
Research Article ETH Zurich 1

DTC: Deep Tracking Control
FABIAN JENELTEN,1∗ JUNZHE HE,1 FARBOD FARSHIDIAN,2 AND MARCO HUTTER1

1Robotic Systems Lab, ETH Zurich, 8092 Zurich, Switzerland.
2Currently at Boston Dynamics AI Institute, 145 Broadway, Cambridge MA, USA
∗Corresponding author: fabian.jenelten@ethz.ch

This is the accepted version of Science Robotics Vol. 9, Issue 86, eadh5401 (2024)
DOI: 0.1126/scirobotics.adh5401

Legged locomotion is a complex control problem that requires both accuracy and robustness to cope with real-
world challenges. Legged systems have traditionally been controlled using trajectory optimization with inverse
dynamics. Such hierarchical model-based methods are appealing due to intuitive cost function tuning, accurate
planning, generalization, and most importantly, the insightful understanding gained from more than one decade
of extensive research. However, model mismatch and violation of assumptions are common sources of faulty
operation. Simulation-based reinforcement learning, on the other hand, results in locomotion policies with
unprecedented robustness and recovery skills. Yet, all learning algorithms struggle with sparse rewards emerging
from environments where valid footholds are rare, such as gaps or stepping stones. In this work, we propose
a hybrid control architecture that combines the advantages of both worlds to simultaneously achieve greater
robustness, foot-placement accuracy, and terrain generalization. Our approach utilizes a model-based planner
to roll out a reference motion during training. A deep neural network policy is trained in simulation, aiming to
track the optimized footholds. We evaluate the accuracy of our locomotion pipeline on sparse terrains, where
pure data-driven methods are prone to fail. Furthermore, we demonstrate superior robustness in the presence of
slippery or deformable ground when compared to model-based counterparts. Finally, we show that our proposed
tracking controller generalizes across different trajectory optimization methods not seen during training. In
conclusion, our work unites the predictive capabilities and optimality guarantees of online planning with the
inherent robustness attributed to offline learning.

INTRODUCTION

Trajectory optimization (TO) is a commonly deployed instance of op-
timal control for designing motions of legged systems and has a long
history of successful applications in rough environments since the early
2010s [1, 2]. These methods require a model of the robot’s kinematics
and dynamics during runtime, along with a parametrization of the ter-
rain. Until recently, most approaches have used simple models such
as single rigid body [3] or inverted pendulum dynamics [4, 5], or have
ignored the dynamic effects altogether [6]. Research has shifted to-
wards more complex formulations, including centroidal [7] or full-body
dynamics [8]. The resulting trajectories are tracked by a whole-body
control (WBC) module, which operates at the control frequency and
utilizes full-body dynamics [9]. Despite the diversity and agility of the
resulting motions, there remains a considerable gap between simulation
and reality due to unrealistic assumptions. Most problematic assump-
tions include perfect state estimation, occlusion-free vision, known
contact states, zero foot-slip, and perfect realization of the planned
motions. Sophisticated hand-engineered state machines are required
to detect and respond to various special cases not accounted for in the
modeling process. Nevertheless, highly dynamic jumping maneuvers
performed by Boston Dynamics’ bipedal robot Atlas demonstrate the
potential power of TO.

Reinforcement learning (RL) has emerged as a powerful tool in

recent years for synthesizing robust legged locomotion. Unlike model-
based control, RL does not rely on explicit models. Instead, behaviors
are learned, most often in simulation, through random interactions
of agents with the environment. The result is a closed-loop control
policy, typically represented by a deep neural network, that maps raw
observations to actions. Handcrafted state-machines become obsolete
because all relevant corner cases are eventually visited during training.
End-to-end policies, trained from user commands to joint target posi-
tions, have been deployed successfully on quadrupedal robots such as
ANYmal [10, 11]. More advanced teacher-student structures have sub-
stantially improved the robustness, enabling legged robots to overcome
obstacles through touch [12] and perception [13]. Although locomotion
across gaps and stepping stones is theoretically possible, good explo-
ration strategies are required to learn from the emerging sparse reward
signals. So far, these terrains could only be handled by specialized
policies, which intentionally overfit to one particular scenario [14] or a
selection of similar terrain types [15–18]. Despite promising results,
distilling a unifying locomotion policy may be difficult and has only
been shown with limited success [19].

Some of the shortcomings that appear in RL can be mitigated
using optimization-based methods. While the problem of sparse gra-
dients still exists, two important advantages can be exploited: First,
cost-function and constraint gradients can be computed with a small

Research Article ETH Zurich 2

Precision Robustness

Fig. 1. Robust and precise locomotion in various indoor and outdoor environments. The marriage of model-free and model-based control
allows legged robots to be deployed in environments where steppable contact surfaces are sparse (bottom left) and environmental uncertainties
are high (top right).

Research Article ETH Zurich 3

number of samples. Second, poor local optima can be avoided by pre-
computing footholds [5, 8], pre-segmenting the terrain into steppable
areas [7, 20], or by smoothing out the entire gradient landscape [21].
Another advantage of TO is its ability to plan actions ahead and pre-
dict future interactions with the environment. If model assumptions
are generic enough, this allows for great generalization across diverse
terrain geometries [7, 21].

The sparse gradient problem has been addressed extensively in
the learning community. A notable line of research has focused on
learning a specific task while imitating expert behavior. The expert
provides a direct demonstration for solving the task [22, 23], or is used
to impose a style while discovering the task [24–26]. These approaches
require collecting expert data, commonly done offline, either through
re-targeted motion capture data [24–26] or a TO technique [22, 23].
The reward function can now be formulated to be dense, meaning that
agents can collect non-trivial rewards even if they do not initially solve
the task. Nonetheless, the goal is not to preserve the expert’s accuracy
but rather to lower the sample and reward complexity by leveraging
existing knowledge.

To further decrease the gap between the expert and the policy per-
formance, we speculate that the latter should have insight into the
expert’s intentions. This requires online generation of expert data,
which can be conveniently achieved using any model-based controller.
Unfortunately, rolling out trajectories is often orders of magnitude
more expensive than a complete learning iteration. To circumvent this
problem, one possible alternative is to approximate the expert with a
generative model, for instance, by sampling footholds from a uniform
distribution [15, 16], or from a neural network [17, 27, 28]. However,
for the former group, it might be challenging to capture the distribution
of an actual model-based controller, while the latter group still does
not solve the exploration problem itself.

In this work, we propose to guide exploration through the solution
of TO. As such data will be available both on- and offline, we refer
to it as “reference” and not expert motion. We utilize a hierarchical
structure introduced in deep loco [28], where a high-level planner
proposes footholds at a lower rate, and a low-level controller follows
the footholds at a higher rate. Instead of using a neural network to
generate the foothold plan, we leverage TO. Moreover, we do not only
use the target footholds as an indicator for a rough high-level direction
but as a demonstration of optimal foot placement.

The idea of combining model-based and model-free approaches is
not new in the literature. For instance, supervised [29] and unsuper-
vised [30, 31] learning has been used to warm-start nonlinear solvers.
RL has been used to imitate [22, 23] or correct [32] motions obtained
by solving TO problems. Conversely, model-based methods have been
used to check the feasibility of learned high-level commands [27] or
to track learned acceleration profiles [33]. Compared to [32], we do
not learn corrective joint torques around an existing WBC, but in-
stead, learn the mapping from reference signals to joint positions in an
end-to-end fashion.

To generate the reference data, we rely on an efficient TO
method called terrain-aware motion generation for legged systems
(TAMOLS) [21]. It optimizes over footholds and base pose simultane-
ously, thereby enabling the robot to operate at its kinematic limits. We
let the policy observe only a small subset of the solution, namely planar
footholds, desired joint positions, and the contact schedule. We found
that these observations are more robust under the common pitfalls of
model-based control, while still providing enough information to solve
the locomotion task. In addition, we limit computational costs arising
from solving the optimization problems by utilizing a variable update
rate. During deployment, the optimizer runs at the fastest possible rate
to account for model uncertainties and external disturbances.

Our approach incorporates elements introduced in [14], such as

time-based rewards and position-based goal tracking. However, we
reward desired foothold positions at planned touch-down instead of
rewarding a desired base pose at an arbitrarily chosen time. Finally,
we use an asymmetric actor-critic structure similar to [22], where we
provide privileged ground truth information to the value function and
noisified measurements to the network policy.

