
Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 1

Reaching the Limit in Autonomous Racing:
Optimal Control versus Reinforcement Learning
YUNLONG SONG1, *, ANGEL ROMERO1, MATTHIAS MÜLLER2, VLADLEN KOLTUN3, AND DAVIDE SCARAMUZZA1

1Authors are with the Robotics and Perception Group, UZH, Zurich, Switzerland.
2The Author is with Intel, Munich, Germany.
3The Author is with Intel Labs, Jackson, WY, USA.
*Corresponding author: song@ifi.uzh.ch

This is the accepted version of Science Robotics Vol. 8, Issue 82
DOI: 10.1126/scirobotics.adg1462 (2023)

A central question in robotics is how to design a control system for an agile mobile robot. This paper studies
this question systematically, focusing on a challenging setting: autonomous drone racing. We show that a neural
network controller trained with reinforcement learning (RL) outperforms optimal control (OC) methods in this
setting. We then investigate which fundamental factors have contributed to the success of RL or have limited
OC. Our study indicates that the fundamental advantage of RL over OC is not that it optimizes its objective
better but that it optimizes a better objective. OC decomposes the problem into planning and control with an
explicit intermediate representation, such as a trajectory, that serves as an interface. This decomposition limits
the range of behaviors that can be expressed by the controller, leading to inferior control performance when
facing unmodeled effects. In contrast, RL can directly optimize a task-level objective and can leverage domain
randomization to cope with model uncertainty, allowing the discovery of more robust control responses. Our
findings allow us to push an agile drone to its maximum performance, achieving a peak acceleration greater than
12 g and a peak velocity of 108 km/h. Our policy achieves superhuman control within minutes of training on a
standard workstation. This work presents a milestone in agile robotics and sheds light on the role of RL and OC
in robot control.

MULTIMEDIA MATERIAL

A video of the experiments can be found at
https://youtu.be/HGULBBAo5lA.

INTRODUCTION

The design of control systems for agile mobile robots is one of the
central challenges in robotics. Control systems are at the core of every
real-world robot and are deployed in an ever-increasing number of ap-
plications, such as self-driving cars [1, 2], search and rescue [3], flying
cars [4], autonomous vehicle racing [5, 6], navigation of stratospheric
balloons [7], and extraterrestrial exploration [8, 9]. Two schools of
thought exist for the development of such systems: model-based op-
timal control (OC) and learning-centric reinforcement learning (RL);
both have achieved impressive results.

OC [10, 11] relies on the explicit use of an accurate mathematical
model within an optimization framework to find an optimal control
law for a given dynamical system. This technique involves solving an
optimization problem online to find the control inputs that minimize a
cost function while satisfying system constraints. OC techniques make
use of convex optimization methods such that the problem is solved in
real time at high frequency. Examples of OC methods are the Linear
Quadratic Regulator (LQR) and its nonlinear finite-horizon counterpart,
Model Predictive Control (MPC). RL [12], on the other hand, is a

subfield of machine learning that trains an agent to maximize a reward
signal in an environment. The agent learns by trial and error, exploring
the environment and receiving feedback in the form of rewards or
penalties for its actions. RL algorithms can be categorized into three
general approaches: value-based, policy-based, and actor-critic.

Connections between OC and RL are strong: both seek to find the
optimal mapping from observations to control commands, and both
are rooted in the principle of optimality derived from dynamic pro-
gramming [13]. Yet there is a gap: RL can handle problems of high
dimensionality and long planning horizons, albeit mostly in simula-
tion [7, 14–17], and has only recently [6] been shown to outperform
humans in a real-world sport. OC, on the other hand, has been success-
ful primarily in tackling control problems in fairly well-understood
dynamical systems [18–22]. In addition, OC typically assumes that the
system being controlled is deterministic, whereas RL can intrinsically
handle both deterministic and stochastic systems.

In most OC setups [18–25], the high-level task is first converted
into a reference trajectory (planning) and then tracked by a controller
(control). This decomposition of the problem into these distinct layers
is greatly favored by the OC methodology, largely due to the inter-
pretability of each component’s output and the simplification of the
pipeline for real-time control. The optimization objective used by
the control layer is shaped to achieve accurate trajectory tracking or
path following and is decoupled from (and usually unrelated to) the

ar
X

iv
:2

31
0.

10
94

3v
2 

 [
cs

.R
O

] 
 1

8 
O

ct
 2

02
3

https://youtu.be/HGULBBAo5lA


Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 2

Fig. 1. Time-lapse illustrations of a high-performance racing drone controlled by our RL policy. We test on two race tracks, the Split-S
track (A) and the Marv track (B); both are designed by world-class human drone pilots. Our RL policy achieves a peak speed of 108 km/h and a
peak acceleration greater than 12 g in an indoor flying arena. Recordings of the experiments can be found in Movie 1.



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 3

high-level task objective. As a result, the hierarchical separation of
the information between two components leads to systems that can
become erratic in the presence of unmodeled dynamics. In practice, a
series of conservative assumptions or approximations are required to
counteract model mismatches and maintain controllability, resulting in
systems that are no longer optimal.

RL has arisen as an attractive alternative to conventional controller
design, demonstrating exceptional performance in various domains
such as quadrupedal locomotion over challenging terrain [26, 27]. Un-
like optimal control, RL uses sampled data to optimize a controller
and can manage nonconvex and even sparse objectives, providing sub-
stantial flexibility in the controller design. RL has several advantages
over model-based optimal control. First, it learns a control policy via
offline optimization, enabling the trained policy to efficiently compute
control commands during deployment. Unlike offline trajectory op-
timization which generates predetermined trajectories, offline policy
optimization focuses on learning a feedback controller that allows real-
time adaptation given observation changes. Second, RL can directly
optimize a task objective, eliminating the need for explicit intermediate
representations such as trajectories. Finally, RL can leverage domain
randomization in simulation, enabling the learning of a policy that is
effective in diverse environments.

Some of the most impressive achievements of RL are beyond the
reach of existing OC-based systems. However, most of these successes
are empirical. Less attention has been paid to the systematic study
of fundamental factors that have led to the success of RL or have
limited OC. We argue that this question can be investigated along two
axes: the optimization method and the optimization objective. On
one hand, RL and OC can be viewed as two different optimization
methods and we can ask which method can achieve a more robust
solution given the same cost function. On the other hand, given that RL
and OC address a given robot control problem by optimizing different
objectives, we can ask which optimization objective can lead to more
robust task performance. In this context, robust task performance
refers to the controller’s capability to consistently perform a given task
without sacrificing performance, even in the face of uncertainties and
disturbances.

We perform this investigation in a challenging real-world problem
that involves a high-performance robotic system: autonomous drone
racing. The task of drone racing is to fly a quadrotor through a sequence
of gates in a given order in minimum time. For maximal performance,
this task requires pushing the aircraft to its physical limits of speed
and acceleration. Tolerance for error is low: a small mistake can
lead to a catastrophic crash or a strong penalty on lap time. Thus,
suboptimal control policies readily manifest themselves in reduced
task performance, making drone racing a particularly demanding and
instructive setting for testing the limits of control design paradigms [28–
31].

