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A swarm of simple active particles confined in a flexible scaffold is a promis-

ing system to make mobile and deformable superstructures. These soft struc-

tures can perform tasks that are difficult to carry out for monolithic robots

as they can infiltrate narrow spaces, smaller than their size, and move around

obstacles. To achieve such tasks, the origin of the forces the superstructures

develop, how they can be guided, and the effects of external environment, es-

pecially geometry and the presence of obstacles, need to be understood. Here

we report measurements of the forces developed by such superstructures, en-

closing a number of mindless active rod-like robots, as well as the forces ex-

erted by these structures to achieve a simple function, crossing a constriction.

We relate these forces to the self organization of the individual entities. Fur-

ther, and based on a physical understanding of what controls the mobility of
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these superstructures and the role of geometry in such a process, we devise a

simple strategy where the environment can be designed to bias the mobility

of the superstructure giving rise to directional motion. Simple tasks such as

pulling a load, moving through an obstacle course, or cleaning up an arena

are demonstrated. Rudimentary control of the superstructures using light is

also proposed. The results are of relevance to the making of robust flexible

superstructures with non trivial space exploration properties out of a swarm

of simpler and cheaper robots.

One Sentence Summary: Self-organization of independent simple robots confined in a flexible

scaffold gives rise to a mobile and flexible structure.

Introduction

Swarm robotics (1–4) uses a multitude of simple robots, with minimal ingredients such as self

locomotion or simple configurational change, leading, through mutual interactions (5–7), to

global organization with abilities that may go beyond those of the individual particles (6–11).

Different types of robots have been proposed to achieve this goal from motile vibrating bots,

active particles with embedded locomotion, to shape changing and/or light sensitive particles

(6–10,12). The use of scaffolds made of rigid or flexible boundaries enclosing several robots is

emerging as a promising strategy to create superstructures with non trivial properties (8,10,13–

15). These superstructures can acquire mobility even when the robots have none (10). Because

of the flexibility of the scaffold, these superstructures can deform, go through constrictions and

around obstacles giving them space exploration properties (8,13,14). Nevertheless, the origin as

well as the measurement and prediction of the forces developed by such superstructures remain

ill understood and strategies to direct their motion remain scarce. These forces are essential to

2



predict the size of constrictions that the superstructures can infiltrate and the loads they may

transport.

Despite a number of studies on active particles, the simplest type of robot, and their self

organization in bulk and under confinement using diverse objects spanning a wide range of

spatial scales (16–23), it remains a fundamental challenge to predict macroscopic properties

such as the pressure exerted by assemblies of active particles or the effect of the presence of

boundaries on the spatial distribution of these particles (24–26). When the walls containing

the assemblies are deformable and flexible, the physics becomes even more complex (8, 13,

27–29) giving rise to nontrivial instabilities and shapes. How such forces and pressures adapt

to changing environmental and geometrical features is again not well understood. All of these

elements are essential to design autonomous, scalable, robust, and multipurpose superstructures

out of a swarm of robots.

Here, we confine a swarm of motile and mindless robots in a deformable scaffold, creating a

superstructure whose dynamics emerges from the self-organization of the robots. The mobility

of these superstructures is shown to be directly related to the ability of the rod-like robots to

align parallel to each other and perpendicularly to the scaffold walls. This alignment, referred

to as the polar order, gives rise to a force pointing perpendicular to the scaffold walls and to

the mobility of the superstructure in the direction of this alignment. The emergent mobility of

the superstructure is thus directly linked to the self organization of the individual components

with the polar order being the main driving force for the locomotion. The superstructure is then

subjected to perform a simple function, crossing a constriction. We uncover how the geometry

of the constriction, its width and length, controls the forces developed by the superstructure to

overcome geometrical obstacles and thus the passage time through the constriction. Numerical

simulations as well as a simple model complement and rationalize our findings. Based on this

fundamental understanding of the locomotion of the superstructure in these model confined
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environments, we devise a simple strategy to direct their motion and test different possibilities

for these superstructures such as pulling loads, moving through an obstacle course, cleaning

up an arena, and interacting with each other. Using rudimentary light control of the individual

robots, the mobility of the superstructures can be turned on and off and the organization of the

individual robots can be induced leading to mobility. Figure 1 gives a summary of our findings

in graphical form going from the individual robot to a controllable superstructure.

Results

To provide a minimal system for studying the robotic potential of superstructures driven by

collections of independent robots, we study the dynamics of a confined collection of such robots

in flexible and deformable scaffolds moving in geometries with increasing complexity: a simple

straight channel, a channel with a geometrical constriction and a channel geometry with several

such constrictions. Each situation gives direct insight into the mobility of these superstructures,

their ability to carry out a simple function, and finally their capacity to have directional motion.

Superstructure mobility in a straight channel

To gain insight into the emergent dynamics of the superstructure and how it is related to the

underlying driving by the robot collective, we begin by confining the superstructures in straight

channels. The first set of experiments examines the mobility of flexible superstructures of dif-

ferent diameters D, filled with a number N of mobile centimeter sized rod-like robots (see

Methods) propelled by self-vibration, in straight channels of width H , comparable to or smaller

than the diameter D of the scaffold itself, and lengths of several diameters. The scaffolds are

made of thin steel strips of various thicknesses e, corresponding to varying flexibility of the

scaffold (8, 30, 31). Figure 2a shows snapshots of robot filled scaffolds in such channels, two

channel widths are shown. The state of organization of the robots can be disordered (gas-like
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Figure 1: Paper at a glance: the experiments use centimeter sized robots enclosed in scaffolds.
For flexible scaffolds, the self organization of the robots gives rise to a polar ordering of the
individual robots and mobility of the structure. These superstructures can then go through
constrictions, drag loads, move around obstacles and carry out simple tasks such as cleaning
an arena. Rudimentary control over the individual robots can lead to control over the self
organization and the mobility of the superstructure

in the center) or ordered near the boundary of the scaffold and the walls of the channel (8, 26).