We trained more than 4000 robots in parallel for two weeks on
challenging ground covering a surface area of more than 76000 m2.
Throughout the entire training process, we generated and learned from
about 23 years of optimized trajectories. The combination of offline
training and online re-planing results in accurate, agile, and robust
locomotion. As showcased in Fig. 1 and movie 1, with our hybrid
control pipeline, ANYmal [34] can skillfully traverse parkours with
high precision, and confidently overcome uncertain environments with
high robustness. Without the need for any post-training, the tracking
policy can be deployed zero-shot with different TO methods at different
update rates. Moreover, movie 2 demonstrates successful deployment
in search-and-rescue scenarios, which demand both accurate foot place-
ment and robust recovery skills. The contributions of our work are
therefore twofold: Firstly, we enable the deployment of model-based
planners in rough and uncertain real-world environments. Secondly,
we create a single unifying locomotion policy that generalizes beyond
the limitations imposed by state-of-the-art RL methods.

RESULTS

In order to evaluate the effectiveness of our proposed pipeline, hereby
referred to as Deep Tracking Control (DTC), we compared it with four
different approaches: two model-based controllers, TAMOLS [21] and
a nonlinear model predictive control (MPC) method presented in [7],
and two data-driven methods, as introduced in [13] and [11]. We refer
to those as baseline-to-1 (TAMOLS), baseline-to-2 (MPC), baseline-rl-
1 (teacher/student policy), and baseline-rl-2 (RL policy), respectively.
These baselines mark the state-of-the-art in MPC and RL prior to this
work and they have been tested and deployed under various conditions.
If not noted differently, all experiments were conducted in the real
world.

Evaluation of Robustness
We conducted three experiments to evaluate the robustness of our
hybrid control pipeline. The intent is to demonstrate survival skills
on slippery ground, and recovery reflexes when visual data is not
consistent with proprioception or is absent altogether. We rebuilt harsh
environments that are likely to be encountered on sites of natural
disasters, where debris might further break down when stepped onto,
and construction sites, where oil patches create slippery surfaces.

In the first experiment, we placed a rectangular cover plate with an
area of 0.78× 1.19 m2 on top of a box with the same length and width,
and height 0.37 m (Fig. 2 A). The cover plate was shifted to the front,
half of the box’s length. ANYmal was then steered over the cover
plate, which pitched down as soon as its center of mass passed beyond
the edge of the box. Facing only forward and backward, the plate’s
movement was not detected through the depth cameras, and could
only be perceived through proprioceptive sensors. Despite the error
between map and odometry reaching up to 0.4 m, the robot managed to
successfully balance itself. This experiment was repeated three times
with consistent outcomes.

In our second experiment (Fig. 2 B) we created an obstacle park-
our with challenging physical properties. A large wooden box with a
slopped front face was placed next to a wet and slippery whiteboard.
We increased the difficulty by placing a soft foam box in front, and a
rolling transport cart on top of the wooden box. The robot was com-
manded to walk over the objects with random reference velocities for

Research Article ETH Zurich 4

B slippery, rolling, and deformable objects

A moving plane

C walking blind upstairs

Fig. 2. Evaluation of robustness. (A) ANYmal walks along a loose cover plate that eventually pitches forward (left to right, top to bottom).
The third row shows ANYmal’s perception of the surroundings during the transition and recovery phase. (B) The snapshots are taken at critical
time instances when walking on slippery ground, just before complete recovery. (C) ANYmal climbs upstairs with disabled perception (top to
bottom). The collision of the right-front end-effector with the stair tread triggers a swing reflex, visualized in orange.

Research Article ETH Zurich 5

approximately 45 seconds, after which the objects were redistributed
to their original locations to account for any potential displacement.
This experiment was repeated five times. Despite not being trained on
movable or deforming obstacles, the robot demonstrated its recovery
skills in all five trials without any falls.

The tracking policy was trained with perceptive feedback, mean-
ing that the policy and the motion planner had partial or complete
insight into the local geometrical landscape. Nevertheless, the loco-
motion policy was still capable of overcoming many obstacles com-
pletely blind. To simulate a scenario with damaged depth sensors, we
let ANYmal blindly walk over a stair with two treads, each 0.18 m
high and 0.29 m wide (Fig. 2 C). The experiment was repeated three
times up and down, with an increasing heading velocity selected from
{±0.5,±0.75,±1.0}m/s. In some cases, a stair tread was higher
than the swing motion of a foot. Thanks to a learned swing reflex,
the stair set could be successfully cleared in all trials. We note that
the same stair set was passed by a blindfolded version of baseline-rl-
1 [13], which was trained in a complex teacher/student environment.
In contrast, our method relies on an asymmetric actor/critics structure,
achieving a similar level of robustness. Accompanying video clips can
be found in the supplementary movie S1.

Evaluation of Accuracy
We demonstrate the precision of foothold tracking by devising a com-
plex motion that requires the robot to perform a turn-in-place maneuver
on a small surface area of 0.94 × 0.44 m2. The robot was commanded
to walk up a slope onto a narrow table, then to execute a complete
360 deg turn, and finally to descend onto a pallet. Some snapshots
of the experiment are provided in Fig. 3 A, whereas the full video is
contained in movie S2.

To evaluate the quality of the foothold tracking, we collected data
while ANYmal walked on flat ground. Each experiment lasted for
approximately 20 s and was repeated with eight different heading ve-
locities selected from {±1.0,±0.8,±0.6,±0.4}m/s. We measured
the tracking error as the smallest horizontal distance between a foot
and its associated foothold during a stance phase. As shown in Fig. 3 B,
the footholds could be tracked with very high precision of 2.3 cm and
standard deviation 0.48 cm when averaged over the broad spectrum of
heading velocity commands.

Deployment with MPC
The maximum height that DTC in combination with TAMOLS can
reliably overcome is about 0.40 m. The policy might hesitate to climb
up taller objects due to the risk of potential knee joint collisions with
the environment. This limitation is inherent to the chosen TO method,
which only considers simplified kinematic constraints. We, therefore,
deployed DTC with the planner of baseline-to-2, which takes into
account the full kinematics of the system. To allow for zero-shot
generalization, we implemented the same trotting gait as experienced
during training. With this enhanced setup, ANYMal could climb up a
box of height of 0.48 m. This is 50 % higher than what baseline-rl-1
could climb up, and 380 % more than what was reported for baseline-rl-
2. The box climbing experiment was successfully repeated five times.
The results are shown in movie S2, and for one selected trial in Fig. 3 D.
Furthermore, we measured the tracking error on flat ground. Despite
the wider stance configuration of baseline-to-2, the error was found to
be only 0.03 m on average (Fig. 3 C).

The above two results seem to be surprising at first glance but
are easy to explain when considering the observation space and the
training environment. Although the base-pose trajectory is considerably
more detailed for baseline-to-2 due to frequency-loop shaping and
increased system complexity, the foothold patterns are nevertheless
quite similar. Thus, good generalization is facilitated by the specific

choice of observations, which hides the optimized base pose from the
policy. Some terrains within the training environment can be seen as a
combination of gaps and boxes, where each box is surrounded by a gap.
During training, TAMOLS placed the footholds sufficiently far away
from the box to avoid stepping into the gap. This allowed the policy to
learn climbing maneuvers without knee joint collisions. Baseline-to-2,
being aware of the spatial coordinates of the knees, naturally produces
a similar foothold pattern, even in the absence of the gap.

Benchmark Against Model-Based Control

TO was proven to be effective in solving complex locomotion tasks
in simulation, such as the parkour shown in Fig. 4 A. This parkour
has been successfully traversed by ANYmal using baseline-to-1 and
baseline-to-2, while it was found to be non-traversable for baseline-rl-1
and baseline-rl-2 [7]. With our proposed approach, ANYmal could
cross the same obstacle parkour in simulation back and forth at a speed
of 1 m/s, which was 20 % faster than baseline-to-1. The corresponding
video clip can be found in movie S3.

Model-based controllers react sensitively to violation of model as-
sumptions, which hinders applications in real-world scenarios, where,
for instance, uncertainties in friction coefficients, contact states, and
visual perception may be large. This issue is exemplified in Fig. 4 B,
where baseline-to-1 was used to guide ANYmal over a flat floor with
an invisible gap. When the right front foot stepped onto the trap, the
planned and executed motions deviated from each other. This triggered
a sequence of heuristic recovery strategies. For large mismatches, how-
ever, such scripted reflexes were not effective, and resulted in failure.
DTC uses the same high-level planner but incorporates learned recov-
ery and reflex skills. This allowed the robot to successfully navigate
through the trap. The robustness is rooted in the ability to ignore both
perception and reference motion while relying only on proprioception.
Such behavior was learned in simulation by experiencing simulated
map drift. The experiment was repeated five times with baseline-to-1,
five times with baseline-to-2, and five times with our method, con-
sistently leading to similar results. The video clips corresponding to
the above experiments can be found in movie S3. The movie is fur-
ther enriched with a comparison of baseline-to-2 against DTC on soft
materials, which impose very similar challenges.

