by Zeng et al. [7] and these contain both 

spontaneous or posed expressions [6,15,16]. Methods of general expression recognition 

methods rely on the use of classifiers trained with large sets of images [17,18]. Pantic et al. 

[4] have proposed a rule-based approach for AU detection using temporal dynamics of the 

feature points. They adopt particle filtering to track 15 feature points in the profile view of 

human faces. Tian et al. [6] combined facial component shapes with transient features like 

crow-feet wrinkles and nasal-labial furrows for AU detection using neural networks. The 

data used in the facial expression recognition of 6 basic emotions often consists of deliberate 

and exaggerated facial displays of emotion. Research in psychology [9,10] has suggested 

that posed facial expressions are different from spontaneous ones in terms of muscle 

utilization and dynamics. Therefore, automated facial analysis methods trained on 

deliberately posed images may have poor performance when they are applied to spontaneous 

expression recognition. Several recent studies [7] on automated recognition have 

investigated spontaneous facial expression data. Tong and Ji [11] use a dynamic Bayesian 

Network (DBN) to model the relationships among different AUs, which enables probability-

based measurement of existence of New AUs. The method is robust to changing 

illumination, pose alteration, and occlusion, and is potentially useful for detecting 

spontaneous facial expressions. However, further study is needed to develop a more 

complete network to explore temporal relationship of AUs. However, databases used in these 

studies and those listed by Zeng et al [7] do not contain videos of spontaneous pain 

expression. Only recently has some effort been directed at detecting pain-related facial 

expression [14,17,19]. Lucey et al. [12] used an Active Appearance Model (AAM) based 

method to extract features from video achieves of patients with shoulder pain. A Support 

Vector Machine (SVM) is trained by similarity normalized shape model (S-PTS), canonical-

normalized appearance model (C-APP) and their combinations respectively, which is used 

for Action Unit classifications. The authors have observed that the best AU performance is 

obtained by fusing all three features together. Very recently in 2011 their database, the 

UNBC-McMaster Shoulder Pain Archive [14], containing facial expressions of shoulder 

pain induced by movements became publicly available.

Two key tasks required in automated AU detection are: feature extraction and feature 

classification/recognition. The feature extraction task is conveniently performed using the 
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Active Appearance Model (AAM), which is a parametric model of shape and texture and 

provides an efficient approach to aligning a predefined template to an unseen image with 

objects of interest. AAM has been used in recent research [3,4] for facial expression 

modeling and video tracking purposes. The AU recognition task is generally solved using a 

classification method, such as SVM or a neural network. The classification-based methods 

focus on high recognition rate for a large number of AUs by relying on a well-established 

database with adequate AU diversity. However, we will use a database taken in a natural 

setting (patient homes) in which pain expressions occur infrequently. In our database 

patients display neutral expression in most video frames and spontaneous pain only occurred 

in a short period, often accompanied with body movement or rigid head motion. Insufficient 

positive examples (frames containing AUs of interest) cause difficulty in training a classifier. 

On the other hand, the type of AUs or AU combinations associated with pain is limited [3]; 

hence recognition accuracy of AUs of interest has higher priority than the total number of 

AUs that can be recognized. Therefore, a rule-based recognition method is preferable in this 

situation.

1.2 Database of cancer patient videos used in this study

In this study we use the database created by D. Wilkie [3], containing videos of 43 patients 

suffering from lung cancer. The patients were required to repeat a standard set of randomly 

ordered behaviors including sit, stand up, walk, and recline, in a 10-minute video with a 

camera focusing on the face area to record their facial expressions. Each video was equally 

separated into 30 segments with 20 seconds per segment. The segments were reviewed and 

scored by three trained human FACS coders independently. An AU was scored in one video 

segment only if at least two coders agree with each other. The definition of pain–related 

Action Units scored in this database appears in Table 1.

2. AUTOMATED FEATURE TRACKING

The proposed automated action unit recognition consists of three major steps: (i) person 

specific AAM training, (ii) video tracking and feature extraction, and (iii) Action Unit 

recognition and report generation. A schematic of this framework is shown in Figure 1.