This ordering is of two sorts with robots either parallel or perpendicular to the walls. At low

N , the robots align parallel to the scaffold walls and move along this boundary. Rapidly, after a

few collisions between the robots, the majority of the robots align in the same direction giving
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rise to swirling motion. In this state of organization, the superstructure only performs non-

persistent stochastic motion, Fig. 2b and Movie 1. At higher N , the robots can form clusters

where the individual particles point perpendicular to the surface of the scaffold as demonstrated

earlier (8, 26). While these clusters are rather stable, they may lose or gain particles, and they

generally drift along the boundary in the counterclockwise direction due to a small bias in the

trajectory of the single robots with a tendency to have circular trajectories (8). This state of

organization gives rise to persistent superstructure locomotion, Fig. 2b and Movie 2, with mean

velocities that are a fraction of the single rod velocities (8).

To quantify these observations, we measure the mean value of the modulus of the velocity

of the center of mass of the superstructure < V (t) >, and the angular momentum of the robot

assembly, < L(t) >=< r(t) × v(t) >t,N where r(t) is the vector position of the robot with

respect to the center of the scaffold and v(t) is the velocity of the robot, as a function of the

number of robots, Fig. 2c. The brackets indicate a temporal average and an average over all the

robots. At lowN , L is high ( close toRVB whereR is the radius of the superstructure and VB the

mean velocity of the individual robots), while < V (t) > is low signalling the swirling motion

of the robots along the scaffold surface. For intermediate values of N , between 20 and 25 for

the example shown in Fig. 2c, the state of organization can be disordered with the appearance

of small clusters in an intermittent manner; the super structure in this state has a low velocity

(less than 0.1VB) and no persistent motion is clearly visible (see Movie 3). For higher N , the

superstructure velocity is high ( 0.1 to 0.2 VB) while L has low values close to zero signaling

the presence of a cluster with robots perpendicular to the walls. A transition from swirling

to clustering and thus superstructure mobility in the direction of the channel length occurs for

high enough values of N (above 25 for the example shown). The transition number depends on

scaffold diameter and flexibility and is plotted in Fig. 2d. This number increases linearly for

small diameters, and corresponds roughly to full coverage of the scaffold surface with parallel
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rods (highlighted by the dashed line), and starts to deviate from this trend for larger diameters for

which full coverage with robots parallel to the walls is never reached before cluster formation.

The band in Fig. 2d around the data points signals the fact that for an intermediate range of

N values, the state of organization is ill defined. These observations and measurements set the

tone for our next study which concerns superstructure mobility and link to the self organization

of the robots.

For each scaffold diameter and flexibility (see SFig. 1), a sufficient number of robots has to

be used to trigger the persistent mobility of the superstructure according to the phase diagram of

Fig. 2d. Under these conditions, we have examined the mobility of different superstructures in

channels of different widths both experimentally and numerically (see Movies 2, and 4). For the

simulations (see Methods), the self-propelled robots were modeled as rigid spherocylinders built

from spherical particles fused together. Each rod-like robot is described as an inertial particle

and obeys a Langevin equation for translation and rotation (8). A constant force is used in the

equation for the dynamics of the position of the robot to give each particle a constant velocity.

An additional constant torque T0 is added to the equation for the dynamics of orientation of

the robots to simulate the effect of a rotating trajectory. This torque was used to obtain a close

match to the experiments (found for T0 = 1) for which the robots have a small bias with slightly

curved trajectories. This bias and the additional torque introduce a small drift of the clusters

along the scaffold walls in the counterclockwise or clockwise direction. This torque turns out to

be important for the spatial exploration of the scaffold by the clusters and as we will see below

has consequences on its mobility. In the simulations (see Methods), the flexible scaffolds were

made of a collection of beads similar to the spherical particles used for the robots. These beads

are connected together in a similar fashion as for a polymer chain which allows to modulate the

flexibility of the scaffold surface.

To analyze quantitatively the mobility of the superstructure in different channels, we mea-
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Figure 2: Robot filled scaffolds in straight channels: a) Photographs of superstructures in
straight channels of different widths H of 39 and 19 cm. Here the diameter of the scaffold
is D = 39 cm, the number of robots is N = 20 and N = 25 in the upper and lower images
respectively. The thickness e of the scaffold wall is 100 µm. b) Trajectories of superstrutures of
D = 39 cm in channels of H = 39 cm with e = 100 µm for N = 15 and N = 30. c) Angular
momentum of the robot assembly L(t), normalized by RVB where R = D/2 and VB the mean
velocity of the individual robots, and velocity of the superstructure normalized by VB versus
number of robots, for H = 39 cm, D = 39 cm, and e = 100 µm. The embedded images show
the state of organization of the robots with swirling motion at low N and high polar order near
the boundary (the arrow indicates the total polarization P ) at high N . For intermediate values
of N , the state of organization is disordered with the appearance of small intermittent clusters.
d) Phase diagram for superstructures with scaffolds of thickness e = 100 µm. Number of robots
above which no swirling motion is observed versus superstructure perimeter normalized by the
length of a robot l. Below the indicated value of N the robots undergo swirling motion along
the boundary of the scaffold, while above this value, surface clusters pointing perpendicularly
to the boundary start to form. The dashed line indicates full coverage of the circumference of
the scaffold with robots parallel to its boundary. The band around the data points indicates the
range of intermediate values of N values for which the state of organization is ill defined

sure both its velocity in the direction of the channel length, VX = V · ex, as well as the ability

of the robots to align in the same direction. This is measured using the polar order of the robots,