Benchmark Against RL Control

Although RL policies are known for their robustness, they may struggle
in environments with limited interaction points. We demonstrate typical
failure cases in two experiments utilizing baseline-rl-1. In the first
experiment (Fig. 5 A), ANYmal was tasked to cross a small gap of
0.1 m with a reference heading velocity of 0.2 m/s. The model-free
controller did not avoid the gap, and thus could not reach the other side
of the platform. In the second experiment, we connected two elevated
boxes with a 1.0 m-long beam of height 0.2 m (Fig. 5 B). The robot
was commanded to walk from the left to the right box but failed to
make use of the beam.

In comparison, our hybrid policy achieved a 100 % success rate
for the same gap size over ten repetitions. To further demonstrate the
locomotion skills of DTC, we made the experiments more challenging.
We replaced the small gap with four larger gaps, each 0.6 m wide and
evenly distributed along the path (Fig. 5 C). Similarly, we increased the
length of the beam to a total of 1.8 m (Fig. 5 D). Despite the increased
difficulty, our approach maintained a 100 % success rate across four
repetitions of each experiment. Video clips of those experiments can
be found in movie S4.

By using a specialized policy, ANYmal crossed a 0.6 m wide gap
within a pre-mapped environment [14]. Most notably, our locomotion
controller, not being specialized nor fine-tuned for this terrain type,

Research Article ETH Zurich 6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1 LF
RF
LH
RH

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1 LF
RF
LH
RH

A artistic motion

B foothold tracking error C foothold tracking error with baseline-to-2

D Deployment with baseline-to-2

Fig. 3. Evaluation of tracking performance. (A) ANYmal climbs up a narrow table, turns, and descends back down to a box. The second
image in the second row shows the robot’s perception of the environment. (B) Euclidean norm of the planar foothold error, averaged over 20 s of
operation using a constant heading velocity. The solid/dashed curves represent the average/maximum tracking errors. (C) Same representation as
in (B), but the data was collected with baseline-to-2. (D) DTC deployed with baseline-to-2, enabling ANYMal to climb up a box of 0.48 m.

Research Article ETH Zurich 7

A obstacle parkour simulation (ours)

B collapsing floor (baseline-to-1)

C collapsing floor (ours)

Fig. 4. Benchmarking against model-based control. (A) DTC successfully traverses an obstacle parkour (left to right) in simulation with a
heading velocity of 1 m/s. (B) Baseline-to-1 falls after stepping into a gap hidden from the perception (left to right). (C) ANYmal successfully
overcomes a trapped floor using our hybrid control architecture (left to right).

crossed a sequence of four gaps with the same width, whilst, relying
on online generated maps only.

The limitations of baseline-rl-1 were previously demonstrated [7]
on the obstacle parkour of Fig. 4 A, showing its inability to cross the
stepping stones. We showcase the generality of our proposed control
framework by conducting three experiments on stepping stones in
the real world, each with an increased level of difficulty. The first
experiment (Fig. 6 A) required ANYmal traversing a field of equally
sized stepping stones, providing a contact surface of 0.2 × 0.2 m2

each. The robot passed the 2.0 m long field 10 times. Despite the
varying heading velocity commands, the robot accurately hit the correct
stepping stones as indicated by the solution of the TO. For the second
experiment (Fig. 6 B), we increased the height of two randomly selected
stones. The parkour was successfully crossed four out of four times. In
the final experiment (Fig. 6 C), we distributed three elevated platforms
a, b, and c, connected by loose wooden blocks of sizes 0.31 × 0.2 ×
0.2 m3 and 0.51× 0.2× 0.2 m3. This environment posed considerable
challenges as the blocks may move and flip over when stepped on.
Following the path a → b → a → b → c → a, the robot missed only
one stepping stone, which, however, did not lead to failure. Video clips
of the stepping stones experiments are provided in movie S5.

Simulation-Based Ablation Study
During training, we computed a solution to the TO problem after vari-
able time intervals, but mainly after each foot touch-down. Although
such a throttled rate greatly reduced computational costs, it also leads
to poor reactive behavior in the presence of quickly changing external
disturbances, dynamic obstacles, or map occlusion. Moreover, the
optimizer was updated using privileged observations, whereas, in real-
ity, the optimizer is subject to elevation map drift, wrongly estimated
friction coefficients, and unpredicted external forces. To compensate
for such modeling errors, we deploy the optimizer in MPC-fashion. We
investigated the locomotion performance as a function of the optimizer

update rate. Using the experimental setup outlined in the supplemen-
tary methods (section “Experimental Setup for Evaluation of Optimizer
Rate”), we collected a total of six days of data in simulation. A robot
was deemed “successful” if it could walk from the center to the border
of its assigned terrain patch, “failed” if its torso made contact with the
environment within its patch, and “stuck” otherwise. We report success
and failure rates in Fig. 7 A. Accordingly, when increasing the update
rate from 1 Hz to 50 Hz, the failure rate dropped by 7.11 % whereas
the success rate increased by 4.25 %.

In the second set of experiments, we compared our approach against
baseline-rl-2 as well as against the same policy trained within our train-
ing environment. We refer to the emerging policy as baseline-rl-3.
More details regarding the experimental setup can be found in the
supplementary methods (section “Experimental Setup for Performance
Evaluation”). As depicted in Fig. 7 B i, our approach exhibited a
substantially higher success rate than baseline-rl-2. By learning on
the same terrains, baseline-rl-3 could catch up but still did not match
our performance in terms of success rate. The difference mainly orig-
inates from the fact that the retrained baseline still failed to solve
sparse-structured terrains. To highlight this observation, we evaluated
the performance on four terrain types with sparse (“stepping stones”,
“beams”, “gaps”, and “pallets”), and on four types with dense stepping
locations (“stairs”, “pit”, “rough slope”, and “rings”). On all consid-
ered terrain types, our approach outperformed baseline-rl-2 by a huge
margin (Fig. 7 B ii), thereby demonstrating that learned locomotion
generally does not extrapolate well to unseen scenarios. We performed
equally well as baseline-rl-3 on dense terrains, but scored notably
higher on sparse-structured terrains. This result suggests that the pro-
posed approach itself was effective and that favorable locomotion skills
were not encouraged by the specific training environment.

In an additional experiment, we investigated the effects of erroneous
predictions of the high-level planner on locomotion performance. We
did so by adding a drift value to the elevation map, sampled uniformly

Research Article ETH Zurich 8

A small gap (baseline-rl-1)

B short beam (baseline-rl-1)

D long beam (ours)

C sequence of large gaps (ours)

Fig. 5. Benchmarking against reinforcement learning. (A) Baseline-rl-1 attempts to cross a small gap. ANYmal initially manages to recover
from miss-stepping with its front legs but subsequently gets stuck as its hind legs fall inside the gap. (B) Using baseline-rl-1, the robot stumbles
along a narrow beam. (C) With DTC, the robot can pass four consecutive large gaps (left to right) without getting stuck or falling. (D) ANYmal
is crossing a long beam using the proposed control framework.

Research Article ETH Zurich 9

A stepping stones

B stepping stones with height difference

C loose stepping stones

a

b
c

Fig. 6. Evaluation of the locomotion performance on stepping stones. (A) ANYmal reliably crosses a field of flat stepping stones (left to
right). (B) The robot crosses stepping stones of varying heights (left to right). The two tall blocks are highlighted in blue. (C) ANYmal navigates
through a field of loosely connected stepping stones, following the path a → b → a → b → c → a.

