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ABSTRACT

Fourier transform infrared (FT-IR) spectroscopic imaging is a powerful tool to obtain chemical information from
images of heterogeneous, chemically diverse samples. Significant advances in instrumentation and data processing
in the recent past have led to improved instrument design and relatively widespread use of FT-IR imaging, in a
variety of systems ranging from biomedical tissue to polymer composites. Various techniques for improving signal
to noise ratio (SNR), data collection time and spatial resolution have been proposed previously. In this paper
we present an integrated framework that addresses all these factors comprehensively. We utilize the low-rank
nature of the data and model the instrument point spread function to denoise data, and then simultaneously
deblurr and estimate unknown information from images, using a Bayesian variational approach. We show that
more spatial detail and improved image quality can be obtained using the proposed framework. The proposed
technique is validated through experiments on a standard USAF target and on prostate tissue specimens.

Keywords: FT-IR spectroscopic imaging, linear mixture model, optics modeling, deconvolution, mid-infrared
spectroscopy

1. INTRODUCTION

Fourier transform infrared (FT-IR) spectroscopic imaging combines the benefits of optical microscopic imaging
with the chemical selectivity of spectroscopy. Spectral recording in this modality is similar to that of conven-
tional spectroscopy and rigorous models1, 2 are available to understand these spectra. However, the quality of
microscope images from absorbance data typically lags that of optical microscopy for a few important reasons.
First, the physics of imaging at longer wavelengths in the infrared (IR) is not conducive to high spatial de-
tail. Recent efforts3, 4 have reported the highest image quality obtainable from diffraction limited mid-infrared
imaging systems. Second, focal plane array (FPA) detectors in the mid-IR are of considerably smaller size and
lower sensitivity that those available in the visible spectral range. Although the field-of-view limitations can be
addressed by raster scanning the sample, the influence of digitization, noise and optical effects on the quality
of images need careful examination. In this paper, a framework incorporating all these effects is presented to
improve the quality of images from FT-IR imaging.

We utilize the fact that the recorded data is low-rank. This means that the data can be represented as a linear
combination of a small number of basic components.5, 6 This is due to the low number of constituent endmembers
at every pixel location. Although the data is of low rank, the presence of noise makes estimation of the rank
imprecise. Thus, our first step is to denoise the data. In section 2, we adapt a hyper-spectral data model developed
by Akgun7 and propose a method of denoising FT-IR data by projecting the acquired data onto a low dimension
subspace spanned by absorbance spectra of constituent endmembers found by the principal component analysis
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(PCA) algorithm. Next, we model the denoised data as a convolution of high resolution data with a blurring
kernel, or a point spread function. This kernel depends not only on limited-aperture optical diffraction but also
on spatial digitization. In section 3, we propose a variational Bayesian deconvolution algorithm based on the
closed form of the blurring kernel. The algorithm is capable of estimating pixels’ dimensions, prior distributions’
unknown parameters of the high resolution image and the model mismatching term at each wavenumber. In
subsequent sections, we validate our proposed algorithm by presenting experimental results for denoising and
deblurring FT-IR imaging data of a USAF target and of a prostate tissue sample. Finally, conclusion and further
research directions are indicated.

2. OPTICAL SETUP AND MODELING

2.1 Optical Setup

The optical set up for an FT-IR imaging system is shown in Figure 1. In this system, light from a broad-band
source is divided into two paths using a beam splitter. Upon recombination, the beam from one arm of the
Michelson interferometer interferes with its path-delayed counterpart in the other arm. The resulting beam then
passes through a sample where it is attenuated due to the sample’s absorbance. This beam is finally focused on
the detector.

Figure 1. Conventional FT-IR optical setup with FPA detector (left) and single element detector (right) [Figure reproduced
from Bhargava.8]

For a single element detector, there is a Fourier relation9 between the detected light intensity I(δ) as a function
of path difference δ and the spectrum of light S(ν̄) incident on the detector. Here, ν̄ denotes wavenumber.