PX =
∑

N n · ex where n is the unit vector of the robot orientation, and ex is the unit vector
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along the channel direction x; the sum is over all particles. Figure 3a and 3b show examples

of such measurements for experiments and numerical simulations. For each of these measure-

ments, a strong correlation between VX and PX is found as the straight line shows (see SFig. 2a

for additional measurements). These measurements imply that VX = µPX . The value of µ does

not depend on N but depends on H (see SFig.2b): for example µ=2/3 cm/s for H = D while

µ=1/3 cm/s for H = 1/2D for this particular example. In the numerical simulations, Fig. 3b

and SFig. 2b, no dependence on channel width is observed most probably due to the fact that

no solid friction is included in the simulations. The polar order of the robot assembly and in

particular its component along the channel length ex with the robots pushing against the walls

of the scaffold is the driving force for the mobility of the superstructure and the value of 1/µ is

the equivalent of a damping (friction) coefficient which increases as the confinement increases,

at least in experiments. The cross correlation function of PX and VX , displayed in the inset of

Fig. 3a and 3b, is peaked around 0 showing that the two quantities have no lag time between

them. The dynamics of the superstructure is thus over damped and inertial effects are negligi-

ble allowing to write a force balance between dissipation VX/µ and the driving force given by

PX (we here omit a constant factor f0 which is the force exerted by a single rod). The total

orientation of the rods in the channel direction and therefore the driving force PX is however

a stochastic quantity. The fluctuations of PX have different origins. If a cluster is present, the

cluster as a whole may rotate and therefore induce a change of the polar order in the direction

of the channel length. Further, the cluster may dissolve or may lose or gain particles giving rise

to a decrease or increase of the total polar order P and of its component PX . On average how-

ever, the rate of change of this polar order is proportional to the polarization itself with a well

defined characteristic time τc. Figure 3c shows that < dPX/dt > versus PX is linear, a relation

from which τc can be estimated. This time scale is of order a few seconds and turns out to be

related not only to variations in the number of particles pointing in the direction of the channel
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length or in the cluster but also to the bias in particle trajectories in experiments which induces

a rotation of the robots or the clusters and to the additional torque in simulations. For example,

for the torque used here T0 = 1, τc is roughly 6.5s; for a larger torque T0 = 1.5 this time scale

is shorter and is roughly 2s while for a smaller torque T0 = 0.6 it is nearly 14s. In order to

gain more insight on this time scale, we also calculated the auto-correlation functions of PX

with the additional condition that only small clusters are considered. This correlation function

turns out to be roughly exponential with a finite correlation time as shown in Fig. 3d. We thus

hypothesize, in a minimal description of the dynamics of the self organization of the robots,

that PX is a Gaussian random process with a finite correlation time. These observations can be

rationalized by writing a linear relation between Vx and PX (Eq. 1) coupled to the hypothesis

supported by experiments (Eq. 2) that PX is a Gaussian exponentially correlated process (see

SFig. 3). In equation 2, δ(t) is a Gaussian delta correlated noise (see SFig. 4) and τc is the

correlation time of the process.

VX = µPX (1)

dPX
dt

= −PX
τc

+ δ(t) (2)

Our numerical simulations of superstructures confined in linear channels show similar be-

havior as shown in Fig. 3. The difference between simulations and experiments comes, most

probably, from the friction of the channel walls which is present in the experiments but not in

the simulations giving differences in the value of µ and its dependence on the channel width H.

Nevertheless, the main features of the phenomenology of superstructure mobility are captured

by our numerical simulations.

To summarize, the velocity of the superstructures is directly linked to the polar order of

the robots in the direction of motion which is the driving force of this locomotion. This polar

order is a stochastic quantity which is reasonably well described by a Gaussian exponentially

10



PX

-30 -20 -10 0 10 20 30

V
X

(c
m
/
s)

-20

-10

0

10

20

N = 30

H = 39 cm

t (s)
-20 0 20

C
(V

X
,P

X
)

-0.5

0

0.5

1

PX

-30 -20 -10 0 10 20 30

V
X

(c
m
/
s)

-20

-10

0

10

20

N = 25

H = 39 cm

t (s)
-20 0 20

C
(V

X
,P

X
)

0

0.5

1

t (s)
0 5 10 15 20 25 30

C
(P

X
,P

X
)

0

0.2

0.4

0.6

0.8

1
Experiments

Simulation

Exponential Fit

PX

-20 -10 0 10 20

<
d
P
X
/d

t
>

(s
−
1
)

-4

-2

0

2

4
Experiments

Simulation

Linear Fit

(a) (b)

(c) (d)

Figure 3: Properties of superstructure mobility: Velocity VX versus polar order PX along the
channel from experiments (a) for, a number of robots N = 30, diameter D = 39 cm, and
thickness e = 100 µm and simulations (b) for a number of robots N = 25 and diameter D = 39
cm. Insets, cross correlation function C(VX , PX of velocity and polar order. c) average rate of
change of polar order < dPX/dt > versus polar order PX >. The slope gives the correlation
time τc. d) Auto-correlation function C(PX , PX) of the polar order PX and an exponential fit.
Both c. and d. are for the same conditions as a. and b.

correlated noise with correlation time τc. The mobility of the superstructures therefore sets in

only when the polar order is large and is thus linked directly to the self organization of the

robots as shown in our phase diagram.

Superstructure mobility through a constriction:

The first step towards robotic function is the ability to solve simple tasks. Thus, we study how

the superstructures respond when challenged with the task of overcoming an obstacle in the
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form of a thin constriction. Despite the simplicity of this function, overcoming obstacles is

essential for the development of spatial exploration properties. We first focus on the statistics

of the passage times of the superstructure between two compartments separated by a geomet-

rical constriction to examine how much time is needed for the superstructure to overcome the

obstacle. We follow this by a study of the forces at play to examine how the driving force of the

assembly of robots adapts to the presence of such an obstacle.