Our main contribution is the study of reinforcement learning and
optimal control from the fundamental perspective of the optimization
method and optimization objective. Our results indicate that RL does
not outperform OC because RL optimizes its objective better. Rather,
RL outperforms OC because it optimizes a better objective. Specif-
ically, RL directly maximizes a task-level objective, which leads to
more robust control performance in the presence of unmodeled dynam-
ics. In the drone racing context, RL can optimize a highly nonlinear
and nonconvex gate-progress reward directly, removing the need for a
reference time trajectory or a continuous 3D path. In contrast, OC is
limited by its decomposition of the problem into planning and control,
which requires an intermediate representation in the form of a trajectory
or path, thus limiting the range of control policies that can be expressed
by the system. In addition, RL can leverage domain randomization
to achieve extra robustness and avoid overfitting, where the agent is

trained on a variety of simulated environments with varying settings.
Beyond the fundamental study, our work contributes an RL-based

controller that delivers the highest performance ever demonstrated on
an autonomous racing drone. Using an agile autonomous drone, our
controller achieves a peak acceleration greater than 12 g and a peak
velocity of 108 km/h. Figure 1 displays time-lapse illustrations of
the racing drone controlled by our RL policy in an indoor flying arena.
Additionally, our controller demonstrated superhuman performance,
outracing three professional human pilots in a public event. Notably,
our controller is trained purely in simulation, in minutes on a standard
workstation, and transferred to the real world zero-shot.

RESULTS

RL versus OC
We compare the RL policy with two state-of-the-art OC methods,
which were selected due to their superior control performance in recent
work. The first, referred to as Trajectory Tracking [32], relies on
offline time-optimal trajectory planning using nonlinear optimization
and online tracking using model predictive control (MPC). Due to
the complexity of the minimum-time problem when considering the
full quadrotor dynamics, the time-optimal planning requires hours
of computation and thus can only be solved offline. The second OC
method, referred to as Contouring Control [23], solves the time-optimal
flight problem online by simultaneously maximizing the progress along
a reference path and minimizing the vehicle’s deviation from the path.
This nominal path is a continuously differentiable 3D trajectory, which
can be generated efficiently using an approximated point-mass model.
Contouring control leverages efficient path planning and fast trajectory
optimization online in a receding horizon fashion.

We use three different drone models: a nominal drone model based
on simple rigid-body dynamics [33], a realistic drone model based
on blade element momentum theory [34], and a real-world racing
drone [35]. All methods use the nominal drone model for optimizing
the control systems. Namely, both OC methods employ the nominal
model in the optimization, and RL uses the nominal model for training.
When training the RL policy, we can incorporate domain randomization
by randomizing several parameters, such as the thrust mapping and
drag coefficients. The realistic drone model and the physical drone
are used for testing generalization across different dynamics models in
simulation and generalization from simulation to the physical world.
We use the same track as in recent work on high-performance drone
racing for benchmark comparisons [23, 32]. The track was designed
by Drone-Racing-League pilot Gabriel Kocher.

We begin with a large-scale experiment in simulation by testing
each approach from 50 different random initial positions. We simulate
a system delay of 40 ms for all methods when testing in simulation.
Also, when using the nominal model, we additionally randomize the
thrust mapping coefficients to simulate unmodeled battery behaviour,
such as high voltage drops when flying at very high speeds, and the drag
coefficients to simulate unknown aerodynamic effects. Figure 2 shows
a visualization of the 50 trajectories flown by each approach using the
nominal and realistic models in simulation. We show the top-down
view of the entire track and a side view of gates 4 and 5. The colored
lines are trajectories, and the black lines represent the gates. Both
OC methods are sensitive to unmodeled dynamics and different initial
conditions, whereas the RL policy maintains high racing performance
in all conditions.

Figure 2C summarizes the quantitative results, including lap time
and success rate. When testing with the nominal drone model, Trajec-
tory Tracking achieves the best average lap time (4.92 s) by tracking a
time-optimal trajectory planned with the same nominal model. How-
ever, it has a low success rate (44%) even with the nominal drone



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 4

Trajectory Tracking Contouring Control Reinforcement Learning

N
om

in
al

D
ro

ne
M

od
el

R
ea

lis
tic

D
ro

ne
M

od
el

Drone Model
Trajectory Tracking Contouring Control Reinforcement Learning

Lap Time [s] Success Rate [%] Lap Time [s] Success Rate [%] Lap Time [s] Success Rate [%]

Nominal 4.92± 0.10 44.0 5.03 ± 0.18 76.0 5.14 ± 0.09 100.0

Realistic – 0.0 5.34 ± 0.27 20.0 5.26 ± 0.32 100.0

Real World – 0.0 5.54 ± 0.21 50.0 5.35 ± 0.15 85.0

A

B

C

Fig. 2. RL versus OC in autonomous drone racing. Both OC methods are sensitive to initial conditions and unmodeled effects, resulting in
performance that is no longer optimal in the presence of unmodeled dynamics (realistic drone model). (A) Trajectories flown with the nominal
drone model. (B) Trajectories flown with the realistic drone model. (C) A comparison of the lap time and success rates. The red arrows indicates
the flight direction and the star symbol shows the starting position.



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 5

model. By definition, a time-optimal trajectory is designed to make
the most of the available actuator power at all times. However, due to
limited actuation power, control authority may decrease under model
mismatches and disturbances, and even slight deviations from the
reference state can lead to catastrophic crashes. Contouring Control
achieves a similar average lap time with the nominal model (5.03 s),
with a higher success rate (76%). RL achieves a lap time of 5.14 s
with the nominal model, with the highest success rate (100%). When
testing with the realistic drone model, both Trajectory Tracking and
Contouring Control fail, with success rates of 0% and 20%, respec-
tively. The RL policy achieves the best lap time and a 100% success
rate, despite the mismatch between the nominal dynamics model expe-
rienced during training and the realistic model used at test time. All
methods are also tested in the physical world on the physical racing
drone. Real-world testing introduces additional factors that are not
present in the simulation, including aerodynamic effects, variable sys-
tem delay, and large battery voltage fluctuations. As a result, both
OC methods fail in this setting. Trajectory Tracking crashes the drone
immediately after launch, due to unmodeled dynamics that result in
a rapid departure from the tracked trajectory while operating at full
thrust. To maintain controllability in the physical world, Foehn et
al. [32] tracked the time-optimal trajectory at a lower thrust bound than
what the platform can deliver, yielding a 100% success rate, but at a
lap time (6.12 s) that were far from the optimum. Contouring Control
requires manual tuning by a human expert, including tuning of parame-
ters that govern the trade-off between path progress maximization and
contouring error minimization. These parameters need to be tuned in
the physical world at the track. Poorly tuned parameters lead to an
overly aggressive policy that crashes into gates or an overly conser-
vative one that yields suboptimal lap times. As a result, to achieve
robust control performance in the real world, Romero et al. [23] had
to compromise on speed and achieved an average lap time of 5.8 s. In
contrast, the RL policy, although trained purely in simulation with the
nominal drone model, transfers directly to the physical world, with no
fine-tuning, and achieves a better lap time (average of 5.35 s).

Optimization Method versus Optimization Objective
We have seen that RL outperforms state-of-the-art optimal control
methods, achieving higher success rates and lower lap time in the
presence of unmodeled dynamics. We now ask what is responsible
for better racing performance and the robustness of RL. We study this
question along two axes: the optimization method and the optimization
objective.