I (δ) =

∫ +∞

−∞
S (ν̄) cos (2πν̄δ) dν. (1)

The spectrum can be obtained from the recorded data I(δ) using the relation

S (ν̄) = 2

∫ +∞

−∞
I (δ) cos (2πν̄δ) dδ. (2)

In performing an experiment, the spectrum in the presence of the sample Sspl(ν̄) and the spectum in the absence
of a sample (i.e. background) Sbg(ν̄) are obtained. The absorbance of the sample at wavenumber ν̄ is defined as

A (ν̄) = log10 (Sbg (ν̄)/Sspl (ν̄)) . (3)
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2.2 Data model

An adapted hyper-spectral data model developed by Akgun, et. al.7 is applied to FT-IR imaging as shown in
Figure 2. We make the following assumptions. First, it is possible to recover the continuous absorbance sig-
nal Acorr,b(x, ν̄) from data if the concentration images are band limited and appropriately discretized. Second,
sampling the continuous absorbance spectra will give us discrete noisy images at L bands g1[n], g2[n], ..., gL[n].
Third, these noisy images belong to a low dimensional subspace whose basis is constructed from discrete concen-
tration images, the reconstruction filter, the constituent spectra and the optical blurring kernel. This is under
the approximation that the noise images result from a convolution between the reconstruction filter and the
optical blurring kernel.

Figure 2. Adapted hyper-spectral data model for FT-IR imaging

Using results from Akgun, et. al.,7 the relation between each a discrete blurred and noisy image at band i,
which is fi[n], and the discrete concentration images c1[m], c2[m], ..., cJ [m] can be written as

gi [n] ≈
J∑

j=1

wj,i

(∑
m

cj [m]hb [n,m, μν̄ ]

)
+ εi [n] , (4)

where wj,i = 〈kj , ri〉 expresses the effects of the filter of band i to absorbance spectra of endmember j. 〈a,b〉
denotes the dot product of the vector a,b. hb [n,m, ν̄] = hr (nΔ−mΔ) ∗ hopt (nΔ, ν) denotes an approximation
of the convolution, where hr, hopt represents the reconstruction filter, the optical blurring kernel respectively and
ν̄ has been replaced by its mean μν̄ over the wavelength region under consideration. The above approximation is
justified since the width of the main lobe hopt(x, ν̄) does not change significantly with wavenumber. For example,
moving from 3500 cm−1 to 4000 cm−1 would result in a change of ≈ 14% in the width the main lobe (from
0.57μm to 0.5μm).

Eqn. (4) can be written in matrix form as follows.

Gi ≈ (HbC)Wi +Ei, (5)

where Gi = [gi[1], gi[2], ..., gi[N ]]
T
, Ei = [εi[1], εi[2], ..., εi[N ]]

T
, Hb ∈ R

N2×N2

, C ∈ R
N2×J , Wi ∈ R

J×1 and N
is the number of pixels. Note that in the absence of the error term Ei, Gi stays in the column space �(HbC)
of HbC. It can be seen that the dimension of this subspace is upper-bounded by the number of endmembers
J which is much smaller than the number of bands L indicating the low-rank nature of the problem. Next, we
proposed an orthogonal-projection based denoising algorithm to utilize these low-rank properties.
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2.3 Orthogonal-Projection based Denoising

The matrix Ĝi = [ĝ1, ĝ2, ..., ĝL] in (5) is a low-rank approximation of the original matrix of discrete noisy images
Go = [g1, g2, ..., gL] since each of its columns belongs to the column space of HbC. To denoise images, we obtain

Ĝ from Go by utilizing its low-rank estimate, which minimizes the variance of projected data. The estimated
basis s1, s2, ..., sJ is obtained from PCA analysis. The low-rank estimate Ĝ is given as

Ĝ = SS†Go, (6)

where S = [s1, s2, ..., sJ ], the pseudo-inverse S† is defined as S† = (STS)−1ST .