Statistics of transitions through a constriction

We use the same superstructures with a sufficient number of particles for mobility to set in but

in a channel with an embedded constriction placed in its central part of length L and width H .

Note that we have kept the same symbol for the constriction width as that of the channel width

above. As we will show below, the addition of a constriction in such a channel transforms

the problem into a transition from one chamber to the other (see Movies 5 and 6). This two

state system, is interesting on its own and has been used previously to measure the dynamics of

deformable motile entities in a recent study of migrating cells (32,33). Images of such channels

as well as a montage of the superstructure going through the constriction is shown in Fig. 4a

and 4b for experiments and numerical simulations. The dynamics of the center of mass of the

superstructure versus time, shows a two state system with the superstructure residing in the

same chamber for some time before transiting to the other chamber after a certain waiting time.

This transition may occur several times for a given period of time. In Fig. 4c and 4d, several

successful passages but also several unsuccessful ones can be observed.

In order to measure the statistics of this stochastic process (32), we plot in Fig. 4e and

g, the probability distribution of dwell times PDF(τ ) (τ being the time that the superstruc-

ture remains in a chamber before crossing the constriction) as well as the so called survival

probability S(τ) = 1 −
∫ τ

0

PDF(t) dt. While PDF(τ ) shows a peak at small times and de-
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Figure 4: Transition across a constriction, a two state geometry: a) and b) Photographs of a
superstructure in a channel with two compartments separated by a constriction (a. experiments,
b. simulations). Note that the robots form a cluster which rotates and explores the superstructure
walls to find the constriction entrance. Diameter D = 39 cm, and length of the constriction
L = 14 cm, the thickness of the scaffold walls is e = 100 µm (for experiments), the number
of robots is N = 25, and the width of the constriction H = 19 cm. c) and d) Superstructure
center of mass versus time as it passes through the constriction. The shaded region represents
the constriction (length L = 14 cm and width H = 19 cm), the green dashed lines are the
position of the center of mass of the superstructure when its walls touch the constriction. e)
Survival probability functions S(τ) of waiting times. f) Mean waiting times < τ) > versus
length of constriction L. g) pdfs of waiting times τ . In e, f, and g, the solid lines are the results
from the resolution of our model based on equations 3 and 4.

creases slowly for larger times, the survival probability shows a roughly exponential behavior

giving a simple way to find a characteristic time for transiting from one chamber to the next:

S(τ) = exp(−τ/ < τ >). This characteristic time can also be obtained by counting the number

of successful transits for a long enough period of time. The characteristic time< τ > is plotted,

Fig. 4f, versus the length of the constriction L, for a fixed number N of robots. The character-

istic time depends also on the flexibility of the superstructure (i.e. the thickness of the walls e)

as well as the width of the constriction H as we point out in SFig. 5. Note that for a fixed width
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H , the characteristic time < τ > increases roughly linearly with L. All these elements are

reproduced nicely with our numerical simulations the results of which are superimposed on the

experimental data in Fig. 4e, f, and g. The linear increase with constriction length is a feature

noted previously albeit for a completely different system and rules out different scenarios for

the transition such as a double well potential or other scenarios (32).

Forces and polarization maps

While the superstructures are capable of accomplishing the function of transiting between dif-

ferent chambers, the forces at play need extra scrutiny. To this end, we plot in Fig. 5a and 5e the

trajectories of the center of mass of the superstructure in (VX , x) space as well as their proper-

ties (32). While in the chambers, the superstructure velocity hovers around zero. As a passage

through the constriction starts, the velocity increases with a clear acceleration phase. Near the

middle of the constriction, the acceleration starts to decrease before the whole superstructure

starts to decelerate as it makes its way towards the second chamber. A similar scenario occurs

as the structure goes from right to left. Since we track the centre of mass of the superstructure,

acceleration starts before reaching the position of the constriction as the front of the superstruc-

ture situated one radius ahead is already near the constriction entrance. These positions are

indicated by dashed lines in Fig. 5a and 5e while the shaded region indicates the constriction

limits. Different flexibilities show qualitatively similar behavior (SFig.6). While the velocity

variations indicate acceleration and deceleration phases, it should be kept in mind that such

changes are due to changes of the polar order to which we now turn.

We plot in Fig. 5b and 5f, for experiments and simulations respectively, the mean polar

order in the x direction, < PX > Ṫhis polar order is large and has the same sign as the velocity

all through the phase where this velocity is non zero regardless of whether the superstructure is

accelerating or decelerating (upper and lower parts of the map of <PX >). In order to examine
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Figure 5: superstructure trajectories and forces at play in the presence of a constriction: (a-d)
results from experiments, (e-h) results from simulations. a) and e) superstructure trajectories in
velocity VX versus position x representation. b) and f) Map of mean polar order < PX > in the
direction of motion in the same representation. c) and g) Mean of the difference< VX/µ−PX >
between velocity and polar order. d) and h) Mean of the difference < dPX/dt−PX/τc > in PX
versus x representation. D = 39 cm, L = 14 cm, H = 19 cm and N = 25. For experiments,
e = 100 µm.The scale of the color maps, where red indicates high positive values and blue high
negative values, is displayed on the right.

whether VX and PX remain correlated as in the straight channel, we plot the mean value of their

difference, < VX/µ − PX > in Fig. 5c and 5g. All along the trajectory of the structure, while

the scaffold is fully within the constriction, the two quantities remain proportional (the value

of the difference is small) as in the linear channel discussed above with a similar value of µ

as for a channel with a similar width H as the constriction. However, the two quantities are

not equal near the entrance of the constriction (when the center of mass is at L/2 + R). Near

this entrance, an additional resistive force (its sign is opposite to that of < PX >) is apparent

from these maps indicating that the geometry (the sudden contraction of the channel due to the

presence of the constriction), resists the passage of the superstructure. Geometry is exerting an
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additional resistive force whose origin can be the elastic response of the scaffold following its

large deformation but also the reaction of the walls of the channel near the contraction.