Research Article ETH Zurich 10

ours

baseline-rl-
2

baseline-rl-
3

0

20

40

60

80

100

success
failed
stuck

A optimizer frequency

D training curves with/withoutout desired joint positions from IK

B sim performance (all terrains)

0 20 40 60 80
1.5

2

2.5

3

with
without

0 20 40 60 80
3.5

4

4.5

5

with
without

C tracking performance and success rate as a function of map drift (all terrains)

sta
irs pit

rough
rin

gs

ste
pping sto

nes
pallets

beams
gaps

0

20

40

60

80

100

ours
baseline-rl-2
baseline-rl-3

100 101
0

20

40

60

success
failed
stuck

ii

ii

0 0.2 0.4
0

50

100

success
failed
stuck

0 0.2 0.4
0

50

100

success
failed
stuck

0 0.1 0.2 0.3 0.4

0.02

0.04

0.06

0.08 flat
rough

iiiiii

i

i

Fig. 7. Simulation results and ablation studies. (A) Success and failure rates of DTC, recorded for different update rates of the optimizer.
The upper limit of 50 Hz is imposed by the policy frequency. (B) Comparison against baseline policies. (i) Evaluation on all 120 terrains. (ii)
Evaluation on terrains where valid footholds are dense (white background) and sparse (gray background). (C) Influence of elevation map drift on
the locomotion performance, quantified by tracking error (i), success rate on rough (ii), and on flat ground (ii). (D) Average terrain level (i) and
average foothold reward (ii) scored during training.

Research Article ETH Zurich 11

from the interval ∈ (0, 0.5)m. Contrary to training, the motion was
optimized over the perturbed height map. Other changes to the ex-
perimental setup are described in the supplementary methods (section
“Experimental Setup for Performance Evaluation under Drift”). As
visualized in Fig. 7 C, we collected tracking error, success, and failure
rates with simulated drift on flat and rough ground. The tracking error
grew mostly linearly with the drift value (Fig. 7 C i). On rough terrains,
the success rate remained constant for drift values smaller than 0.1 m,
and decreased linearly for larger values (Fig. 7 C ii). On the other
hand, success and failure rates were not affected by drift on flat ground
(Fig. 7 C iii).

We found that providing joint positions computed for the upcoming
touch-down event greatly improved convergence time and foothold
tracking performance. This signal encodes the foothold location in
joint space, thus, providing a useful hint for foothold tracking. It also
simplifies the learning process, as the network is no longer required to
implicitly learn the inverse kinematics (IK). Evidence for our claims
is given in Fig. 7 D, showing two relevant learning curves. Tracking
accuracy is represented by the foothold rewards, whereas technical
skills are quantified using the average terrain level [11]. Both scores
are substantially higher if the footholds could be observed in both task
and joint space.

DISCUSSION

This work demonstrates the potential of a hybrid locomotion pipeline
that combines accurate foot placement and dynamic agility of state-of-
the-art TO with the inherent robustness and reflex behaviors of novel
RL control strategies. Our approach enables legged robots to overcome
complex environments that either method alone would struggle with.
As such terrains are commonly found in construction sites, mines, and
collapsed buildings, our work could help advance the deployment of
autonomous legged machines in the fields of construction, maintenance,
and search-and-rescue.

We have rigorously evaluated the performance in extensive real-
world experiments over the course of about half a year. We included
gaps, stepping stones, narrow beams, and tall boxes in our tests, and
demonstrated that our method outperformed the RL baseline controller
on every single terrain. Next, we evaluated the robustness on slippery
and soft ground, each time outperforming two model-based controllers.

Furthermore, we have shown that the emerging policy can track
the motion of two different planners utilizing the same trotting gait.
This was possible because the observed footholds seem to be mostly
invariant under the choice of the optimizer. However, certain obstacles
may encourage the deployed planner to produce footprint patterns that
otherwise do not emerge during training. In this case, we would expect
a degraded tracking performance.

In addition to our main contribution, we have demonstrated several
other notable results. First, our policy, which was trained exclusively
with visual perception, is still able to generalize to blind locomotion.
Second, A simple multilayer perceptron (MLP) trained with an asym-
metric actor/critics setup achieves similar robust behaviors as much
more complex teacher/student trainings [12, 13]. Third, Our locomo-
tion policy can handle a lot of noise and drift in the visual data without
relying on complicated gaited networks, which might be difficult to
tune and train [13].

Contrary to our expectations, the proposed training environment
was found to not be more sample efficient than similar unifying RL
approaches [11, 13]. The large number of epochs required for con-
vergence suggests that foothold accuracy is something intrinsically
complicated to learn.

In this work, we emphasized that TO and RL share complementary
properties and that no single best method exists to address the open

challenges in legged locomotion. The proposed control architecture
leverages this observation by combining the planning capabilities of
the former and the robustness properties of the latter. It does, by no
means, constitute a universal recipe to integrate the two approaches
in an optimal way for a generic problem. Moreover, one could even
extend the discussion with self- and unsupervised learning, indirect
optimal control, dynamic programming, and stochastic optimal control.
Nevertheless, our results may motivate future research to incorporate
the aspect of planning into the concept RL.

We see several promising avenues for future research. Many suc-
cessful data-driven controllers have the ability to alter the stride dura-
tion of the trotting gait. We expect a further increase in survival rate
and technical skills if the network policy could suggest an arbitrary
contact schedule to the motion optimizer. Moreover, a truly hybrid
method, in which the policy can directly modify the cost function of
the planner, may be able to generate more diversified motions. Our
results indicate that IK is difficult to learn. To increase the sample
efficiency and improve generalization across different platforms, a
more sophisticated network structure could exploit prior knowledge
of analytical IK. Another potential research direction may focus on
leveraging the benefits of sampling trajectories from an offline buffer.
This could substantially reduce the training time and allow for the
substitution of TAMOLS with a more accurate TO method, or even
expert data gathered from real animals.

MATERIALS AND METHODS

Motivation
To motivate the specific architectural design, we first identify the
strengths and weaknesses of the two most commonly used control
paradigms in legged locomotion.

TO amounts to open-loop control, which produces suboptimal so-
lutions in the presence of stochasticity, modeling errors, and small
prediction windows. Unfortunately, these methods also introduce many
assumptions, mostly to reduce computation time or achieve favorable
numerical properties. For instance, the feet are almost always pre-
selected interaction points to prevent complex collision constraints,
contact and actuator dynamics are usually omitted or smoothed out
to circumvent stiff optimization problems, and the contact schedule is
often pre-specified to avoid the combinatorial problem imposed by the
switched system dynamics. Despite a large set of strong assumptions,
real-time capable planners are not always truly real-time. The reference
trajectories are updated around 5 Hz [31] to 100 Hz [7] and realized
between 400 Hz to 1000 Hz. In other words, these methods do not plan
fast enough to catch up with the errors they are making. While struc-
tural [2] or environmental [7, 20] decomposition may further contribute
to the overall suboptimality, they were found useful for extracting good
local solutions on sparse terrains. Because the concept of planning is
not restricted to the tuning domain, model-based approaches tend to
generalize well across different terrain geometries [7, 21]. Moreover,
since numerical solvers perform very cheap and sparse operations on
the elevation map, the map resolution can be arbitrarily small, facilitat-
ing accurate foothold planning.

RL, on the other hand, leads to policies that represent global closed-
loop control strategies. Deep neural networks are large capacity models,
and as such, can represent locomotion policies without introducing any
assumption about the terrain or the system (except from being Marko-
vian). They exhibit good interpolation in-between visited states but do
not extrapolate well to unseen environments. Despite their large size,
the inference time is usually relatively small. The integration of an actu-
ator model has been demonstrated to improve sim-to-real-transfer [10],
while the stochasticity in the system dynamics and training environ-
ment can effectively be utilized to synthesize robust behaviors [12, 13].

Research Article ETH Zurich 12

Contrary toTO, the elevation map is typically down-sampled [11, 13]
to avoid immense memory consumption during training.

In summary, TO might be better suited if good generalization and
high accuracy are required, whereas RL is the preferred method if
robustness is of concern or onboard computational power is limited.
As locomotion combines challenges from both of these fields, we
formulate the goal of this work as follows: RL shall be used to train a
low-level tracking controller that provides markedly more robustness
than classical inverse dynamics. The accuracy and planning capabilities
of model-based TO shall be leveraged on a low level to synthesize a
unifying locomotion strategy that supports diverse and generalizing
motions.

Reference Motions

Designing a TO problem for control always involves a compromise,
that trades off physical accuracy and generalization against good nu-
merical conditioning, low computation time, convexity, smoothness,
availability of derivatives, and the necessity of a high-quality initial
guess. In our work, we generate the trajectories using TAMOLS [21].
Unlike other similar methods, it does not require terrain segmenta-
tion nor pre-computation of footholds, and its solutions are robust
under varying initial guesses. The system dynamics and kinematics
are simplified, allowing for fast updates. During deployment, we also
compare against baseline-to-2, which builds up on more complex kin-
odynamics. Due to the increased computation time and in particular
the computationally demanding map-processing pipeline, this method
is not well-suited to be used directly within the learning process (the
training time would be expected to be about eight times larger).