2.4 Point Spread Function

In the above section, denoising was performed and a low-rank approximation to absorbance spectra was obtained
based on the assumption that the blurring matrix Hb is wavelength independent within a small wavenumber
range. However, to obtain high-resolution images at every band, the blurring matrix Hb is required to be
wavelength dependent. To perform deblurring, we make following assumption. The denoised image ĝi at band i
is expressed as

Ĝi = Hb,iGhi,i +Ti, (7)

where Ghi,i and Ti are the matrix form of the high resolution image and the modeling error term at band i
respectively. Equivalently, we can rewrite equation (7) in convolution form as

ĝi[m] = hopt,i[m] ∗ ghi,i[m] + ti[m], (8)

Using Fourier optics,10 the point spread function for an incoherent source at band i is

hopt,i[m] =

⎧⎪⎨
⎪⎩

NA2
out,ljinc

[
2ν̄iΔNAout,l

(
m2

1 +m2
2

)2]

−NA2
in,ljinc

[
2ν̄iΔNAin,l

(
m2

1 +m2
2

)2]
⎫⎪⎬
⎪⎭

2

, (9)

where ν̄i is the central wavenumber of band i, jinc(x) = J1(πx)/(2x) in which J1(x) is the first order Bessel
function of the first kind, Δ is the sampling interval, which depends on the net magnification factor, and
NAin, NAout denote the inner and outer numerical aperture of the objective.

It has been shown4 that the quality of recorded spectroscopic imaging data fis depends on the resolution
of the system, which is related to the numerical aperture, and the sampling interval Δ. Thus, an effective
deconvolution algorithm to recover high resolution image needs to take all the above factors into account. Such
an algorithm is presented in the next section.

3. VARIATIONAL BAYESIAN DEBLURRING

A method to recover the “deblurred” image ghi,i[m] using the PSF hopt,i[m] and denoised images ĝi[m] is
presented here. Since Hb,i depends on Δ, we can rewrite equation (7) as:

Ĝi = Hb,i(Δ)Ghi,i +Ti, (10)

Here, we adapt a blind deconvolution framework11, 12 to simultaneously estimate the sampling interval Δ,
the deblurred image Ghi,i[m] and the unknown parameters of the prior distributions of Ghi,i[m] and Ti[m]. We
use the Simultaneous Auto-Regression (SAR)13 for the distribution of Ghi,i and a degenerate distribution for
the sampling interval Δ. The error term Ti[m] is modeled as a zero-mean multivariate Gaussian distribution.
Mathematically, expressions of these distributions can be written as

p
(
Ghi,i|αGhi,i

) ∝ α
(N−1)/2
Ghi,i

e−(1/2)αGhi,i
‖CGhi,i‖2

,

p (Hb,i = Hb,i (Δ)|Δ) = 1,

p
(
Ti|Δ, αGhi,i

, β
) ∝ βN/2e−β‖Ĝi−Hb,i(Δ)Ghi,i‖2

,

(11)
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where C is the Laplacian operator, αGhi,i
, β,Δ are random variables defining these distribution. They are

assumed to have following prior distributions

p
(
αGhi,i

)
= Γ

(
αGhi,i

∣∣ aαGhi,i
, bαGhi,i

)
,

p (β) = Γ (β| aβ, bβ) ,
p (Δ) = N

(
Δ|μΔ, σ

2
Δ

)
,

(12)

where Γ(.), N(.) denote the Gamma and Gaussian distribution. Here, μΔ = 5.5μm for the setup with the 15x
magnification and 0.5 N.A collecting objective and μΔ = 1.1μm for that with the 74x magnification and 0.65
N.A collecting objective.

Here, we define Θ =
(
Ghi,i, β, αGhi,i

,Δ
)
be a set of deblurred and unknown parameters to be estimated and

the joint probability distribution is defined as:

p
(
Θ, Ĝi

)
= p

(
Ĝi

∣∣∣ β, αGhi,i
,Δ,Ghi,i

)
p
(
Ghi,i|αGhi,i

)
p (Δ) p (β) p

(
αGhi,i

)
. (13)

The inference is based on the posterior distribution p
(
Θ| Ĝi

)
= p

(
Θ, Ĝi

)/
p
(
Ĝi

)
which cannot be obtained in

closed form. Therefore, we resort to the Variational distribution approximation to a simpler distribution q (Θ) =
q (Ghi,i) q (Δ) q (β) q

(
αGhi,i

)
such that the Kullback-Leiber divergence CKL (q (Θ)‖ p (Θ|Gi)) is minimized.