Optimization Method Hypothesis

The first hypothesis concerns the difference in the optimization method:
given the same optimization objective, which method can lead to a
better solution? RL and OC rely on different optimization techniques to
find the best solution for a specific objective. Model-free RL optimizes
a parameterized policy by following the policy gradients estimated
from data generated during the execution of the task. A key challenge
in RL is to obtain a good estimator of the policy gradient for policy
updates. On the other hand, nonlinear OC relies on numerical opti-
mization methods, such as specially structured nonlinear programs
(NLP) that can be solved by sequential quadratic programming (SQP)
or nonlinear interior point methods. The difference in the optimization
method influences the performance of the resulting controller. We
thus consider the Optimization Method Hypothesis: RL outperforms
OC because RL, as an optimizer, can achieve better task performance
than OC. The difference in the optimization method makes RL more
effective than OC.

To test this hypothesis, we compare RL and nonlinear MPC in
optimizing the same objective under the same conditions. Specifically,

we use RL to follow the time-optimal trajectory by minimizing the
same quadratic cost formulation with the same cost matrix as in MPC.
The RL policy is trained offline until it is fully converged. As shown
in Figure 3A, the RL policy produces higher average tracking losses
than nonlinear MPC when tested with either the nominal drone model
or the realistic model. Hence, RL cannot find better solutions than OC
given the same optimization objective. Nevertheless, the RL policy
can still fly the vehicle through all gates without collision and achieve
the same optimal lap time (4.9 s) when tested with the nominal model.
When tested with the realistic model, both MPC and RL suffer from
performance drops. MPC yields lower tracking loss on average and a
tighter spread across trials. We conclude that in this condition, when
optimizing the same objective, RL does not yield a more effective
policy than MPC. Also, both MPC and RL yield inferior control perfor-
mance using the traditional planning-and-control design when facing
model mismatch. Hence, the explanation for the robust performance of
RL that we saw in the previous section must lie elsewhere.

Optimization Objective Hypothesis

The second hypothesis considers the difference in the objective that
is being optimized by the two methods. RL is capable of optimizing
nonlinear, nonconvex, and even nondifferentiable objectives. On the
other hand, OC typically requires continuity and even convexity in
the objective. As a result, OC relies on a series of simplifications that
express the task objective in terms of intermediate representations, such
as reference trajectories. We thus consider the Optimization Objective
Hypothesis: RL yields more robust policies because RL can optimize
the task objective directly, such that the policy is not constrained by
intermediate representations and can express a broader range of control
responses. RL is more effective than OC because RL optimizes a better
objective.

To test this hypothesis, we use the same RL algorithm to optimize
two different objectives. The first is the trajectory tracking objective
used by OC. The second is the gate progress objective used by RL.
Here, both RL controllers are trained without domain randomization.
In Figure 3B, we can see how different flight behaviors result from
optimizing different objectives. The gate progress policy, designed to
prioritize making progress through gates, generates a trajectory that
provides a higher margin to the gate boundaries and directs the flight
path more toward the center of the gate. This policy performs well in
both nominal and realistic simulators, effectively passing all gates and
maintaining low lap times. On the other hand, the trajectory tracking
policy, which follows the time-optimal trajectory more closely and
displays a more aggressive racing behavior, has a slightly larger dis-
tance to the gate center and a smaller margin to the gate edges when
passing through the gate. This behavior may be riskier, especially in
challenging conditions. Despite performing well in nominal dynamics,
the trajectory tracking policy fails when tested with the realistic dy-
namics model. In contrast, the gate progress policy successfully passes
all gates and maintains low lap times in this more challenging scenario.

Hence, the optimization objective strongly affects task performance.
OC is subject to inherent limitations due to the decomposition of the
problem into planning and control. When the planned reference, such
as a time-optimal trajectory, fails to account for model mismatch and
system delay, the downstream controller may be susceptible to failure.
In RL can directly optimize a task-level objective, enabling a wider
range of control responses to be discovered. Our experiments suggest
that this is particularly important when deploying policies in conditions
that differ from those encountered during training and in scenarios
where small disturbances can have severe consequences. In these cases,
the ability of RL to directly optimize task-level objectives can be a
substantial advantage over traditional optimization methods.



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 6

Optimization Method Optimization Objective

Drone Model

Optimization Method Optimization Objective

MPC Trajectory Tracking RL Trajectory Tracking RL Gate Progress RL Trajectory Tracking

Lap Time [s] Tracking Loss Lap Time [s] Tracking Loss Lap Time [s] # Failed Gates Lap Time [s] # Failed Gates

Nominal 4.90 ± 0.08 3.32 ± 3.14 4.90 ± 0.08 12.62 ± 12.69 4.99 ± 0.01 0 4.90 ± 0.08 0

Realistic – 71.26 ± 111.80 – 313.08 ± 344.88 5.07 ± 0.01 0 – 3

A B

C

Fig. 3. Optimization method versus optimization objective. (A) Optimizing the trajectory tracking objective with MPC and RL. Both con-
trollers achieve the optimal lap time when tested with the nominal dynamics model, and both controllers fail when facing unmodeled dynamics
at test time. (B) Using RL to optimize the trajectory tracking and gate progress objectives. The same optimizer produces a more robust control
policy when maximizing the gate progress objective. (C) A comparison of lap time, tracking loss, and the number of failed gates. The red arrows
indicates the flight direction and the star symbol shows the starting position.

Value Functions for Different Optimization Objectives

This section studies the state-value function resulting from optimizing
different objectives. The state-value function estimates the expected
cumulative reward that an agent can obtain starting from a particular
state when following a given policy. A high value of the state-value
function indicates that the corresponding state is expected to collect
more positive rewards and vice versa. Hence, the value function is used
to guide the agent’s actions toward states that are desirable.

Figure 4 highlights the differences in the optimized value functions
for two different objectives: Trajectory Tracking (with OC and RL,
respectively) and Gate Progress (with RL). We generated synthetic
observations by choosing a specific vehicle state (marked as "×") in
front of Gate 3 and then sweeping the vehicle’s position along the
x-axis and y-axis. We then plot the expected value predicted by the
critic network in RL or the negative value of the optimal cost in MPC
as a distribution of position in the x − y plane.

As observed, Trajectory Tracking assigns high values when the
state is close to the reference state and low values when it is far away,
aligning with its objective of minimizing the quadratic loss function
between the vehicle state and its reference. Time allocation of the
reference state is the incentive for navigating the drone forward, which
is done exclusively during the planning stage. However, pre-computed
time-optimal trajectories cannot account for model mismatches or
variations that are common in real systems. The potential mismatch
between the time at which the drone is planned to be in a certain state
and the actual platform state at that time can lead to the controller
tracking unrealistic and possibly infeasible maneuvers, resulting in
collisions or cutting corners.

On the other hand, Gate Progress differs from Trajectory Tracking
because it is not limited by a reference trajectory, allowing for a control
behavior that emerges directly from learning to optimize the high-
level goal. The learned value function in Gate Progress assigns high
values to safe and valid states, such as those near the optimal path,
and low values to risky states, such as those near the gate border.
Unlike Trajectory Tracking, where deviations from the reference state

(potentially infeasible) are penalized, Gate Progress allows the vehicle
to adapt its behavior freely during deployment. This adaptability leads
to more robust performance when facing unexpected disturbances and
model mismatches.