We added three crucial features to TAMOLS: First, we enable par-
allelization on CPU, which allows multiple optimization problems to
be solved simultaneously. Second, we created a python interface using
pybind11 [35], enabling it to run in a python-based environment.
Finally, we assume that the measured contact state always matches
the desired contact state. This renders the TO independent of contact
estimation, which typically is the most fragile module in a model-based
controller.

The optimizer requires a discretized 2.5d representation of its en-
vironment, a so-called elevation map, as input. We extract the map
directly from the simulator by sampling the height across a fixed grid.
For both training and deployment, we use a fixed trotting gait with
a stride duration of 0.93 s and swing phase of 0.465 s, and set the
resolution of the grid map to 0.04 × 0.04 m2.

Overview of the Training Environment

The locomotion policy π(a | o) is a stochastic distribution of actions
a ∈ A that are conditioned on observations o ∈ O, parametrized
by an MLP. The action space comprises target joint positions that
are tracked using a PD controller, following the approach in [10] and
related works [12–14].

Given the state s ∈ S , we extract the solution at the next time step
x′(s) ∈ X ⊆ S from the optimizer, which includes four footholds
p∗

i=0,...,3, joint positions q∗ at touch-down time, and the base trajectory
evaluated at the next time step. The base trajectory consists of of base
pose b∗(∆t), twist ḃ∗(∆t), and linear and angular acceleration b̈∗(∆t).
More details can be found in Fig. 8 A. We then sample an action from
the policy. It is used to forward simulate the system dynamics, yielding
a new state s′ ∈ S , as illustrated in Fig. 8 B.

To define a scalar reward r(s, s′, x′, a), we use a monotonically
decreasing function of the error between the optimized and measured
states, that is r ∝ x′(s)⊖ x(s′). The minus operator ⊖ is defined on
the set X , the vector x′(s) is the optimized state, and x(s′) is the state
of the simulator after extracting it on the corresponding subset. The

policy network can also be understood as a learned model reference
adaptive controller with the optimizer being the reference model.

In this work, we use an asymmetrical actor/critic method for train-
ing. The value function approximation V(o, õ) uses privileged õ ∈ Õ
as well as policy observations o.

Observation Space

The value function is trained on policy observations and privileged ob-
servations, while the policy network is trained on the former only [22].
All observations are given in the robot-centric base frame. The defini-
tion of the observation vector is given below, whereas noise distribu-
tions and dimensionalities of the observation vectors can be found in
the supplementary methods and Table 2.

Policy Observations

The policy observations comprise proprioceptive measurements such
as base twist, gravity vector, joint positions, and joint velocities. The
history only includes previous actions [11]. Additional observations are
extracted from the model-based planner, including planar coordinates
of foothold positions (xy coordinates), desired joint positions at touch-
down time, desired contact state, and time left in the current phase.
The latter two are per-leg quantities that fully describe the gait pattern.
Footholds only contain planner coordinates since the height can be
extracted from the height scan.

The height scan, which is an additional part of the observation space,
enables the network to anticipate a collision-free swing leg trajectory.
In contrast to similar works, we do not construct a sparse elevation map
around the base [11, 27] or the feet [13]. Instead, we sample along a line
connecting the current foot position with the desired foothold (Fig. 8 A).
This approach has several advantages: First, the samples can be denser
by only scanning terrain patches that are most relevant for the swing leg.
Second, it prevents the network from extracting other information from
the map, which is typically exposed to most uncertainty (for instance,
occlusion, reflection, odometry drift, discretization error, etc.). Third,
it allows us to conveniently model elevation map drift as a per-foot
quantity, which means that each leg can have its own drift value.

We use analytical IK to compute the desired joint positions. As the
motion optimizer may not provide a swing trajectory, as is the case
for TAMOLS, we completely skip the swing phase. This means that
the IK is computed with the desired base pose and the measured foot
position for a stance leg, and the target foothold for a swing leg.

It is worth noting that we do not provide the base pose reference as
observation. This was found to reduce sensitivity to mapping errors
and to render the policy independent of the utilized planner. Finally, to
allow the network to infer the desired walking direction, we add the
reference twist (before optimization) to the observation space.

Privileged Observations

The privileged observations contain the optimized base pose, base twist,
and base linear and angular acceleration, extracted one time step ahead.
In addition, the critics can observe signals confined to the simulator,
such as the external base wrench, external foot forces, the measured
contact forces, friction coefficients, and elevation map drift.

Reward Functions

The total reward is computed as a weighted combination of several
individual components, which can be categorized as follows: “tracking”
of reference motions, encouraging “consistent” behavior, and other
“regularization” terms necessary for successful sim-to-real transfer. The
reward functions are explained below whereas weights and parameters
are reported in Table 3.

Research Article ETH Zurich 13

A B C

D a b

fe

i j

c

g

k l

d

h

Fig. 8. Overview of the training method and deployment strategy. (A) The optimized solution provides footholds p∗
i , desired base pose b∗,

twist ḃ∗, and acceleration b̈∗ (extracted one policy step ∆t ahead), as well as desired joint positions q∗. Additionally, a height scan h is sampled
between the foot position pi and the corresponding foothold. (B) Training environment: The optimizer runs in parallel to the simulation. At
each leg touch-down, a new solution x′ is generated. The policy π drives the system response s′ toward the optimized solution x′(s), which is
encouraged using the reward function r. Actor observations are perturbed with the noise vector n, while critics and the TO receive ground truth
data. (C) Deployment: Given the optimized footholds, the network computes target joint positions that are tracked using a PD control law. The
state estimator (state) returns the estimated robot state, which is fed back into the policy and the optimizer. (D) The list of terrain types includes
a) stairs, b) combinations of slopes and gaps, c) pyramids, d) slopped rough terrain, e) stepping stones, f) objects with randomized poses, g)
boxes with tilted surfaces, h) rings, i) pits, j) beams, k) hovering objects with randomized poses, and l) pallets.

Research Article ETH Zurich 14

Base Pose Tracking

To achieve tracking of the reference base pose trajectory, we use

rBn = e−σBn ·||b∗(t+∆t)(n)⊖b(t)(n) ||2 , (1)

where n = {0, 1, 2} is the derivative order, b(t) is the measured base
pose, b∗(t + ∆t) is the desired base pose sampled from the reference
trajectory one policy step ∆t ahead, and ⊖ denotes the quaternion
difference for base orientation and the vector difference otherwise. We
refer to the above reward function as a “soft” tracking task because
large values can be scored even if the tracking error does not perfectly
vanish.

To further analyze the reward function, we decompose the base
trajectory into three segments. The “head” starts at time zero, the
“tail” stops at the prediction horizon, and the “middle” connects these
two segments with each other. A logarithmic reward function would
prioritize the tracking of the trajectory head, while a linear penalty
would focus on making progress along the whole trajectory at once.
Contrary, the exponential shape of the reward function splits the track-
ing task into several steps. During the initial epochs, the tracking error
of the trajectory middle and tail will likely be relatively large, and
thus, do not contribute notably to the reward gradient. As a result, the
network will minimize the tracking error of the trajectory head. Once
its effect on the gradient diminishes, the errors corresponding to the
trajectory middle will dominate the gradient landscape. In the final
training stages, tracking is mostly improved around the trajectory tail.

Foothold Tracking

We choose a logarithmic function

rpi = − ln(||p∗
i − pi||

2 + ϵ), (2)

to learn foothold tracking, where pi is the current foot position of
leg i ∈ {0, . . . , 3}, p∗

i is the corresponding desired foothold, and
0 < ϵ ≪ 1 is small number ensuring the function is well defined. The
above reward function may be termed a “hard” tracking task, as the
maximum value can only be scored if the error reaches zero. As the
tracking improves, the gradients will become larger, resulting in even
tighter tracking toward the later training stages.

A dense reward structure typically encourages a stance foot to
be dragged along the ground to further minimize the tracking error.
To prevent such drag motions from emerging, the above reward is
given for each foot at most once during one complete gait cycle: more
specifically, if and only if the leg is intended to be in contact and the
norm of the contact force indicates a contact, that is if || f i|| > 1, then
the agent receives the reward.