2.1 Training image labeling

The shape S of the AAM is described by a 2D triangular mesh, where the vertices are 

assigned along feature cues on the face. However, manually marking 66 vertices on the 

feature profiles consistently is a tedious process, especially on low resolution images from 

video frames that lack sharp details on the boundary of features. The mismatch among the 

locations of the same vertices in different images will introduce unnecessary noise to the 

eigen-shape space. In our work, some key vertices are first identified for the face image, and 

the movement of remaining vertices is obtained by their relationship to the key vertices. The 

feature point configuration is shown in Figure 2. A more convenient way of labeling is to use 

a semi-automated algorithm that requires identifying a few feature points on the closed 

contours detected in the facial images, and the remaining vertices can be aligned 

automatically along the selected contour.
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2.2 Partitioned-coefficient Active Appearance Model

The Active Appearance Model (AAM), which is a parametric model of shape and texture, 

serves as the basis of an efficient method to align a predefined template to an unseen image 

with objects of interest. The shape model is spanned by n eigenshapes Si plus the mean 

shape S0.

S = S0 + ∑
i = 1

n
piSi (1)

The appearance model is spanned by m eigen appearance Aj plus the mean eigen-texture A0,

A = A0 + ∑
j = 1

m
λ jA j (2)

The main goal of AAM is to find parameters that minimize the discrepancy between the 

observed image and synthesized image. We follow the project-out inverse compositional 

fitting algorithm in [5] for the AAM implementation to train a person-specific AAM for 

each patient. The project-out method makes the iteration update orthogonal to the eigen-

texture space, thus requiring only the shape parameters to be updated during the fitting 

process. In the original model, each coefficient is used to control a specific motion 

(represented by one Eigen shape) of all vertices simultaneously in the shape model. The 

global coefficient {pi} may not adequately represent different local motion at the same time. 

A tradeoff between local shape fitting and global error reduction occurs when the algorithm 

tries to fit multiple feature components on the face, e.g. eyes mouth and brows. Such a 

tradeoff sometimes leads the algorithm to get stuck in a local minimum. In order to increase 

the flexibility for the deformation of the shape model, we use a Partitioned Coefficient AAM 

where the shape model is decoupled into five dominant features, namely jaw line, brows, 

eyes, nose and mouth, as represented by equation 3,

Sp = S0 + ∑
i = 1

5
∑
j = 1

mi
pi jSi j

(3)

where Sij is the j th Eigen vector of the i th feature, and pij is the coefficient corresponding to 

Sij. We note that eigenvectors belonging to the same feature are orthogonal due to Principle 

Component Analysis (PCA), and eigenvectors corresponding to different features are also 

orthogonal. The shape model is decoupled and the deformation of each feature in the shape 

profile is controlled by a specific coefficient. It is easy to show that the original fitting 

algorithm is still applicable to the sparse matrix form of the shape model, while a slight 

increase of computational complicity is expected. However, one potential problem arises in 

the partitioned coefficient model: as more flexibility is given to individual features, the 

feature profiles may intersect with each other during the fitting process, which violates the 

Delaunay Rules used in AAM training process. A boundary check mechanism is thus 
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introduced to avoid this problem. The details of the partitioned coefficient methods are 

described in [20].

3. RULE BASED ACTION UNIT RECOGNITION

The rule-based method relies on the feature points extracted from the shape vertices of AAM 

to identify the facial action cues, which have a natural correspondence to facial muscular 

movement. The work in [13] further included the temporal information of the feature points, 

which enhanced the robustness in AU recognition, especially in AU combination detection 

from a video stream. However, an efficient design of recognition rules should be carefully 

performed. First, rules must be mutually exclusive, which requires avoiding ambiguity 

between any two rules. Due to the limited number of feature points employed, some AUs 

(e.g., AU 26 and 27) can only be discriminated by using a threshold if only shape 

information is used. Second, permanent features like wrinkles and individual differences will 

cause appearance and intensity variations in the same AU. AU combinations may also 

change the appearance from a superposition of single AUs due to their non-additivity. In 

fact, there are very detailed descriptions to elaborate the subtle changes in AU recognition in 

the FACS manual. Therefore, further study is needed to develop rules that properly 

synthesize and interpret the AU information as defined by the FACS.