In the presence of the constriction, the equation of motion needs to be modified with respect

to that in the straight channel to take into account this additional resistance. This is achieved by

invoking an additional force F (x, VX) which is unknown but can be extracted from the maps of

Fig. 5c and 5g. We then write the following force balance, with α being an additional constant

”friction” parameter.

VX = µPX +
1

α
F (x, VX) (3)

Since the orientation or polar order of the assembly, in the direction of the channel length

x, as well as its temporal dynamics are crucial for the locomotion of the superstructures, we

proceed in a similar manner as for the velocity and plot the map of the mean difference between

dPX/dt and−PX/τc to examine whether the proportionality between PX and its rate of change

remains true in the presence of the constriction. Again and as for the VX versus PX relation,

additional variation is observed in Fig. 5d and 5h where a map of < τcdPX/dt + PX > is

shown in (PX , x) space. Near the entrance, an additional contribution is again observed as the

superstructure enters the constriction. The dynamic equation for the polar order needs to be

modified to take into account the role of geometry:

dPX
dt

= −PX
τc

+ δ(t) +G(x, VX) (4)

The contribution G(x, VX) is positive and helps increase the polar order near the constric-

tion. It is this increase in polar order induced by the presence of the constriction which balances

the additional resistive force F (x, VX) and allows the passage of the superstructure through the

constriction. This increase in polar order near the entrance is most probably due to the interplay

between polarization and the curvature of the scaffold (see Fig. 4a and 4b) as the superstructure

enters the constriction (8, 27).
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With these ingredients, summarized in equations 3 and 4, the system dynamics can be cap-

tured in detail. To this end, we carried out a numerical resolution of these model equations, the

results of which are shown in Fig. 4(e-g) and SFig. 7. The values of µ and τc were obtained

from the simulations and the experiments in channels and similar assumptions for the noise δ(t)

and the Gaussian nature of PX (which are tested in SFig. 3 and 4) were used. The additional

terms F/α and G have been approximated by appropriate functional shapes in the maps of Fig.

5 and taken into account in the resolution of the set of equations. The center of mass dynamics

versus time, SFig. 7, bears much resemblance to the experimental and numerical time traces

obtained above. Further, the probability distribution of dwell times as well as the survival prob-

ability are also reproduced faithfully with a roughly exponential decay for the latter, Fig. 4e

and g. The variation of the mean dwell time versus length of constriction is also in agreement

with experimental and numerical data shown along with the model results in Fig. 4f. Our mini-

mal model is thus in very good agreement with observations from both the experiments and the

simulations.

Multiple constrictions

Having demonstrated the function of transiting through a constriction and revealed the nature

of the forces at play, we now turn to an examination of how such superstructures handle the

presence of multiple constrictions of varying lengths in a linear channel. We anticipate that

the superstructure will have a tendency to move preferentially in the direction of decreasing

constriction lengths and can thus be guided. Guiding through geometrical features, has for

example been proposed before (34, 35). Our superstructures are capable of going through a

narrow constriction by deforming and by harnessing the self organization of the robots induced

by the confinement and the presence of a geometrical contraction. The mean dwell time of

the superstructure in a compartment is fixed by the properties of the scaffold but also by the
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geometry of the constriction. This dwell time increases roughly linearly with the constriction

length for a fixed constriction width. This observation points to a simple strategy to direct

the stochastic motion of such superstructures. Figure 6a shows a channel with a sequence

of constrictions with increasing lengths L. The rationale behind this architecture is based on

our experimental observations: a superstructure in a chamber delimited by a long and a short

constriction on either side, has a higher probability of crossing the shorter constriction. In a

sequence of constrictions, the superstructure may thus have a higher probability to go in the

direction of decreasing constriction lengths. This is a stochastic process as shown in SFig. 8

and in Fig. 6b which display results from a series of 11 different experiments, indicated by

different colors, where the superstructure was placed in a compartment and the position of its

center of mass monitored for different periods of time (see Movie 7 for an example). There are

5 compartments separated by 4 different constrictions of different lengths which decrease as

the compartment number goes from 1 to 5. The time series of center of mass positions (SFig.

8) shows that the superstructure can transit from one compartment to the other and so on in

a stochastic manner. Figure 6b shows a sample of transits from compartment to compartment

versus the transit number. The consolidated data from several runs, (11 runs and over 7 hours of

monitoring) from which Fig. 6b is an example, with almost 400 transit events shows clearly the

stochastic nature of such transitions. This plot shows already that transits towards compartment

5 are more probable. That the transition probabilities are asymmetric in this architecture is born

out by measurements of this probability from compartment k to k + 1 and from k to k − 1 as

shown in Fig. 6c. For example for compartment k = 4, transition to k = 5 has a probability

close to 0.8 as opposed to transition to k = 3 which has a probability near 0.2.