Consistency

In RL for legged locomotion, hesitating to move over challenging ter-
rains is a commonly observed phenomenon that prevents informative
samples from being gathered and thus impedes the agent’s performance.
This behavior can be explained by insufficient exploration: The major-
ity of agents fail to solve a task while a small number of agents achieve
higher average rewards by refusing to act. To overcome this local opti-
mum, we propose to encourage consistency by rewarding actions that
are intended by previous actions. In our case, we measure consistency
as the similarity between two consecutive motion optimizations. If
the solutions are similar, the agent is considered to be “consistent”.
We measure similarity as the Euclidean distance between two adjacent
solutions and write

rc = ∑
δtj+t0∈(Ta∩Tb)

−δt||b∗a (δtj+ t0,a)⊖ b∗b (δtj+ t0,b)||−wp||p∗
a − p∗

b ||.

(3)

Here, p∗
t with t = {a, b} is a vector of stacked footholds, wp > 0

is a relative weight, δt = 0.01 s is the discretization time of the base
trajectory, and t0 is the time elapsed since the solution was retrieved.
The index a refers to the most recent solution, while b refers to the
previous solution. It is important to note that the two solution vectors
xa and xb, from which we extract the base and footholds, are only
defined on their respective time intervals given by the optimization
horizon τh, i.e, ta ∈ Ta = [0, τh,a] and tb ∈ Tb = [0, τh,b].

Regularization

To ensure that the robot walks smoothly, we employ two different
penalty terms enforcing complementary constraints. The first term,
rr1 = −∑i |vT

i f i|, discourages foot-scuffing and end-effector col-
lisions by penalizing power measured at the feet. The second term,
rr2 = −∑i(q̇T

i τi)
2, penalizes joint power to prevent arbitrary mo-

tions, especially during the swing phase. Other regularization terms
are stated in the supplementary methods (section “Implementation
Details”).

Training Environment
To train the locomotion policy, we employ a custom version of Proximal
Policy Optimization (PPO)[36] and a training environment that is
mostly identical to that introduced in[11]. It is explained in more
detail in the supplementary methods (section “Training Details”) and
Table 1. Simulation and back-propagation are performed on GPU,
while the optimization problems are solved on CPU.

Termination

We use a simple termination condition where an episode is terminated
if the base of the robot makes contact with the terrain.

Domain Randomization

We inject noise into all observations except for those designated as
privileged. At each policy step, a noise vector n is sampled from a
uniform distribution and added to the observation vector, with the only
exceptions of the desired joint positions and the height scan.

For the elevation map, we add noise before extracting the height
scan. The noise is sampled from an approximate Laplace distribution
where large values are less common than small ones. We perturb the
height scan with a constant offset, which is sampled from another
approximate Laplace distribution for each foot separately. Both per-
turbations discourage the network to rely extensively on perceptive
feedback and help to generalize to various perceptive uncertainties
caused by odometry drift, occlusion, and soft ground.

All robots are artificially pushed by adding a twist offset to the
measured twist at regular time instances. Friction coefficients are ran-
domized per leg once at initialization time. To render the motion robust
against disturbances, we perturb the base with an external wrench and
the feet with external forces. The latter slightly stiffens up the swing
motion but improves tracking performance in the presence of unmod-
eled joint frictions and link inertia. The reference twist is resampled in
constant time intervals and then held constant.

The solutions for the TO problems are obtained using ground truth
data, which include the true friction coefficients, the true external base
wrench, and noise-free height map. In the presence of simulated noise,
drift, and external disturbances, the policy network is therefore trained
to reconstruct a base trajectory that the optimizer would produce given
the ground truth data. However, there is a risk that the network learns
to remove the drift from the height scan by analyzing the desired joint
positions. During hardware deployment, such a reconstruction will fail
because the optimizer is subject to the same height drift. To mitigate
this issue, we introduce noise to the desired joint position observations,
sampled from a uniform distribution with boundaries proportional to
the drift value.

Research Article ETH Zurich 15

Terrain Curriculum

We use a terrain curriculum as introduced in [11]. Before the training
process, terrain patches of varying types and difficulties are generated,
and each agent is assigned a terrain patch. As an agent acquires more
skills and can navigate the current terrain, its level is upgraded, which
means it will be re-spawned on the same terrain type, but with a harder
difficulty. We have observed that the variety of terrains encountered
during training influences the sim-to-real transfer. We thus have in-
cluded a total of 12 different terrain types with configurable parameters
(Fig. 8 D), leading to a total of 120 distinguishable terrain patches. The
terrain types classify different locomotion behaviors, s.a. climbing
(“stairs”, “pits”, “boxes”, “pyramids”), reflexing (“rough”, “rings”,
“flying objects”), and walking with large steps (“gaps”, “pallets”, “step-
ping stones”, “beams”, “objects with randomized poses”). Our terrain
curriculum consists of 10 levels, where one of the configurable param-
eters is modulated to increase or decrease its difficulty. This results in
a total of 1200 terrain patches, each with a size of 8 × 8 m2, summing
up to a total area of 76800 m2, which is approximately the size of 14
football fields or 10 soccer fields.

Training

Solving the TO problems at the policy frequency during training was
found to provoke poor local optima. In such a case, the optimizer
adapts the solution after each policy step: If the agent is not able to
follow the reference trajectory, the optimizer will adapt to the new
state s.t. the tracking problem becomes feasible again. This means that
the agent can exhibit “lazy” behavior and still collect some rewards.
We prevent such a local optimum by updating the optimizer only at
a leg touch-down (after 0.465 seconds). This also greatly reduces
learning time because computational costs are reduced by a factor of
23. After a robot fell (on average, once every 18 seconds), was pushed
(after 10 seconds) or its twist commands changed (three times per
episode), the optimized trajectories are no longer valid. To guarantee
that the locomotion policy generalizes across different update rates, we
additionally recompute the solution in all those scenarios.

We trained the policy with a massive parallelization of 642 = 4096
robots, for a total of 90000 epochs. Each epoch consisted of 45 learning
iterations where each iteration covered a duration of 0.02 seconds.
Considering the variable update rate explained previously, this resulted
in a total of 8295 days (or 23 years) of optimized trajectories. The
policy can be deployed after about one day of training (6000 epochs),
reaches 90 % of its peak performance after three days (20000 epochs),
and is fully converged after two weeks (90000 epochs).

In comparison, the baseline-rl-1 policy was trained for 4000 epochs
with 1000 parallelized robots over 5 consecutive days. Each epoch
lasted for 5 seconds, resulting in a throughput of 46 simulated seconds
per second. Our policy was trained for 14 days, with each epoch lasting
for 0.9 seconds, leading to a throughput of 27 simulated seconds per
second. Thus, despite generating 1.6 years of desired motions per day,
our approach has only a 1.7 times lower throughput than the baseline.

Deployment

We deploy the policy at a frequency of 50 Hz without any fine-tuning.
The motion optimizer runs at the largest possible rate in a separate
thread. For TAMOLS with a trotting gait, this is around 400 Hz and for
baseline-to-2 around 100 Hz (both are faster than the policy frequency).
At each step, the policy queries the most recent solution from the thread
pool and extracts it ∆t = 0.02 s ahead of the most recent time index.

For our experiments, we used three different types of ANYmal
robots [34], two version C and one version D, for which we trained
different policies. ANYmal C is by default equipped with four Intel
RealSense D435 depth cameras whereas ANYmal D has eight depth

cameras of the same type. For the second Version C, the depth cameras
were replaced with two identical Robosense Bpearl dome LiDAR
sensors. For the outdoor experiments, we mostly used this robot, as
the Bpearls tend to be more robust against lighting conditions. Motion
optimization and the forward propagation of the network policy are
done on a single Intel core-i7 8850H machine. Elevation mapping [37]
runs on a dedicated onboard Nvidia Jetson.

REFERENCES

1. J. Z. Kolter, M. P. Rodgers, A. Y. Ng, A control architecture for
quadruped locomotion over rough terrain, 2008 IEEE International
Conference on Robotics and Automation, 811–818 (2008).

2. M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S. Schaal, Fast, robust
quadruped locomotion over challenging terrain, 2010 IEEE International
Conference on Robotics and Automation, 2665–2670 (2010).

3. A. W. Winkler, C. D. Bellicoso, M. Hutter, J. Buchli, Gait and trajectory
optimization for legged systems through phase-based end-effector
parameterization, IEEE Robotics and Automation Letters 1560–1567
(2018).

4. C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, C. Semini, Mo-
tion planning for quadrupedal locomotion: Coupled planning, terrain
mapping, and whole-body control, IEEE Transactions on Robotics 1635–
1648 (2020).