Following previously described approach, we obtain following algorithm to simultaneously estimate the deblurred
image and unknown parameters:

1. Initialize parameters of the prior distributions
(
aαGhi,i

, bαGhi,i

)
, (aβ , bβ) ,

(
μΔ, σ

2
Δ

)
, initial estimations of

deblurred image Ghi,i (maybe chosen to be the blurred image) and those of random variables βo, αo
Ghi,i

,Δo

where the superscripts are used to denote the iteration index.

2. For each k = 0, 1, 2, ..., sequentially update the distributions

• Update qk+1 (Ghi,i) = N
(
Ghi,i|Ek+1 (Ghi,i) , cov

k+1 (Ghi,i)
)
,

update the estimation Gk+1
hi,i := Ek+1(Ghi,i)qk+1(Ghi,i)

, where

Ek+1 (Ghi,i) = covk+1 (Ghi,i) β
kHb,i

(
Δk
)T

Ĝi,

covk+1 (Ghi,i) =
(
βkHb,i

(
Δk
)T

Hb,i

(
Δk
)
+ αk

Ghi,i
CTC

)−1

,
(14)

• Update qk+1 (Δ) = N
(
Δ|Ek+1 (Δ) , covk+1 (Δ)

)
,

update the estimation Δk+1 := Ek+1(Δ)qk+1(Δ), where

Ek+1 (Δ) =
[(
μΔk

/
σ2
D

)
+ ϕ′ (Δk

)− ϕ′′ (Δk
)
Δk
]/[

1
/
σ2
D − ϕ′′ (Δk

)
Δk
]
,

covk+1 (Δ) =
[
1
/
σ2
D + ϕ′′ (Δk

)
Δk
]−1

ϕ
(
Δk
)
= −0.5βk

∥∥∥Ĝi −Hb,i

(
Δk
)
Gk+1

hi,i

∥∥∥2 − 0.5 trace
[
Hb,i

(
Δk
)T

Hb,i

(
Δk
)
cov

(
Gk+1

hi,i

)] (15)

• Update qk+1
(
αGhi,i

)
= Γ

⎛
⎝αGhi,i

∣∣∣∣∣∣
aαGhi,i

+N/2, bαGhi,i
+ 0.5

∥∥∥CGk+1
hi,i

∥∥∥2+
0.5trace

(
CTCcovk+1 (Ghi,i)

)
⎞
⎠ ,

update the estimation αk+1
Ghi,i

:= Ek+1
(
αGhi,i

)
qk+1(αGhi,i)

.

• Update qk+1 (β) = Γ

⎛
⎜⎝β

∣∣∣∣∣∣∣
aβ +N/2, bβ + 0.5

∥∥∥Gi −Hb,i

(
Δk+1

)
Gk+1

hi,i

∥∥∥2

+0.5trace
(
Hb,i

(
Δk+1

)T
Hb,i

(
Δk+1

)
covk+1 (Ghi,i)

)
⎞
⎟⎠ ,

update the estimation βk+1 := Ek+1(β)qk+1(β).
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4. EXPERIMENTS AND SIMULATIONS

A Varian 7000 Spectrometer coupled to UMA-400 microscope was used to perform experiments with parameters
listed in Table 1. The interferometer is operated in the step-scan mode at a stepping rate of 200 Hz. Data were
acquired at every other zero-crossing of a He-Ne laser for a free-scanning spectral range of 7900− 0 cm−1. A
Fourier transform of the recorded data was carried out after using the Norton-Beer medium apodization function.
Data were truncated and stored as absorbance after a ratio against an appropriate background data. Simulations
were carried out using the same set of parameters.

A standard polymer-substrate USAF 1951 target was used as a sample for the first experiment. Prostate
tissue microarrays (TMAs) were used as a platform for high throughput sampling8 in the second experiment.
TMAs consist of a large number of small tissue sections arranged in a grid pattern on an substrate (BaF2).