The rules developed here are based on measurements of the Euclidian distances among 

feature points. Ideally the feature points should be selected such that they are the best 

candidates to represent the muscular movement on the face as per Table 1. However, in 

practice, feature points are often selected on the boundary where significant texture change 

occurs, e.g., eyelid, mouth profile, which are helpful in labeling the training image 

consistently. Whereas most existing research has focused on expanding the collection of 

AUs to be recognized, our goal on detecting spontaneous pain from patients with lung 

cancer is limited to a small set of AUs and their combinations. Our effort is directed at 

carefully developing rules that mimic human experts’ decision. Among the AUs listed in 

Table 1, AUs 4, 6, 7, 43 are displayed on upper face while AUs 9, 10, 20, 26, 27 appear in 

the lower face. The method we report here has been developed for an upright face. Segments 

in which the patient is lying down are excluded in this study. A sample score sheet is given 

in Figure 3. We now examine four aspects of the rule-based recognition method: 1) distance 

parameter extraction, 2) rule-based recognition, 3) decision trees for AU combination, and 4) 

performance criterion based on score sheet marked by experts.

3.1 Distance parameter extraction

The FACS manual [2] classifies the Action Units into four action categories, namely 

horizontal, up/down (vertical), oblique, and orbital. While horizontal and vertical options 

can be calculated directly from coordinates of feature points, oblique and orbital actions may 

be extracted by evaluating angular and curvature information among certain feature points. 

The AUs listed in the score sheet are sufficiently distinguishable by horizontal and vertical 

actions. Therefore we mainly consider horizontal and vertical distance change between 

feature points. We adopt two intermediate parameters using an approach similar to [13] to 

evaluate the Euclidian distance of the extracted feature points: inc/dec (pp’)=pp’t − pp’0 
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describes the change in distance (increase/decrease) between point p and p’ where the 

subscript t refer to the tth frame and 0 refers to the neutral frame; and 

up/down(p) = ppt
re f − pp0

re f  describes the vertical motion of a single feature point p relative 

to a reference point in the same frame. These parameters are calculated from the AAM 

shape model for every frame, and the effect of rigid motion should be removed by aligning 

the shapes to the mean shape prior to the calculation. Summarized in Table 2 are the rules 

used to identify single and combinations of pain-related AUs as presented on the score sheet 

that the human FACS coders used.

3.2 Rule-based recognition

A rule for the presence of an AU is triggered if a complete onset, apex, offset period is 

observed. An Action Unit is caused by multiple muscle group movement and every such 

movement can be represented by the change in distance between feature points. Therefore, 

an AU maybe identified by checking if all the key rules are triggered and its intensity may 

also be scored by the number of rules are triggered. We consider three kinds of relationship 

between individual rules, namely ‘And’, ‘Or’, and ‘Exclusive’, where ‘i And j’ means rule i 
and rule j must overlap for 50% of the duration of the one with the shorter period; ‘ i Or j’ 
means either rule i or rule j must hold; ‘Exclusive’ means rule i and rule j cannot overlap. 

The length of rule combination codes stands for the number of rules involved for an AU 

decision and the digit ‘1’ indicates that the rule it represents overlaps with first rule whereas 

digit ‘0’ indicates the opposite case. When several AUs occur simultaneously, the 

appearance of each AU may differ significantly from their individual appearance, which is 

referred to as non-additivity. In order to score certain AUs in a non-additive combination, 

FACS Manual highlights some principle rules that must be met in order to score some 

particular AUs in an AU combination. For instance, to score AU 4 together with 6 or 7, the 

brow must pull together, as 6 or 7 may also cause the brow to be lower. This rule allows 

partial score generated for AUs in Table 2, if the principle rules are met for AU 

combinations. If all the rules are triggered in addition to the principle rules, the full score 

listed in Table 2 will be reached, which gives greater confidence in the recognized AU 

combination.