Pushing the Limit of Autonomous Racing
To push the limit of autonomous racing in the physical world, we
have built a racing drone that can produce a maximum thrust-to-
weight (TWR) ratio of 12. This drone has a total weight of only 0.52 kg
and can generate a maximum thrust of 63 N (given a fully charged
battery). The drone improves upon the highest TWR previously re-
ported [35] by a factor of 2. We use this drone to evaluate the charac-
teristics of policies discovered by reinforcement learning. We use a
Vicon motion capture system together with an Extended Kalman Filter
to estimate the quadrotor state, including position, velocity, and orien-
tation. The RL policy is executed with a feedback control frequency of
100 Hz. The RL policy is trained in simulation and then transferred to
the physical world without fine-tuning.

Note that in order to maintain controllability under model mis-
matches and disturbances, OC-based systems use a thrust threshold
that is lower than what the physical platform can deliver [32], or utilize
a dedicated real-world controller tuned by a human expert [23]. In
contrast, our RL policy does not artificially constrain the platform or
require real-world tuning. The RL policy is trained using the full thrust
range of the vehicle and then deployed directly on the physical system.
As a result, it can exploit the vehicle’s full performance range.

Figure 1 shows two race tracks and a timelapse of maneuvers per-
formed by the RL policy. Figure 5 reports experimental results on the
Split-S track. We fly the policy five times in the physical world; each
time, the policy is required to fly three consecutive laps. In total, the
policy flies 15 laps and consistently achieves a 100% success rate. As
shown in Figure 5D, the vehicle reaches 100% of the throttle level
during high-speed flight – its maximum performance range.

Figure 5B shows the vehicle’s velocity, acceleration, and bat-
tery voltage during flight. The drone achieved a maximum velocity
of 108 km/h and a maximum acceleration of 12.58 g. When flying



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 7

Fig. 4. Comparison of the value functions. The value function is obtained from optimizing two objectives: Trajectory Tracking and Gate
Progress. The Gate Progress objective leads to task-aware behavior, such as maximizing progress through the target gate, which is not observed
in Trajectory Tracking.

at such high speed, the battery voltage experiences drops, resulting in
large drops in the produced thrust. A particularly large voltage drop can
be observed in trial 3 (shown in Red) due to the use of an old battery
in that trial. This large voltage drop leads to a longer lap time during
this trial. Nevertheless, the policy maintains control over the vehicle
and successfully completes all laps, even in this extreme condition.

Figure 5C shows the lap times through all trials. For reference,
we show the theoretical optimal lap time as a dashed horizontal red
line. To compute this theoretical optimal lap time, we generate a time-
optimal trajectory using an approximate drone model. Note that the
truly time-optimal solution for the physical vehicle is unknown and
the theoretical time-optimal trajectory, computed with respect to an
approximate model, may not be realizable on the physical vehicle.
(Attempting to track this trajectory with the physical vehicle using
Trajectory Tracking resulted in catastrophic crashes in the real world.
Contouring Control with respect to this path could not pass all the
gates successfully despite spending a large amount of time tuning the
controller on the track by an expert.)

Outracing Human Champions

We have raced the RL policy against three human pilots: Alex Vanover,
the 2019-Drone-Racing-League world champion, Thomas Bitmatta,
two-time MultiGP-International-Open-World-Cup champion, and Mar-
vin Schaepper, three-time Swiss National champion. The races were
held in June 2022 in a flight arena in Zurich. The human pilots were
allowed to either use their own drones with similar capabilities to our
autonomous platform or drones that are identical to our autonomous
platform. They were given one week of practice on the track before
the races. After this week of practice, each pilot raced against the
RL policy in multiple time-trial races. The race track was designed
by Marvin Schaepper; we refer to it as the Marv Track. It features
a number of challenging maneuvers commonly used in FPV drone
racing, including the split-S, power loops, ladders, and flags.

As shown in Figure 6, the RL policy outraces all human pilots.
The visualization shows the lap times from all time trials. The RL
policy achieves the best lap times, with much tighter dispersion. It also
reaches higher velocities while racing. The RL policy benefits from
near-perfect state estimation from a motion capture system, and lower
latency than the human pilots. Note that the RL policy is trained in
simulation, in only ten minutes on a standard workstation. Figure 7
visualizes the best trajectory flown by the RL policy and the three
human pilots, including the world champions of two international

leagues. The trajectory flown by the RL policy is visibly different
from the trajectories flown by the human pilots. The policy flies a
shorter overall path and maintains tighter distances to gate borders
than the pilots. This can be attributed in part to the highly accurate
state estimate provided to the RL policy by the motion capture system,
which allows the policy to maintain lower margins.

DISCUSSION

This paper examined the application of RL and OC to autonomous
drone racing. Our experiments show that RL outperforms state-of-the-
art OC in this domain. We have investigated the underlying factors
responsible for this performance gap, highlighting two possible causes:
differences in the optimization method and differences in the optimiza-
tion objective. Controlled analysis indicates that the key factor is the
optimization objective: RL can handle a broader range of objectives,
including formulations that directly express the task goal. Such ob-
jectives obviate the need for decomposing the problem into planning
and control layers that communicate through an explicit intermediate
representation such as a trajectory or a path. Directly optimizing the
policy for the task goal allows the policy to represent a broader range
of adaptive behaviors that provide robustness to unmodeled dynamics
and effects.

Furthermore, RL is modeled as a Markov Decision Process, where
the state transition model is stochastic and is formulated via probability.
Domain randomization can be used in RL to leverage such probabil-
ity formulation by training an agent in a variety of environments that
simulate different variations of the dynamic system. By training in
randomized environments, the agent becomes more robust and adapt-
able, making it more effective at handling disturbances and model
uncertainty.

As part of this study, we have developed an agile autonomous racing
drone that can produce a maximum thrust-to-weight ratio of 12. We
demonstrated a two-layer neural network policy that can handle the
vehicle limit in the real world. Notably, the policy is trained purely in
simulation, within minutes of training on a standard workstation, and
transferred to the real world zero shot. We have conducted time trial
races between the autonomous racing policy discovered by RL and
three human pilots, including world champions from two international
drone racing leagues. The autonomous racing policy consistently
outperformed human pilots. Although the autonomous policy benefited
from a number of structural advantages, such as access to perfect state
estimation from a motion capture system, this is a milestone towards



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 8

A B

DC

Fig. 5. Real-world experiments using a high-performance autonomous racing drone controlled by our RL policy. (A) Flight trajectories
projected on the x − y plane (up) and the y − z plane (down). The black lines represent the gates. (B) Velocity, acceleration, and battery voltage
over 5 trials. The drone achieves a peak velocity up to 108 km/h and a peak acceleration greater than 12 g. (C) Lap times and gate passing
margins over 5 trials. Despite the battery voltage drop in trial 3, which can be seen in (B), the policy is successful in 100% of the trials and flies
close to the theoretical optimum lap time (dashed red line). (D) Throttle level in trial 3. The policy pushes the platform to 100% of the throttle
level – its physical limit.

the development of autonomous mobile systems that achieve peak
performance in the physical world.