In order to examine whether, statistically, transiting in the direction of decreasing constric-

tion lengths is more likely, we examine the probability of moving from one end of the channel

to the other. That this mobility is directional is summarized and quantified in Fig. 6d where we
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Figure 6: Guiding superstructures: a) Photograph of the multi chamber linear channel. From
left to right L = 30 cm, 20 cm, 10 cm, and 2 cm at fixed H = 15 cm, e = 100 µm and D = 25
cm for N = 21. b) Position of the superstructure in the multi-chamber channel in chamber
number versus transition number representation for the same values of L as a) but for N = 13,
D = 23 cm and H = 13 cm. Only a small sample is represented; the full time series is shown
in SFig. 8. c) transition probabilities from compartment k to k+ 1 (green triangles) and from k
to k− 1 (red triangles). d) Transition probabilities from compartment 1 to k in k− 1 successive
steps (green circles) and from compartment 5 to k in 5− k successive steps (red circles). These
are the probabilities to undergo directed paths from one end of the channel to the other. The
red and green dashed lines with triangles are calculated using the independent probabilities of
transition shown in c)

plot the conditional transition probability to go from compartment 1 to compartment k in k-1

successive steps and from compartment 5 to compartment k in 5-k successive steps. This proba-

bility measures the likelihood of direct paths in increasing or decreasing order in k depending on

whether the path starts from compartment 1 or 5 respectively. While this probability decreases

as k changes, the chances of the superstructure ending up in compartment 5 starting from com-

partment 1 are much higher than the reverse: 40% versus 10%. The superstructure has a higher
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probability of following a direct path in the direction of decreasing constriction lengths. Fur-

ther, the obtained transition probabilities are not simply related to the independent probabilities

from compartment k to k+1 or k-1 as shown by the red and green dashed lines in Fig. 6d. which

underestimate our results. Transitions across the different constrictions are, in fact, correlated

beyond a single constriction especially in the direction of decreasing constriction lengths. In

SFig. 9 we show the conditional probabilities of transition over two compartments successively.

By using these correlated probabilities (SFig. 9), we obtain a much better agreement with the

data of Fig. 6d than the uncorrelated transition probabilities of Fig. 6c.

These measurements demonstrate a bias in the stochastic transition from compartment to

compartment in the presence of different length obstacles giving rise to directional motion in a

gradient of geometrical constriction lengths. The local self-organization of the individual rods

as they get aligned in the direction of motion allows them to cross at least two constrictions in a

row instead of reversing direction giving rise to correlations in transition rates. That the orien-

tation of the robots in the direction of motion remains correlated over a certain time is crucial

for this to occur and gives rise to correlations between transition events in successive transitions

signalling the presence of memory effects (34). This is especially true for the transition in the

direction of decreasing constriction lengths.

Discussion

These superstructures, consisting of self-motile rods in a flexible scaffold, exert forces on their

surroundings, allowing them to pass through a flexible door (Fig. S10 and Movie 8), and pull

loads up to a half of their weight (Fig. 7; see also Movie 8) in straight channels or in channels

with obstacles. Further, the superstructures exert sufficient force to push obstacles around and

clean up an arena in a more efficient manner than individual robots, Fig. 8a and Movie 9, while

two superstructures in the same arena can interact in what seems like a game of rudimentary
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Figure 7: Pulling a load: Robot filled scaffolds pull a load (circle with four immobile robots)
through an obstacle course. The obstacles are highlighted by black circles. D=30cm and N=19.

billiards (Movie 9). All these functionalities rely on the self-assembly of a cluster of the self-

propelled rods inside the scaffold leading to the motility of the superstructure. Without the

spontaneous polarisation, the working efficiency is reduced (see e.g. Movies 8 and 9 where the

spontaneous reformation of the clusters after their destruction occurs several times).

All of these tasks are carried out by autonomous entities with no external control. Rudimen-

tary light control can be introduced at low cost (see Methods and SFig. 11). For this purpose,

we have equipped a number of individual robots with a second motor on their back. This motor

being connected to a second battery, a photo transistor, and elementary electronics, can be actu-

ated by shining sufficiently strong light on the photo transistor. Using the second motor alone,

the robots start moving upon shining light on them, end up self organizing leading to mobility of

the superstructure (see Movie 10). When light is turned off, the robots stop and the superstruc-
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Figure 8: (a) Cleaning an arena: A robot filled scaffold pushes empty circles out of the arena
and into its open corners. In less than 40s two such circles have been evacuated. The diameter
the scaffold is 30cm and is filled with 20 robots. (b) Light controlled superstructure: When
light is off, the robots are in the swirling state (in the counter clockwise direction) and the
superstructure has little or no mobility. As the light is turned on (at 10s), the robots acquire
circular trajectories in the clockwise direction triggering collisions and clustering in less than
2s (at 12s) leading to mobility of the superstructure and its crossing a constriction between two
obstacles highlighted in blue. D=39 cm and N=18.

ture becomes immobile. The robots can also be driven by using both the internal motor and the

second external motor. The robots move as usual due to the action of the internal motor; when

the second one is turned on by shining light on the photo transistors, the robots start moving in

circles in the same direction as the external motor, i.e. in the clockwise direction (see Movie

10). This was achieved by carefully adjusting the chip carrying the circuitry, the additional

motor and the battery on the back of the robots and by choosing the rotation direction of the

external motor. The light controlled chirality can be used to control the dynamics of the robot

assembly. When the second motor is turned on, the swirling state which prevails at low surface
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fractions of robots, ceases to exist and gives rise to clustering of the individual robots: As the

robots swirl around the scaffold in the anti-clockwise direction, if the second motor is turned on

giving the robots a torque in the clockwise direction and thus rotation opposite to the swirling,

collisions between robots occur leading to the formation of a cluster strong enough to induce

mobility of the superstructure. This clustering, which occurs now at lower densities, and the

induced mobility of the superstructure can be seen in Movie 10. This control can also be used

in the presence of a constriction: When the second motor is turned on, clustering is induced,

and the superstructure endowed with mobility manages to cross the constriction as seen in Fig.