3.3 Decision trees for AU combination

The sequential relationship for detecting an AU combination is investigated by introducing 

decision trees. Although some AU combinations in the score sheet are mutually exclusive, 

they could be scored in different periods within the entire 20 seconds segment. Hence we 

cannot rely on a single decision tree to identify all the possible AUs. On the other hand, 

some AUs (e.g., AU 6/7 and 9/10) that are caused by different muscular group yet display 

similar appearance change are not required to be discriminated for pain recognition purpose 

in the score sheet, which simplifies the structure of the decision trees to some extent. By 

observing the score sheet, AU 4 and AU 9/10 are involved in most AU combinations, but 

neither of them is scored alone in Table 2. Therefore, the decision trees may start from these 

2 nodes if there is evidence of their presence in the AU combinations. We are able to use five 

simple decision trees to cover all the AUs in Table 2 as shown in Figure 3.

Chen et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4 Performance criterion based on score sheet marked by experts

In our dataset, patients displayed very few pain-related expressions or action units of interest 

during most of the 20s-length video segments and the experts did not often reach agreement 

due to the low intensity of AUs or interference from other AUs. Therefore, it is not 

appropriate to evaluate the performance of our method based on recognition rate (due to a 

very limited number of positive samples) or false alarm rate (due to difficulty in identifying 

the canonical truth). As a result, we adopt an alternative way for the performance assessment 

by evaluating the agreement between the score sheet generated by the coding experts and the 

recognition result of the algorithm. Visual tracking results of feature points will also be 

provided as a reference to coding experts, as they may have overlooked some features while 

concentrating on other features during the frame-by-frame scoring process that allowed 

rewinding and viewing the frames as many times as necessary to derive a score. A partial 

score sheet used by the FACS experts is shown in Figure 4, on which the expert marked the 

observed action units within every time slot. There are 13 of the 30 slots presented in Figure 

4.

4. EXPERIMENTAL Results

4.1 Experimental Results

In order to test the effectiveness of the system, we examined videos of four patients who 

displayed Action Units in Table 2. Snapshots of patient P18, P27 and P44 are shown in 

Figure 5. Figure 6 shows the synthesized facial image of Patient P27 generated by AAM. 

Figure 7(a) shows the tracking result (Patient P27, Slot 1) of feature points IJ in both 

horizontal and vertical direction, which is used to identify AU 20. Figure 7(b) and (c) show 

the tracking result (P18, slot 18) for the inner corner of eye brow (DD1), nose 

wrinkling(MH), and upper lip rising(KN), which is used to identify the AU combination 

4+9/10. The complete result is summarized in Table 3. In all cases, we compared AUs 

recognized by the computer and found full agreement with those scored by at least two 

coding experts for the upright faces.

4.2 Future work on comparison and performance assessment

As noted before, we found full agreement in AU detection between the automated method 

and results of scoring by at least two coding experts for the upright faces. The only method 

and related database that serve as a meaningful reference for pain detection are those of 

Lucey et al. [4,12,14]. However, their method cannot be applied directly to our database 

because (i) their baseline AAM/SVM system is person-specific, which requires labeling all 

frames (with specific AUs for training purposes) but this is not available in our database and 

is infeasible for the long videos in our database (10 min each), and (ii) shoulder pain is 

usually acute and triggered by shoulder movement, which provides a clear indication of 

onset of pain expression to the coding expert, while in our database the pain is subtle and 

highly infrequent, making it difficult to predict and unambiguously label each frame. We 

will evaluate our method using the shoulder pain archive in our future work. The AAM 

labeling is known in their dataset and we can use it as input to our AAM fitting algorithm. 