MATERIALS AND METHODS

Optimization Problem

We formulate autonomous drone racing as a constrained optimization
problem. We model the drone as a discrete-time dynamical system with
continuous states and control inputs, xk ∈ X and uk ∈ U separately.
Let f : X ×U → X be a time discretized evolution of the system such
that xk+1 = xk + ∆t · f (xk, uk). The system state xk corresponds to
particular instants in time, tk = ∆t · k at k ∈ [0, N]. The control
input uk affects the system’s evolution at time tk. Given an initial
state x0, the optimality criterion for autonomous drone racing is the
minimization of the total time traveled, tN . Apart from respecting the
system dynamics f (xk, uk), the optimization has to satisfy additional

constraints, such as passing through the gates in the right order without
collisions and limiting the thrust to the range that the quadrotor can
physically exert.

The minimum time problem for autonomous drone racing is defined
as follows.

min
τ

tN

subject to:

x0 = xinit and xk+1 = xk + ∆t · f (xk, uk)

g(xk, uk) = 0 and h(xk, uk) ≤ 0 (1)

where g(xk, uk) and h(xk, uk) contain all equality and inequality con-
straints. The output of the constrained optimization problem above is a
time-optimal trajectory τ, which contains a feasible sequence of states
and controls:

τ = (u0, · · · , uN−1, x0, · · · , xN). (2)



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 9

Pilot Best Single Lap [s] Best Three Consecutive Laps [s] Max Linear Velocity [km/h]

Alex Vanover 6.32 19.90 100.51

Thomas Bitmatta 5.94 18.67 102.82

Marvin Schaepper 5.57 17.21 105.44

RL policy 5.12 15.59 108.72

Fig. 6. Comparison of the lap time performance between our
RL policy and three professional human pilots. Our RL policy
outperforms three human pilots in the physical world, albeit with the
aid of motion capture and lower latency.

Start

B C DA

B

D

C

A

Fig. 7. A comparison of the racing trajectories between the RL
policy and three human pilots. Our RL policy outperforms three
professional human pilots in the physical world, albeit with the aid of
motion capture and lower latency. A visualization of the best trajec-
tories flown by the RL policy (Red) and the three human pilots: Alex
Vanover (Blue), Thomas Bitmatta (Green), and Marvin Schaepper
(Yellow). Specific maneuvers executed along the track: (A) ladder,
(B) hairpin, (C) straight-enter power loop, (D) side-enter power loop.
The red arrows indicates the flight direction and the star symbol
shows the starting position.

Here, the trajectory time tN is the only term in the cost function.
In drone racing, a sequence of gates must be passed in a given order,
where the gate centers are considered to be waypoints. Since multiple
waypoints must be passed, the passing time for each waypoint must be
allocated as constraints to specific nodes on the trajectory. Such time
allocation is unknown ahead of time, which renders the optimization
problem difficult to solve. Recent work [32] addresses this problem
using a numerical optimization scheme that jointly optimizes the trajec-
tory and waypoint allocation in a given sequence. To achieve this, they
developed a progress measure for each waypoint along the trajectory
that signals the completion of a waypoint and introduced a complemen-
tary progress constraint that limits completion to proximity around the
waypoint.

Given a deterministic dynamical system that is modeled perfectly,
the planned trajectory τ can be simply executed open loop. However,
since the actual vehicle dynamics f (xk, uk) contain unknown distur-
bances such as aerodynamic effects, directly executing the computed
control sequence (uk) will lead to compounding error and a crash. To
maintain stability and robustness, a feedback controller counteracts un-
modeled dynamics by making the control input uk = π(xk) a function
of the observed state xk. However, the minimization problem Eq. (1)
cannot be solved in real time. Alternative formulations are required for
online real-time control.

Optimization Objectives
There are different ways of approximating the problem Eq. (1) that
support online solutions.

This section discusses three alternative optimization objectives that
serve as proxies for the general minimum-time problem. The first
objective relies on first performing a computationally expensive op-
timization that solves for a time-optimal trajectory and then tracking
this trajectory via closed-loop control. We refer to this objective as
Trajectory Tracking. It uses a quadratic cost to minimize the difference
between the vehicle state and the tracked trajectory. The second ob-
jective is structurally akin to the first, in that a time-optimal trajectory
is first optimized offline and then tracked by a closed-loop controller
in real time. However, the tracking controller is different, in that the
online optimization maximizes the traveled distance along a path while
minimizing the deviation from it. Thus the reference is treated as a
path rather than a trajectory. This second objective is referred to as
Contouring Control. The third objective does not depend on any high-
level trajectory or path planner. Instead, it directly maximizes progress
toward the next gate center; we call this objective Gate Progress Eq. (5).
Figure 8 shows a visualization of the three objectives, where rt repre-
sents a time-discretized reference trajectory parameterized by time, rθ

denotes a continuous path parameterized by θ, st are the vehicle states,
and G is the target gate.

Trajectory Tracking

Trajectory tracking formulates the autonomous racing problem in terms
of tracking a time-optimal reference trajectory. This approach divides
the task into two stages: planning and control. The planning stage
maps the task-level objective – minimizing flight time through the track
– into an intermediate representation in the form of a trajectory. In the
second stage, the controller’s objective is simplified to a quadratic cost:
minimizing the deviation between the vehicle’s current state and the
reference state along the trajectory. The objective for the control stage
is a sum of quadratic costs within a prediction horizon N:

J(x) =
N

∑
k=0

∥xk − xre f ,k∥Q + ∥uk − ure f ,k∥R, (3)

where xre f and ure f refer to the reference trajectory, and Q and R are
cost matrices for the state and action costs, respectively. Such quadratic



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 10

Trajectory Tracking Contouring Control Gate Progress
G

st, · · · , st+N

rt, · · · , rt+N

G
rθ

st, · · · , st+N

G

st, · · · , st+N

Fig. 8. A visualization of three optimization objectives for autonomous drone racing. All objectives aim to achieve minimum-time flight
through the track.

costs can be efficiently solved online and are widely used in optimal
control for this reason.

Contouring Control

Contouring control follows the same basic decomposition of the prob-
lem into planning and control. The key difference from trajectory
tracking is that the reference is treated as a path rather than a trajectory.
The control stage aims to maximize progress along the reference path
while minimizing deviation from it. In each time step, a new time
allocation of the predicted states is computed depending on the current
state of the platform. The objective for the control stage is

J(x) =
N

∑
k=0

∥ek∥Q + ∥ωk∥R − ρθN , (4)

where θN is the total distance traveled along the path within the predic-
tion horizon and ek = pk − pre f is the contouring error, which is the
distance between the current position pk and the reference point pre f .
Here, ∥ωk∥R is a penalty on the bodyrate multiplied by a cost matrix
R. The coefficient ρ trades off between lap time and contouring error.

The contouring control objective is less restrictive than the trajectory
tracking objective. It has an additional degree of freedom in selecting
the timing for the traversal of the reference path. Contouring control
can better adapt to model uncertainty and model mismatches than
trajectory tracking [23].

Gate Progress

The gate progress objective does not rely on a decomposition of the
racing problem into planning and control stages. It does not use a ref-
erence trajectory or path. Rather, the objective is to directly maximize
progress toward the center of the next gate. Once the current gate is
passed, the target gate switches to the next one. At each simulation
time step k, the gate progress objective is defined

r(k) = ∥gk − pk−1∥ − ∥gk − pk∥ − b∥ωk∥ (5)

where gk represents the target gate center, and pk and pk−1 are the
vehicle positions at the current and previous time steps, respectively.
Here, b∥ωk∥ is a penalty on the bodyrate multiplied by a coefficient
b = 0.01. To discourage collisions with the environment, a penalty
(r(k) = −10.0) is imposed when the vehicle experiences a collision.
The agent is rewarded with a positive reward ((r(k) = +10.0) upon
finishing the race.