5. F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, M. Hutter, Perceptive lo-
comotion in rough terrain – online foothold optimization, IEEE Robotics
and Automation Letters 5370–5376 (2020).

6. P. Fankhauser, M. Bjelonic, C. Dario Bellicoso, T. Miki, M. Hutter,
Robust rough-terrain locomotion with a quadrupedal robot, 2018 IEEE
International Conference on Robotics and Automation (ICRA), 5761–
5768 (2018).

7. R. Grandia, F. Jenelten, S. Yang, F. Farshidian, M. Hutter, Perceptive
locomotion through nonlinear model-predictive control, IEEE Transac-
tions on Robotics 1–20 (2023).

8. C. Mastalli, W. Merkt, G. Xin, J. Shim, M. Mistry, I. Havoutis, S. Vijayaku-
mar, Agile maneuvers in legged robots: a predictive control approach
(2022).

9. C. D. Bellicoso, F. Jenelten, C. Gehring, M. Hutter, Dynamic locomotion
through online nonlinear motion optimization for quadrupedal robots,
IEEE Robotics and Automation Letters 2261–2268 (2018).

10. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
M. Hutter, Learning agile and dynamic motor skills for legged robots,
Science Robotics p. eaau5872 (2019).

11. N. Rudin, D. Hoeller, P. Reist, M. Hutter, Learning to walk in minutes
using massively parallel deep reinforcement learning, 5th Annual Con-
ference on Robot Learning (2021).

12. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learning
quadrupedal locomotion over challenging terrain, Science Robotics p.
eabc5986 (2020).

13. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learn-
ing robust perceptive locomotion for quadrupedal robots in the wild,
Science Robotics p. eabk2822 (2022).

14. N. Rudin, D. Hoeller, M. Bjelonic, M. Hutter, Advanced skills by learning
locomotion and local navigation end-to-end, 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2497–2503
(2022).

15. Z. Xie, H. Y. Ling, N. H. Kim, M. van de Panne, Allsteps: Curriculum-
driven learning of stepping stone skills, Computer Graphics Forum 39
(2020).

16. H. Duan, A. Malik, J. Dao, A. Saxena, K. Green, J. Siekmann, A. Fern,
J. Hurst, Sim-to-real learning of footstep-constrained bipedal dynamic
walking, 2022 International Conference on Robotics and Automation
(ICRA), 10428–10434 (2022).

17. W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan,
T. Zhang, Visual-locomotion: Learning to walk on complex terrains with
vision, Proceedings of the 5th Conference on Robot Learning, A. Faust,
D. Hsu, G. Neumann, eds., 1291–1302 (PMLR, 2022).

18. A. Agarwal, A. Kumar, J. Malik, D. Pathak, Legged locomotion in

Research Article ETH Zurich 16

challenging terrains using egocentric vision, 6th Annual Conference on
Robot Learning (2022).

19. K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu, T. Zhang, D. Freeman, K.-H.
Lee, L. Lee, S. Saliceti, V. Zhuang, N. Batchelor, S. Bohez, F. Casarini,
J. E. Chen, O. Cortes, E. Coumans, A. Dostmohamed, G. Dulac-
Arnold, A. Escontrela, E. Frey, R. Hafner, D. Jain, B. Jyenis, Y. Kuang,
E. Lee, L. Luu, O. Nachum, K. Oslund, J. Powell, D. Reyes, F. Romano,
F. Sadeghi, R. Sloat, B. Tabanpour, D. Zheng, M. Neunert, R. Hadsell,
N. Heess, F. Nori, J. Seto, C. Parada, V. Sindhwani, V. Vanhoucke,
J. Tan, Barkour: Benchmarking animal-level agility with quadruped
robots (2023).

20. R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, J. Pratt,
Footstep planning for autonomous walking over rough terrain, 2019
IEEE-RAS 19th International Conference on Humanoid Robots (Hu-
manoids), 9–16 (2019).

21. F. Jenelten, R. Grandia, F. Farshidian, M. Hutter, Tamols: Terrain-aware
motion optimization for legged systems, IEEE Transactions on Robotics
3395–3413 (2022).

22. P. Brakel, S. Bohez, L. Hasenclever, N. Heess, K. Bousmalis, Learning
coordinated terrain-adaptive locomotion by imitating a centroidal dy-
namics planner, 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 10335–10342 (2022).

23. M. Bogdanovic, M. Khadiv, L. Righetti, Model-free reinforcement learn-
ing for robust locomotion using demonstrations from trajectory opti-
mization, Frontiers in Robotics and AI 9 (2022).

24. X. B. Peng, P. Abbeel, S. Levine, M. van de Panne, Deepmimic:
Example-guided deep reinforcement learning of physics-based charac-
ter skills, ACM Transactions on Graphics 37 (2018).

25. X. B. Peng, Z. Ma, P. Abbeel, S. Levine, A. Kanazawa, Amp: Adver-
sarial motion priors for stylized physics-based character control, ACM
Transactions on Graphics 40 (2021).

26. S. Bohez, S. Tunyasuvunakool, P. Brakel, F. Sadeghi, L. Hasenclever,
Y. Tassa, E. Parisotto, J. Humplik, T. Haarnoja, R. Hafner, M. Wulfmeier,
M. Neunert, B. Moran, N. Siegel, A. Huber, F. Romano, N. Batchelor,
F. Casarini, J. Merel, R. Hadsell, N. Heess, Imitate and repurpose:
Learning reusable robot movement skills from human and animal be-
haviors (2022).

27. V. Tsounis, M. Alge, J. Lee, F. Farshidian, M. Hutter, Deepgait: Planning
and control of quadrupedal gaits using deep reinforcement learning,
IEEE Robotics and Automation Letters 3699–3706 (2020).

28. X. B. Peng, G. Berseth, K. Yin, M. van de Panne, Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning, ACM
Transactions on Graphics (Proc. SIGGRAPH 2017) 36 (2017).

29. O. Melon, M. Geisert, D. Surovik, I. Havoutis, M. Fallon, Reliable
trajectories for dynamic quadrupeds using analytical costs and learned
initializations (2020).

30. D. Surovik, O. Melon, M. Geisert, M. Fallon, I. Havoutis, Learning
an expert skill-space for replanning dynamic quadruped locomotion
over obstacles, Proceedings of the 2020 Conference on Robot Learning,
J. Kober, F. Ramos, C. Tomlin, eds., 1509–1518 (PMLR, 2021).

31. O. Melon, R. Orsolino, D. Surovik, M. Geisert, I. Havoutis, M. Fal-
lon, Receding-horizon perceptive trajectory optimization for dynamic
legged locomotion with learned initialization, 2021 IEEE International
Conference on Robotics and Automation (ICRA), 9805–9811 (2021).

32. S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, I. Havoutis, Rloc:
Terrain-aware legged locomotion using reinforcement learning and
optimal control, IEEE Transactions on Robotics 2908–2927 (2022).

33. Z. Xie, X. Da, B. Babich, A. Garg, M. v. de Panne, Glide: Generaliz-
able quadrupedal locomotion in diverse environments with a centroidal
model, Algorithmic Foundations of Robotics XV, S. M. LaValle, J. M.
O’Kane, M. Otte, D. Sadigh, P. Tokekar, eds., 523–539 (Springer Inter-
national Publishing, Cham, 2023).

34. M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bach-
mann, A. Melzer, M. Hoepflinger, Hutter2016 - a highly mobile and
dynamic quadrupedal robot, 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 38–44 (2016).

35. W. Jakob, J. Rhinelander, D. Moldovan, pybind11 –

seamless operability between c++11 and python (2017).
Https://github.com/pybind/pybind11.

36. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms, CoRR abs/1707.06347 (2017).

37. T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, M. Hutter,
Elevation mapping for locomotion and navigation using gpu (2022).

38. F. Jenelten, J. He, F. Farshidian, M. Hutter, Evaluation of tracking
performance and robustness for a hybrid locomotion controller, https:
//doi.org/10.5061/dryad.b5mkkwhkq.