8b and Movie 10. In short, the superstructures examined here, can carry out several tasks in an

autonomous fashion but they can also be at least partially controlled externally using light, for

example, to start or stop the superstructure or to spark their mobility by inducing clustering of

the individual robots.

To summarize, swarms of simple mindless rod-like robots endowed with their own mobility

harness boundary effects to self organize and propel larger and more complex entities. These

superstructures have the ability to go through narrow constrictions, smaller than their size, by

exerting forces produced by the local alignment of the individual robots, alignment which itself

can be favorably influenced by the presence of geometrical features. Our experimental and nu-

merical study has yielded a minimal but simple model for the mobility of superstructures made

out of a swarm of simple robots as well as document the different forces engendered by these

superstructures. A simple way to direct the motion of these superstructures in linear channels

with a gradient in constriction properties is proposed. While the idea of crossing constrictions

with variable lengths appears simple, the inherent structure of the organization of the individ-

ual robots and its temporal correlation gives rise to non trivial effects which are manifested by

memory effects. Further experiments also show that these superstructures can carry out dif-

ferent tasks such as pulling a load, going through a simple obstacle course, and cleaning up
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an arena. Using two such superstructures, the premise of a battle game also emerges. Simple

rudimentary control of the individual robots brings forth ways to control the superstructure as

well as the onset of self organization leading to its mobility.

Materials and Methods

The robots, the superstructures and their tracking:

The motility of the plastic robots used here is induced by the vibration of the robot itself with

an embedded battery operating a vibration module working at frequencies between 150 and 60

Hz. The plastic robots have asymmetric soft legs which after a few vibration cycles give rise

to a directed movement with velocities which depend on the frequency of vibration and can

be varied from roughly VB = 30 to 20cm/s. The workings of these bots have been described

in (8, 30, 31). The bottom plate on which the robot vibrates and its defects as well as the

dynamics of the asymmetric legs of the robots give rise to noise in this directed movement. The

experiments are carried out using a fixed numberN of these robots confined in circular scaffolds

of different diameters D and their dynamics is followed by video imaging for different values

of N .

These robots have dimensions of 4.5 by 1.5 cm. They are somewhat elliptical and were

used at speeds near 25 cm/s. They are driven by a battery and a small vibration device which

vibrates at frequencies fixed by the voltage of the battery. An eccentric rotating mass vibration

motor is used to drive the vibration. Both the driving speed and the frequency can be changed

but the two quantities are correlated. Further, these robots have a small bias (due most probably

to the rotation of the eccentric mass of the motor) giving rise to circular trajectories (with large

radii of curvature). The axis of the eccentric motor giving rise to the vibration of the robots is

mounted along the longitudinal axis of the rod and the eccentric mass spins counterclockwise

inducing the bias in the trajectory. This bias, difficult to observe for a single robot, gives rise
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to a drift of a cluster along the boundary. This drift is systematically counterclockwise (as all

the vibration motors rotate in the same direction) and allows the cluster to move around in the

superstructure and eventually find the entrance of the constriction.

To track these robots, they are painted black and two colored spots are stuck on their backs.

Tracking both spots simultaneously and on all visible robots in color video recordings done

at different rates (going from 1kHz down to a few frames per second) allows us to extract

both the orientation of the robots as well as their center of mass and therefore obtain their

instantaneous translation velocity as well as their angular velocity and orientation. As such, one

obtains velocity distributions, densities and other quantities such as the spatial configuration of

clusters, clustering probabilities, and total polarization from video recordings.

Flexible scaffolds of different sizes (typically a few tens of cm in diameter D and 2 cm

in height) are made of thin metal strips of thickness 100 or 50 micrometers. The robot filled

scaffolds are then confined in linear channels, made of aluminum bars of length 2 m, height 2

cm, and widths that vary from D down to D/4. The constrictions are made of similar material

and are embedded in the straight channels. The ends of the compartments are made of the same

steel strips as the scaffold. Both the center of mass of the superstructure, its full contour and the

position and orientation of the robots are measured from movies taken with a color camera over

a duration that can reach up to 60 min depending on the experiment. Several such movies are

then made and data combined from such movies to increase the statistics. For example, for the

data in Fig. 1c, and for eachN , a 10 minute movie was recorded to determine the corresponding

value of L and < V (t) >. For Fig. 1d, and in addition to an analysis similar to Fig. 1c, for each

diameter, a movie of a few minutes was recorded for different values of N to determine visually

the time spent by the robots in the swirling state or in a stable cluster. If no stable swirling

or cluster is observed, the time spent in this intermediate state is measured. The swirling state

or the cluster state is only taken when the time spent in this state is larger than 0.8 times the
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duration of the movie. The extent of the intermediate state is noted as the band around the

measurement points. For Fig. 2, for each value of N , at least 60 minutes of recording time is

used to extract the velocity and polarization along with their correlation functions. Similarly for

the simulations at least the equivalent of 3h of recording was used. For Fig. 3, several movies

(ten in total) of 30 min duration (a total of 5 hours of recording) are used for each constriction

length. For the simulations the equivalent of 30 hours of recording was used. The maps used in

Fig. 4 use at least 5h of recording and are obtained by binning data in (VX , x) or (PX , x) space

and averaging over these bins. The data for these maps come from analyzing at least 10 movies

of 30 min duration. For the simulations, the equivalent of 30h of recording was used. The data

of Fig. 5 use 11 movies for a total duration of over 7 hours for the analysis of probabilities; this

represents a total of over 380 transitions.