The gate progress objective is nonlinear and nonconvex with respect
to the vehicle state. It cannot be optimized with classic optimal control
methods. We optimize this objective using reinforcement learning.

Optimization Method
This section discusses the two optimization methods we use: model
predictive control (MPC) and policy gradient.

Model predictive control is based on approximation in value space,
where the approximation is done by limiting the number of steps that
we look ahead into the future (horizon). A general formulation for
model predictive control is given in 7, where J(x) represents the cost
function, f (x, u) is the system equation, g(x) = 0 is the equality
constraint, and h(x) ≤ 0 is the inequality constraint. Given the robot
at state x0, a cost function J(x = x0) is minimized for a finite time
horizon N while satisfying a set of system constraints. Given the
dynamics of the system, MPC outputs a sequence of state and control
inputs τk = (xk, uk, · · · , xk+∆t·N), which is the predicted trajectory.
Only the first command is executed on the robot u∗ = ut. The robot
moves to the next state, and the calculation is repeated again from the
new state.

MPC involves formulating an analytical and deterministic represen-
tation of the system dynamics as f (x, u), followed by online optimiza-
tion. Unfortunately, exact models are often unattainable in real-world
applications due to model uncertainty or external disturbances. To
compensate for this, MPC utilizes feedback loop control, runs at high
frequencies, and employs conservative assumptions about the robot
platform to address modeling errors and counteract potential distur-
bances.

In drone racing, the dynamical system and constraints are nonlinear,
rendering the MPC problem nonconvex. Nonconvexity poses chal-
lenges for both MPC stability theory and numerical solutions. The
numerical solution of the MPC problem is typically based on direct
optimal control methods using Newton-type optimization schemes,
such as direct multiple shooting methods. MPC algorithms typically
exploit the fact that consecutive optimal control problems are similar
to each other. This allows for efficient initialization of the Newton-
type solver by reusing solutions from the previous iteration, making
real-time control feasible [36].

Policy gradient approximates a dynamic programming (DP) prob-
lem in the policy space. A general formulation for policy optimization
is shown in 8. The goal is to optimize the policy parameters θ so
that the expected return is maximized. In the infinite-horizon case,
R(τ) = ∑∞

t=0 γtr(xt, ut) defines the objective of the task, where
γ ∈ [0, 1) is a discount factor that discounts future rewards. Here,
pθ(τ) is the distribution over trajectories τ collected via policy πθ . The
policy parameters are updated using gradient ascent θ = θ + α∇θ J(θ),
where α is the learning rate. Unlike online MPC, the optimization in
policy gradient is performed offline, ahead of time, such as in simula-
tion. After the policy is trained, the computation of the control signal
for a given state reduces to a function evaluation: u∗ = πθ(xt).

The main problem in policy gradient is estimating the gradient
∇θ J(θ). Using the policy gradient theorem [12], the gradient can be
computed via

∇θ J(θ) = Epθ(τ)

[
T−1

∑
t=0

∇θ log πθ(ut|xt)R(τ)

]
. (6)



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 11

Equation (6) reveals the key insight for policy gradients: the policy
update ∇θ J(θ) does not depend on the transition model p(xk+1|xk, uk)
and can be estimated using sampled trajectories τ. Hence, the RL
optimization does not require explicit modeling of the system dynamics
inside its optimization. There exist different policy representations for
πθ . We use a stochastic policy π ∼ N (µω , Σ), where the mean µω

is a function parameterized by ω and the covariance Σ is a vector
of parameters. Given the stochastic representation of the policy and
the probability formulation of the state transition model, the policy
gradient can readily cope with model uncertainty.

Model Predictive Control:

min
x(·),u(·)

J(x) = c(xN) +
N−1

∑
k=0

c(xk, uk)

subject to:

x0 = xinit

xk+1 = xk + ∆t · f (xk, uk)

g(x) = 0 and h(x) ≤ 0 (7)

Policy Gradient:

max
πθ

J(θ) = E [R(τ)|πθ ]

=
∫

R(τ)pθ(τ)dτ

MDP Transition:

Pu(xk, xk+1) = p(xk+1|xk, uk) (8)

Optimization Method and Optimization Objective Hypotheses
At the center of our work is the examination of the fundamental reasons
for the success of RL observed in our experiments. One possible reason
is that RL can find better solutions, such as more robust or closer
solutions to the optimum, for the same objective. An alternative reason
is that RL can optimize different objectives, whose solutions yield
better task performance.

MPC relies on numerical optimization, such as nonlinear program-
ming, where the analytic gradient is used to minimize the cost. It
minimizes a loss function over a short receding horizon. On the other
hand, policy-gradient-based RL optimizes the objective using stochas-
tic gradient descent, where the policy gradient is estimated via sampled
trajectories. RL solves the optimization problem offline, ahead of time
(in our case, in simulation) and can handle arbitrarily long horizons.
This leads to our Optimization Method Hypothesis: RL outperforms
OC because RL, as an optimizer, can achieve better task performance
than OC. The difference in the optimization method makes RL more
effective than OC.

In addition to the differences in the optimization method, RL and
OC typically optimize different objectives. The family of optimization
objectives that can be solved by MPC is limited by the requirements of
continuity, smoothness, and convexity. As a result, MPC is typically
coupled with a high-level planner. The controller minimizes a convex
objective, typically quadratic, which does not directly express the
true task goal. On the other hand, RL can handle a wide range of
reward formulations, which need not be convex, continuous, or even
differentiable. In the drone racing context, RL need not resort to an
explicit decomposition of the problem into planning and control, need
not maintain an explicit reference path, and can optimize an objective
that directly expresses the task, such as passing each gate as quickly as
possible while avoiding collisions. We thus arrive at our Optimization
Objective Hypothesis: RL outperforms OC because RL can optimize a
broader range of objectives, including task-level objectives that give
the policy more flexibility to discover adaptive control sequences. The
optimization objective leads to better task performance.

Reinforcement Learning for Drone Racing
This section provides details about applying model-free RL for optimiz-
ing a neural network policy for autonomous drone racing. An overview
of the approach is given in Figure 9. First, we model the drone racing
problem using the standard Markov Decision Process (MDP), which is
defined by a tuple (S ,A,P , r, ρ0, γ). The RL agent is randomly ini-
tialized in a state st ∈ S drawn from an initial state distribution ρ0(s).
At every time step t, an action at ∈ A is sampled from a stochastic
policy π(at|ot) given an observation of the environment ot. After
executing the action, the agent transitions to the next state st+1 with
the state transition probability Pat

stst+1 = Pr(st+1|st, at). At the same
time, the agent receives a reward rt ∈ R. The goal of RL is to optimize
the parameters θ of a policy πθ such that the trained policy maximizes
the expected return over an infinite horizon. The discrete-time formu-
lation of this objective is π∗

θ = arg maxπ Eτ∼π
[
∑∞

t=0 γtrt
]
, where

γ ∈ [0, 1) is a discount factor that discounts future rewards.
The main objective of drone racing is to complete a given race

track in minimum time, which can be challenging due to the sparsity
of rewards when using lap time as the signal. This sparsity makes it
difficult to assign credit to individual state-action pairs. To address this
challenge, we propose using the gate progress reward (Eq. 5). The gate
progress reward incentivizes the agent to fly quickly toward the target
gate by maximizing the distance change relative to the gate center. This
approach provides a more frequent and informative signal for credit
assignments compared to lap time. Additionally, the agent is penalized
with a negative reward if it experiences a collision during flight, and it
is randomly initialized at a new initial state to encourage exploration.
Finally, the agent is rewarded with a positive reward upon successfully
completing the maximum episode length. By using the gate progress
reward, the agent can learn to navigate the vehicle as fast as possible
and avoid collisions.