ACKNOWLEDGMENTS

Funding: This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme grant agreement No 852044. This
research was supported by the Swiss National Science Foundation
(SNSF) as part of project No 188596, and by the Swiss National
Science Foundation through the National Centre of Competence in Re-
search Robotics (NCCR Robotics). Author Contribution: F.J. formu-
lated the main ideas, trained and tested the policy using baseline-to-1,
and conducted most of the experiments. J.H. interfaced baseline-to-2
with the tracking policy and conducted the box-climbing experiments.
F.F. contributed to the Theory and improved some of the original ideas.
All authors helped to write, improve, and refine the paper. Competing
interests: The authors declare that they have no competing interests.
Data and materials availability: All (other) data needed to evaluate
the conclusions in the paper are present in the paper or the Supplemen-
tary Materials. Data-sets and code to generate all our figures are made
publicly available [38].

https://doi.org/10.5061/dryad.b5mkkwhkq
https://doi.org/10.5061/dryad.b5mkkwhkq

Research Article ETH Zurich 17

SUPPLEMENTARY METHODS

Nomenclature
(·)i index for leg i ∈ {0, . . . , 3}
τh prediction horizon
b∗(t) optimized base pose trajectory
ḃ∗(t) optimized base twist trajectory
b̈∗(t) optimized base acceleration trajectory
q∗ optimized joint positions obtained from IK
p∗

i optimized foothold
pt vector of stacked footholds, computed at time t
pi measured foot position
f i measured contact force
vi measured foot velocity
qi measured joint positions
τi measured joint torques
s state of the robot
x′(s) solution of optimization problem one time-step ahead, initialized
with state s
x(s′) state s′ extracted on subset of the optimizer
o policy observations
õ privileged observations
a actions

Training Details
We use a simulation time step of 5 ms and a policy time step of 20 ms.

The elevation map noise is sampled from a Laplace distribution,
which is approximated by two uniform distributions. We first sam-
ple the boundaries of the uniform distribution hn,max ∼ U (0, 0.2)m,
and then sample the noise from hn ∼ U (−hn,max, hn,max). Sim-
ilar holds for the height drift: We first sample the boundaries
hd,max ∼ U (0, 0.2)m and then sample five drift values hd0, . . . , hd4 ∼
U (−hd,max, hd,max), where hd0 is constant for the entire map and
hd1. . . . , hd4 is sampled for each foot individually. The total drift hd is
obtained by summing up the map-drift and the per-foot drift. Elevation
map noise and drift are re-sampled after a constant time interval of 8 s.

The noise vector added to the desired joint positions depends on
the height drift, and is sampled from the uniform distribution qn ∼
2 · U (−hd, hd).

We push the robots after 10 s by adding a twist offset to the mea-
sured twist sampled from ∆ḃ ∼ U (−1, 1)[m/s]. Friction coefficients
are randomized per leg and sampled from µ ∼ U (0.1, 1.2). For each
episode, we sample an external base wrench τB ∼ U (−15, 15) and a
external foot force f ee ∼ U (−2, 2)N.

The reference twist is re-sampled from a uniform distribution three
times per episode. A third of the robots has zero lateral velocity
whereas the heading velocity is sampled from vx ∼ U (−1, 1)m/s.
Another third has zero heading velocity and its lateral velocity is
sampled from vy ∼ U (−0.8, 0.8)m/s. The last third has mixed
heading and lateral velocities sampled from their respective distri-
butions. For all three cases, the yaw velocity is sampled from
vψ ∼ U (−0.8, 0.8) rad/s.

The PPO hyperparameters used for the training are stated in Table 1.
All policies were trained with a seed of 1.

Implementation Details
To parameterize the policy (or actor) network, a Gaussian distribution
is used, where the mean is generated by an MLP parametrized by θ.
The standard deviation is added independently of the observations as an
additional layer in the network. Specifically, the policy can be written
as π(a | o) ∼ N (µθ(o), σθ), where µθ(o) represents the mean and
σθ the standard deviation. The value function (or critics) is generated
by another MLP as V(o, õ) ∼ N (µϕ(o, õ), 0), which is parametrized

parameter type number

batch size 45 · 4096 = 184320

mini batch size 4 · 4096 = 16384

number of epochs 5

clip range 0.2

entropy coefficient 0.0035

discount factor 0.99

GAE discount factor 0.95

desired KL-divergence 0.01

learning rate adaptive

Table 1. PPO hyperparameters. The value 4096 is the number of
parallelized environments. All policies were trained with the same
parameters.

by ϕ. For both MLP’s we use three hidden layers with each having
512 neurons. Observations are normalized using running means and
running standard deviation.

Policy and privileged observations can be found in Table 2, and
relative weights of the reward functions are given in Table 3. The
implementation of most of the reward functions are given in the main
text. In addition to those, we penalize the action rate ra = −||at −
at−1||2 and joint acceleration rq̈ = −||q̈||2, with at, at−1 being the
current and previous actions, and q̈ the measured joint accelerations.

Experimental Setup for Evaluation of Optimizer Rate
The experimental setup mostly coincided with the training environment
as detailed in the supplementary methods (section “Training Details”),
with four minor differences: The terrain curriculum was disabled,
and for each terrain type, we selected the most difficult one. A push
or a velocity change did not trigger a new solution to be computed.
The optimizer was not informed about the true values for friction
coefficients and external base wrenches. Instead, nominal values were
used. All robots were walking in heading direction with a reference
velocity sampled uniformly from the interval 0.8 . . . 0.95 m/s. The
robots were pushed after 5 s with a disturbance twist sampled from the
interval ∆ḃ ∼ U (−2, 2)m/s, which is twice as much as experienced
during training. We did not add external foot forces, noise, or map
drift. For each optimizer rate in {1, 2, 2.5, 3.3, 5, 10, 20, 50}Hz, the
success and failure rates were averaged over 8 different experiments
conducted with varying seeds selected from the interval {2, . . . , 9}.
Each experiment was conducted with 4096 robots, distributed across
120 terrains, lasting for one episode (= 20 s).

Experimental Setup for Performance Evaluation
Baseline-rl-3 used the same observations and policy structure as
baseline-rl-2. But it was trained within the same environment as ours
using a comparable number of epochs.

For the evaluation on all terrains, we used the training environment
as detailed in the supplementary methods (section “Training Details”),
with the following simplifications: The terrain curriculum was disabled,
and for each terrain type, we selected the most difficult one. All robots
were walking in heading direction with a reference velocity sampled
uniformly from the interval 0.8 . . . 0.95 m/s. We did not add external
foot forces, noise, or map drift. The friction coefficients between
feet and ground were set to 1. In addition, for the evaluation on
specific terrains, we did not push the robots, and we did not re-sample

Research Article ETH Zurich 18

type observations dim noise

policy base twist 6

gravity vector 3 ±0.05

joint positions 12 ±0.01

joint velocities 12 ±1.5

previous actions 12 0

planar footholds 8 ±0.05

desired joint positions 12 Laplace

desired contact state 4

time left in phase 4

reference twist 3

height scan 40 Laplace

privileged desired base position 3

desired base quaternion 4

desired base twist 12

consistency reward 1

external base wrench 6

external foot force 12

friction coefficients 4

height drift 4

Table 2. Policy and privileged observations. The column “noise”
contains the upper and lower values of the uniform distribution, with
units identical to that one of the observations. Entries marked with
“Laplace” indicate the noise distribution is sampled from an approxi-
mate Laplace distribution as explained in the supplementary methods
(section “Training Details”). A missing value indicates that the noise
level is zero.

reward type reward name weight parameter

tracking base position 1 σ = 1200

base rotation 1 σ = 90

base linear velocity 1 σ = 10

base angular velocity 1 σ = 1

base linear acceleration 1 σ = 0.05

base angular acceleration 1 σ = 0.005

footholds 6 ϵ = 10−5

consistent behavior consistency 20

regularization foot power −0.02

joint power −0.025

action rate −0.02

joint acceleration −10−6

Table 3. Reward functions.

the reference velocities. This setup relaxes the locomotion task on
topologically hard terrains such as stepping stones, that otherwise
might not be traversable. Results were averaged over eight different
seeds.

Experimental Setup for Performance Evaluation under Drift
The experimental setup mostly coincided with the training environment
as detailed in the supplementary methods (section “Training Details”),
with the following differences: The terrain curriculum was disabled,
and for each terrain type, we selected the most difficult one. All robots
were walking in heading direction with a reference velocity sampled
uniformly from the interval 0.8 . . . 0.95 m/s. We did not add external
foot forces or noise. The friction coefficients between feet and ground
were set to 1. We did not push the robots and we did not re-sample
the reference velocities. In addition, for the flat ground experiment,
we replaced all terrain types with a single horizontal plane. Each
experiment was repeated 21 times with a linearly increasing drift value
selected from {0.0, 0.025, . . . , 0.5}m. Results were averaged over
eight different seeds.