Since our tracking and recognition step is decoupled, we will use the AAM labeling as prior 

or a master to test our rule based method. We will compare our rule-based method with the 
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S-pts model used by Lucey et al.[14], and the rule-based method combined with appearance 

detectors will be compared with the S-pts + C-app method[14]. The ROC curve will also be 

employed to evaluate the performance.

5. CONCLUSION AND DISCUSSION

Automated pain analysis has great potential for benefit in patient care of people unable to 

communicate their pain to clinicians or lay caregivers. Combining AAM and rule-based 

recognition has been shown as a practical solution to this problem, which produces a score 

report comparable to that generated by human experts. However, our home-based patient 

database was created using analog video technology in late 80s, in which varying 

illumination, rigid motion, and poor quality of the video are the major challenges that 

prevent us from applying a complete evaluation of the entire database. In future work, a new 

database will be created with high-resolution videos and optimized camera configurations to 

further facilitate the feature extraction. In addition, the shape model in the AAM shall be 

extended to 3D to capture the out-of-plane motion of feature points, which provides a more 

reliable detection of Action Units.
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Figure 1. 
Automated AU Recognition Method. Copyright 2012 by authors, reproduced by permission.

Chen et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Feature Points Allocation.

Copyright 2012 by authors, reproduced by permission.
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Figure 3. 
AU Combination Detection. Copyright 2012 by authors, reproduced by permission.
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Figure 4. 
A sample score sheet
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Figure 5. 
Snapshot of Patients: P44 P27 and P18 Copyright 2012 by authors, reproduced by 

permission.
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Figure 6. 
AAM modeling result (Patient P27)

Copyright 2012 by authors, reproduced by permission.
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Figure 7. 
Tracking result of feature points (a) AU 20, (b) and (c): AU 4+9/10.

Copyright 2012 by authors, reproduced by permission.
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Table 1.

Pain Related Action Units (Source [2])

FACS Ation Units: Description Muscular Basis

4 eye brow lower depressor glabellae, depressor supercilii; corrugator supercilli

6 cheek raiser orbicularis oculi; pars obitalis

7 eye lid tightener obicularis oculi: pars palebralis

9 nose wrinkler levator labii superioris alaeque nasi

10 upper lip raiser levator labii superioris; caput infraorbitalis

20 lip stretcher risorius

26 jaw drop masetter; temporal and internal pterygoid relaxed

27 mouth stretch pterygoids, digastric

43 eyes closed relaxation of levator palpebrae superioris

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 November 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 18

Table 2.

Action Unit Decision Rules Key: / = or; + = and

Action Unit Rules Involved (The unit of distance is pixel) Rule Combination Code Max Score Min Score

6/7 (up(G) or dec(FG)) and not(dec(DD1h)) 110 2 1

20 inc(IJh) and not(Up/Down(I) or Up/Down(J)) 100 2 1

27 inc(KL) > T1 and inc(IJh) and not(dec(DD1h)) 110 1 1

4+6/7/43 (dec(DD1h) or down(D)) and (up(G) or dec(FG)) 1111 4 2

4+9/10 (dec(DD1h) or down(D) and (up(N) or up(H)) 1111 4 2

4+26 (dec(DD1h) or down(D)) and inc(KL) < T1 and not(inc(IJh)) 1111 2 1

4+27 (dec(DD1h) or down(D)) and inc(KL) > T1 and inc(IJh) 1110 2 1

9/10+26 (up(N) or up(H)) and inc(KL) < T1 and not(inc(IJh)) 1110 2 1

9/10+27 (up(N) or up(H)) and inc(KL) > T1 and inc(IJh) 1111 2 1

None None of the AU detectors triggered 1 1
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Table 3.

AU recognition test on four patients

Patient / Video Slot Scored AU(Experts) Recognized AU(Computer)

P11 slot 3 4+9/10 4+9/10

P18 slot 18 4+9/10 4+9/10

P27 slot 1 20 20

P44 slot 2 4+6/7/43 4+6/7
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