The observation space consists of two main parts: the vehicle
observation oquad

t and the race track observation otrack
t . We define

the vehicle state as oquad
t = [vt, Rt] ∈ R12, which corresponds to the

quadrotor’s linear velocity and rotation matrix. We define the track
observation vector as otrack

t = [δp1, · · · , δpi, · · · ], i ∈ [1, · · · , N],
where δpi ∈ R12 denotes the relative position between the vehicle
center and the four corners of the next target gate i or the relative
difference in corner distance between two consecutive gates. Here
N ∈ Z+ represents the total number of future gates. This formulation
of the track observation allows us to incorporate an arbitrary number
of future gates into the observation. We use N = 2, meaning we
observe the four corners of the next two target gates. We normalize
the observation by calculating the mean and standard deviation of the
input observations at each training iteration. The agent is trained to
directly map the observation to the control, which is expressed as a
4-dimensional vector a = [c, ωx, ωy, ωz] ∈ R4, representing mass-
normalized thrust and bodyrates, in each axis separately. We use a
two-layer multilayer perceptron (MLP) as the policy network, with 256
nodes in each layer. We use a tanh activation function in the last layer
of the policy network to produce an output in the range [−1, 1].

Policy Training
We train the policy using a customized Proximal Policy Optimization
(PPO) algorithm [37]. Our customized implementation is based on
Stable Baselines3 [38]. For training in simulation, we use the open-
source Flightmare simulator [39]. Flightmare supports policy rollouts
in hundreds of environments in parallel, which significantly speeds up
training. Parallelization is also leveraged to increase the diversity of
the sampled trajectories.

Early in the training, most of the rollouts terminate due to gate
and ground collisions. Consequently, if each quadrotor is initialized



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 12

at the starting position, the data collection is restricted to a small
part of the state space, requiring many update steps until the policy
learns to explore the entire track. As a countermeasure, we employ
an initialization strategy that covers the state space more broadly. We
randomly initialize the quadrotor with a hovering state around the
centers of all path segments, immediately exposing the training to all
gate observations. Once the policy has learned to pass gates reliably,
we store those successful vehicle states in an initial state buffer, which
is then used for sampling initial states for resetting the vehicle. The
use of an initial state buffer greatly improves sample efficiency.

Sim-to-real Transfer
After training the policy in simulation, we deploy the policy directly
in the physical world with no fine-tuning. Transferring the policy to
the physical world is challenging because the policy operates near the
actuator limits of the platform, while the physical vehicle is subject
to aerodynamic effects, system delays, and battery voltage drops. We
make several design choices to facilitate successful sim-to-real transfer.
First, we identify the physical drone carefully, resulting in a relatively
accurate model of the system. In addition, we measure the system
delay of the real-world drone and simulate the delay during policy
training. Second, the policy outputs control commands in the form of
mass-normalized thrust and body rates, which are then tracked by a
low-level controller that operates at a higher frequency. This design
enables the use of the same control interface as used by human pilots,
while also reducing the sim-to-real gap [40]. Third, we randomize
physical parameters that are difficult to identify accurately, including
aerodynamic drag and the thrust mapping coefficient. Finally, our
controller benefits largely from optimizing the gate progress objective,
allowing the controller more flexibility to adapt its behavior when
facing unknown effects.

Real-world Deployment
We test the policies in a flying arena that spans roughly 30 × 30 × 8 m
and is equipped with 36 VICON cameras that provide precise pose
measurements at a frequency of 400 Hz. We use two race tracks, the
Split-S track and the Marv track; both are designed by world-class
human FPV pilots (Figure 1). Both tracks have 7 gates, but the gates
are arranged in different configurations. In particular, the Split-S
track contains two vertically stacked gates, which require a so-called
Split-S manoeuvre. The Marv track features a number of challenging
maneuvers commonly used in FPV drone racing, including the split-S,
power loops, ladders, and flags.

We use two different drones: a 4s Drone and a 6s Drone. The 4s
Drone has a 4-cell battery and is used for the comparisons between RL
and OC. The 6s Drone has a 6-cell battery and is used for examining
the characteristics of the RL policy and for the competition against
human pilots. Given a fully charged Tattu 6-cell battery, the 6s Drone
has a maximum thrust-to-weight ratio (TWR) of 12. For comparison,
the DJI FPV drone has a maximum TWR of around 4 [35]. We use the
Agilicious control framework for real-world deployment [35].

ACKNOWLEDGMENTS

The authors thank Christian Pfeiffer, Florian Trautweiler, Cafer Mert-
can Akcay, Thomas Längle, and Alex Barden for their contributions
to the organization of the race events, the system identification, the
real-world deployment, and the drone hardware design. The authors
thank Elia Kaufmann for the valuable discussions about the study
of optimization objective versus optimization method and Leonard
Bauersfeld for his Matlab script for creating Figure 1. Furthermore,
the authors thank Yuning Jiang, Benoit Landry, Marco Cusumano
Towner, and Drew Hanover for conducting an internal review prior to

Control inputs

Observations:

On-policy training

Control

inputs
(100 Hz)

Reset

Training

Deployment

MLP Policy

MLP Policy

Parallelized Simulation

Real world

... ...
...

... ...
...

Initial state
buffer

Rollouts

Observations (400 Hz)

- Linear velocity
- Rotation matrix
- Gate corners

Fig. 9. An overview of policy training and real-world deploy-
ment.

our initial submission. Finally, the authors thank the human pilots Alex
Vanover, Thomas Bitmatta, and Marvin Schaepper for racing against
the autonomous drone.

Author Contribution: Y.S. formulated the main ideas, imple-
mented the system, performed all experiments, analyzed the data, and
wrote the paper. A.R. contributed to the conceptualization of the sys-
tem, the hardware design, optimal control baseline, and paper writing.
M.M. contributed to the project conception, revision of the manuscript
and provided funding. V.K. contributed to the project conception and
direction, high-level design, analysis of experiments, and paper writing.
D.S. provided the main idea, contributed to the design and analysis of
experiments, to the paper writing, and provided funding.

Funding: This work was supported in part by the European Re-
search Council (ERC) under grant agreement No. 864042 (AGILE-
FLIGHT), in part by the European Union’s Horizon 2020 Research
and Innovation Program under grant agreement No. 871479 (AERIAL-
CORE), in part by the Intel Embodied AI Lab, and in part by the Swiss
National Science Foundation (SNSF) through the National Centre of
Competence in Research (NCCR) Robotics.



Research Article: Science Robotics Vol. 8, Issue 82, 2023 University of Zurich 13

REFERENCES

1. B. Paden, M. Čáp, S. Z. Yong, D. Yershov, E. Frazzoli, A survey of
motion planning and control techniques for self-driving urban vehicles,
IEEE Transactions on intelligent vehicles 33–55 (2016).