The robots have been modified by attaching a small chip on their back: this chip consists of

a battery (similar to the one already present), a phototransistor, a variable resistance, a transistor,

and a switch to control the direction of rotation of the motor. The schematic of the circuit and its

different components is shown in SFig. 11. The variable resistance allows to fix the threshold

light intensity for the onset of the additional motor. The chip has the same width as the robots

and has a length of 3.5 cm (smaller than the length of the robots). The chip was then fixed on

the back of the robots using a plastic holder glued to the back of the robot. The chip has to be

carefully centered on the back of the robot. If the rotation of the second motor is clockwise,

and when both motors are on, we noted that the trajectory of the robot becomes circular with

a radius of roughly two robot lengths or smaller (see Movie 10). This behavior depends on

how and where the chip is fixed on the back of the robot. We have obtained roughly similar

trajectories by trial and error on each individual robot equipped with the chip.
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Langevin Dynamics simulations:

The self propelled rods were modeled as rigid sphero-cylinders of total length l+d and diameter

d, built from 6 spherical particles of mass m and a diameter d fused together. The cylinder

length to width ratio was fixed l/d = 2. The ratio of total length to width is therefore close

to the experimental ratio which is 3. The individual spherical particles interact with each other

and with the boundary via a repulsive Weeks-Chandler-Andersen (WCA) potential

U(rij) = 4ε

[(
d

rij

)12

−
(
d

rij

)6
]

+ ε,

for rij ≤ 21/6d and U(rij) = 0 for rij > 21/6d. ε fixes the energy scale of the system. Each

rod-like particle indexed by i obeys a Langevin equation for translation and rotation:

mi
d2ri
dt2

= −OUi − γr
dri
dt

+ F n̂ + η(t)

Ii
d2θi
dt2

= Ti − γθ
dθi
dt

+ Γ(t)

Note that in these equations we have kept the inertial terms proportional to the mass mi of

the rods and to their moment of inertia Ii. This is in line with experiments where inertial effects

at the single rod level are important (8). The vectorial noise η and the scalar noise Γ are both

of zero mean and delta correlated in time, with amplitudes η0 and Γ0. Here F n̂ is the active

force giving a constant translation velocity for the rods in the direction of the long axis n̂. γr

and γθ are the translational and the rotational friction coefficients, Ti is the torque exerted by

the other particles and related to the repulsive potential Ui. An additional constant torque T0

can be added to the second equation to simulate the effect of a rotating trajectory. This torque

was used to obtain a close match to the experiments and allows for a small drift of the clusters

along the superstructure walls in the counterclockwise or clockwise direction. This torque turns

out to be important for the spatial exploration of the superstructure by the clusters. We fixed

the mass m = 1, the energy ε = 1 and the length d = 1. The simulations were carried using
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the parameters, unless otherwise specified, mi = 6, γr = 3 , F = 10, γθ = 1.4 and I = 2.8 in

reduced units. The amplitudes of the noise terms are η0 =
√

2αεγr and Γ0 =
√

2αεγθ where

α is a constant. The value of α was fixed to 1.2. These parameters were chosen so that the

simulations are in close agreement with the experiments (8).

The scaffold was modelled as a semiflexible polymer using a bead-spring model. Adjacent

beads were bonded together using harmonic bonds and angles,

Ubond
ij =

1

2
kb(rij − r0)2 (5)

and

Uangle
ijk =

1

2
kθ(θijk − θ0)2 (6)

where rij is the distance and θijk is the angle between the neighbouring beads, r0 and θ0 are

the equilibrium bond length and angle, respectively and kb and kθ are stretching and bending

constants.

The angle constant was fixed to kθ = 600, while the bond constant was fixed to kb = 105 to

avoid stretching of the confining polymer.

The equations of motion were solved using a modified version LAMMPS (Large scale

Atomic/Molecular Massive Parallel Simulator) (36), where the active force was included, using

a time-step ∆t = 0.001. The rendering of the images from the simulations is carried out using

OVITO (37).

List of Supplementary Figures and movies:

SFig. 1: Phase Diagram

SFig. 2a: Properties of superstructure mobility 1

SFig. 2b: Properties of superstructure mobility 2

SFig. 3: Polarization fluctuations

SFig. 4: Noise properties
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SFig. 5: Rigid and flexible scaffolds

SFig. 6: Trajectories and forces for flexible scaffolds

SFig. 7: Theoretical trajectory

SFig. 8: Time series of transitions from compartment to compartment

SFig. 9: Probabilities of transiting across multiple compartments.

SFig.10: Analysis of the force needed to open a door made of a flexible strip.

SFig. 11: Schematic of the chip and a photo of the modified robot.

Movie 1: Superstructure in a channel with N=10 robots, D=39cm and H=39cm.

Movie 2: Superstructure in a channel with N=40 robots, D=39cm and H=39cm.

Movie 3: Superstructure in a channel with N=20 robots, D=39cm and H=39cm.

Movie 4: Superstructure in a channel from simulations with periodic boundary conditions

at the two ends of the channel with N=25 robots, D=39cm, H=39cm and Torque=1 at 2 images

per second.

Movie 5: Superstructure in a channel with constriction, Experiments: L=34cm, N=35,

D=39cm, and e=100microns with an image every 2s.

Movie 6: Superstructure in a channel with constriction, Simulations: L=14cm, N=25,

D=39cm at 2 images/s.

Movie 7: Superstructure in a channel with multiple constrictions of different sizes.

Movie 8: Superstructure ability to carry out different tasks such as opening a door, carry a

load or move through an obstacle course.

Movie 9: Superstructure ability to clean up an arena, a task that the individual robots cannot

carry out, or play a battle or billiards game against another superstructure.

Movie 10: Superstructure with light control: the superstructure can be tuned on or off with

light. Its mobility can be triggered by embedding a second motor on the back of the robots which

when turned on using light imposes a circular trajectory to the individual robots. The state of
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organization can go from swirling to aggregation and thus trigger superstructure mobility in a

channel or through a constriction.
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