Parameter Value

NACondenser
out 0.5

NAObjective
out 0.5

NADetector
out 0.5

Magnification of Condenser 15×
Magnification of Objective 15×
Magnification of Detector 3×
Pixel Size (effective) 5.5μm
Spectral Resolution 2cm−1

# Scans per pixel 8
# Scans (Background) 128
Detector size 128× 128
Undersampling ratio 2

Table 1. Experimental parameters used for data acquisition.

5. RESULTS AND DISCUSSION

5.1 Experimental results with a USAF target

In order to validate the algorithm, we perform experiments using a commercial FT-IR imaging system. The
first experiment is conducted on a USAF target and uses parameters listed in table 1. An absorbance image
from acquired data at 1008cm−1 and that obtained after processing are shown in Figure 3A and Figure 3B
respectively. The number of constituents endmembers is chosen to be 4. It may be observed qualitatively that
the deblurred image in Figure 3B is of higher quality than Figure 3A. To quantify performance of the algorithm
across different spatial frequencies, we calculate the absorbance contrast functions of the acquired and processed
images over different spatial frequencies. The absorbance contrast function is defined as the ratio of the difference
between the absorbance of the bar and the absorbance of the region between the bar to the maximum absorbance
of each image. Values of the absorbance contrast functions of the acquired and processed images are shown in
Figure 3C. The processed image have higher value of the absorbance contrast function over all spatial frequency
demonstrating that the deblurring algorithm improves contrast, which is an important measure of image quality.

5.2 Experimental results with biological samples

A second set of experiments were performed using a prostate tissue (TMA) sample using the same experimental
configuration as the previous section. Results from this experiment are presented in Figure 4. Absorbance images
from acquired data at 1008cm−1, 1052cm−1, 1650cm−1, and 3308cm−1 are shown in Figure 4A. Corresponding
images after deblurring are presented in 4B. A qualitative improvement in image quality is evident while com-
paring Figures 4A and B. We have used 5 constituent endmembers for denoising. All parameters of the prior
Gamma distributions are set to 1 for deconvolution. The prior distribution of the sampling interval Δ is chosen
to be N(5.5, 0.01). Estimated sampling interval is 5.47μm. Figure 4C shows the used discrete point spread func-
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Figure 3. A. Acquired absorbance image at 1008cm−1, B. Processed absorbance image at 1008cm−1 and C. Relation
between absorbance contrast function and spatial periods of the acquired image (solid) and the process image (striped).
Scale bar: 100µm.

Figure 4. (A) Acquired absorbance images (Original images), (B) processed absorbance images at 1008cm−1, 1052cm−1,
1650cm−1, and 3308cm−1 wavenumbers. (C) Discrete vs. continuous point spread functions. Scale bar: 100µm.
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tions. For a fixed optical setup, it can be seen that at low wavenumbers (1008cm−1, 1052cm−1), more sampling
points are used to describe the continuous point spread function. Thus, the continuous point spread function
is better approximated in this region. On the other hand, at relatively large wavenumbers (3308cm−1), fewer
sampling points are used. For example, at 3308cm−1, main lobe of the continuous point spread function has the
width equal to one sampling interval. As a results, processing effeciency decreases with increasing wavenumber.
Our proposed algorithm also suggests that, to obtain good processing results across the entire spectrum, it is
necessary to increase the number of sampling points at each wavenumber to at least 3 points for the main lobe
so that the discrete point spread function is a good approximation of the continuous one. This can be achieved
by increasing the net magnification factor of the system between the sample and the detector.

6. CONCLUSION

In this paper, we have presented a framework for improving the quality of FT-IR spectroscopic imaging data.
The processing is based on three main ideas, namely, denoising based on low-rank property of the data, optical
modeling of limited-aperture optical diffraction PSF and the Bayesian Variational method to estimate unknown
parameters and obtain deblurred images. The algorithms were validated using a set of experiments on both
standard (USAF target) and atypical (prostate tissue) samples. A qualitative and quantitative increase in image
quality was demonstrated. While the algorithms show promising results, a few further improvements can be
suggested. Prior knowledge on the continuous form of the point spread function can be incorporated into the
model. Information from the low resolution image can be used to obtain a higher resolution image without
increasing the magnification factor. A better image model for deconvolution that can incorporate boundary
sharpness and background smoothness may be useful in improving deblurring results.
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