2. M. Maurer, J. C. Gerdes, B. Lenz, H. Winner, Autonomous driving:
technical, legal and social aspects (Springer Nature, 2016).

3. J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat,
C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, L. M. Gambardella,
R. Siegwart, D. Scaramuzza, The current state and future outlook of
rescue robotics, Journal of Field Robotics 1171–1191 (2019).

4. S. Rajendran, S. Srinivas, Air taxi service for urban mobility: a criti-
cal review of recent developments, future challenges, and opportuni-
ties, Transportation Research Part E-logistics and Transportation Review
(2020).

5. N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, J. C. Gerdes,
Neural network vehicle models for high-performance automated driving,
Science Robotics p. eaaw1975 (2019).

6. E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun,
D. Scaramuzza, Champion-level drone racing using deep reinforcement
learning, Nature 982–987 (2023).

7. M. G. Bellemare, S. Candido, P. S. Castro, J. Gong, M. C. Machado,
S. Moitra, S. S. Ponda, Z. Wang, Autonomous navigation of strato-
spheric balloons using reinforcement learning, Nature 77–82 (2020).

8. T. Tzanetos, M. Aung, J. Balaram, H. F. Grip, J. T. Karras, T. K. Can-
ham, G. Kubiak, J. Anderson, G. Merewether, M. Starch, M. Pauken,
S. Cappucci, M. Chase, M. Golombek, O. Toupet, M. C. Smart, S. Daw-
son, E. B. Ramirez, J. Lam, R. Stern, N. Chahat, J. Ravich, R. Hogg,
B. Pipenberg, M. Keennon, K. H. Williford, Ingenuity mars helicopter:
From technology demonstration to extraterrestrial scout, 2022 IEEE
Aerospace Conference (AERO), 01–19 (IEEE, 2022).

9. H. F. Grip, D. Conway, J. Lam, N. Williams, M. P. Golombek, R. Brockers,
M. Mischna, M. R. Cacan, Flying a helicopter on mars: How ingenuity’s
flights were planned, executed, and analyzed, 2022 IEEE Aerospace
Conference (AERO), 1–17 (IEEE, 2022).

10. E. Arthur Jr, J.-C. Ho, Applied optimal control: optimization, estimation,
and control (Hemisphere, 1975).

11. D. Bertsekas, Dynamic programming and optimal control: Volume I,
vol. 1 (Athena scientific, 2012).

12. R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction
(2018).

13. D. Bertsekas, Reinforcement learning and optimal control (Athena Sci-
entific, 2019).

14. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, others,
Human-level control through deep reinforcement learning, nature 529–
533 (2015).

15. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, others, Mastering the game of go with deep neural networks
and tree search, nature 484–489 (2016).

16. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, others, Grand-
master level in starcraft ii using multi-agent reinforcement learning,
Nature 350–354 (2019).

17. J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese,
T. Ewalds, R. Hafner, A. Abdolmaleki, D. Casas, C. Donner, L. Fritz,
C. Galperti, A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay, A. Merle, J.-M.
Moret, M. Riedmiller, Magnetic control of tokamak plasmas through
deep reinforcement learning, Nature 414–419 (2022).

18. S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Perme-
nter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot,
Autonomous robots 429–455 (2016).

19. G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, S. Kim,
Mit cheetah 3: Design and control of a robust, dynamic quadruped
robot, 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2245–2252 (IEEE, 2018).

20. M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,

C. Gehring, M. Hutter, J. Buchli, Whole-body nonlinear model pre-
dictive control through contacts for quadrupeds, IEEE Robotics and
Automation Letters 1458–1465 (2018).

21. D. Falanga, P. Foehn, P. Lu, D. Scaramuzza, PAMPC: Perception-aware
model predictive control for quadrotors, IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS), 1–8 (IEEE, 2018).

22. M. Neunert, C. De Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Sieg-
wart, J. Buchli, Fast nonlinear model predictive control for unified
trajectory optimization and tracking, 2016 IEEE international conference
on robotics and automation (ICRA), 1398–1404 (IEEE, 2016).

23. A. Romero, S. Sun, P. Foehn, D. Scaramuzza, Model predictive con-
touring control for time-optimal quadrotor flight, IEEE Transactions on
Robotics 1–17 (2022).

24. P.-B. Wieber, R. Tedrake, S. Kuindersma. Modeling and control of
legged robots. Springer handbook of robotics (Springer, 2016), 1203–
1234.

25. M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pa-
jovic, E. Jelavic, S. Coros, M. Hutter, Offline motion libraries and online
mpc for advanced mobility skills, The International Journal of Robotics
Research p. 02783649221102473.

26. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learning
quadrupedal locomotion over challenging terrain, Science Robotics 5
(2020).

27. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learn-
ing robust perceptive locomotion for quadrupedal robots in the wild,
Science Robotics p. eabk2822 (2022).

28. H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga,
A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. Wagter, G. Croon,
S. Hwang, S. Jung, H. Shim, H. Kim, M. Park, T.-C. Au, S. J. Kim,
Challenges and implemented technologies used in autonomous drone
racing, Intelligent Service Robotics 137–148 (2019).

29. C. De Wagter, F. Paredes-Vallés, N. Sheth, G. Croon, The sensing,
state-estimation, and control behind the winning entry to the 2019
artificial intelligence robotic racing competition, Field Robotics 1263–
1290 (2022).

30. P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, D. Scaramuzza, Alphapilot: Autonomous drone racing,
Robotics: Science and Systems (RSS) (2020).

31. C. De Wagter, F. Paredes-Vallés, N. Sheth, G. de Croon, The artificial
intelligence behind the winning entry to the 2019 ai robotic racing
competition, arXiv preprint arXiv:2109.14985 (2021).

32. P. Foehn, A. Romero, D. Scaramuzza, Time-optimal planning for
quadrotor waypoint flight, Science Robotics 6 (2021).

33. Y. Song, S. Naji, E. Kaufmann, A. Loquercio, D. Scaramuzza, Flight-
mare: A flexible quadrotor simulator, Conference on Robot Learning
(2020).

34. L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, D. Scaramuzza, Neu-
robem: Hybrid aerodynamic quadrotor model, RSS: Robotics, Science,
and Systems (2021).

35. P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, D. Scaramuzza, Agilicious:
Open-source and open-hardware agile quadrotor for vision-based flight,
Science Robotics 7 (2022).

36. G. Frison, M. Diehl, Hpipm: a high-performance quadratic programming
framework for model predictive control, IFAC-PapersOnLine No. 2 in
21st IFAC World Congress, p. 6563–6569 (2020).

37. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017).

38. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dormann,
Stable-baselines3: Reliable reinforcement learning implementations,
Journal of Machine Learning Research 1–8 (2021).

39. Y. Song, S. Naji, E. Kaufmann, A. Loquercio, D. Scaramuzza, Flight-
mare: A flexible quadrotor simulator, Conference on Robot Learning
(2020).

40. E. Kaufmann, L. Bauersfeld, D. Scaramuzza, A benchmark comparison
of learned control policies for agile quadrotor flight, 2022 International
Conference on Robotics and Automation (ICRA) (IEEE, 2022).


