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Abstract

In most everyday life situations, the brain needs to engage not only in making decisions, but also in
anticipating and predicting the behavior of others. In such contexts, gaze can be highly informative
about others’ intentions, goals and upcoming decisions. Here, we investigated whether a humanoid
robot’s gaze (mutual or averted) influences the way people strategically reason in a social decision-
making  context.  Specifically,  participants  played  a  strategic  game  with  the  robot  iCub  while  we
measured their behavior and neural (EEG) activity.  Participants were slower to respond when iCub
established mutual gaze prior to their decision, relative to averted gaze. This was associated with a
higher decision threshold in the drift diffusion model and accompanied by more synchronized EEG
alpha  activity.  In  addition,  we  found  that  participants  reasoned  about  the  robot’s  actions  in  both
conditions. However, those who mostly experienced the averted gaze were more likely to adopt a self-
oriented  strategy  and their  neural  activity  showed higher  sensitivity  to  outcome.  Altogether,  these
findings suggest that robot gaze acts as a strong social signal for humans, modulating response times,
decision threshold, neural synchronization, as well as choice strategies and sensitivity outcomes. This
has strong implications for all contexts involving human-robot interaction,  from robotics to clinical
applications.
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Introduction

Many human decisions are made in social contexts, which often requires assessing the intentions of
others. In order to infer others’ mental states and to be able to predict their behavior, humans rely
largely  on  nonverbal  cues.  In  particular,  eye  contact  is  a  strong  communicative  signal  in  human
interactions which can convey information about one’s state, goals, intentions, or willingness to interact
(Kleinke, 1986; Emery, 2000). The effect of mutual gaze has been extensively investigated in studies
showing that gaze affected arousal level (for a review see Hietanen et al., 2018) as well as various
cognitive  processes  (including  memory,  attention,  and  motor  actions;  for  a  review  see  Hamilton
(2016)). However, the specific effect of gaze in the context of social decision-making has been rarely
addressed, and certainly not in the context of human-robot interaction.

Social interactions rely to a great extent on efficient cooperation with other humans. However, every
decision to cooperate with others entails the risk of being exploited. Behavioral and neuro-economics
have been studying complex social  dynamics using tasks adapted for game theory.  These strategic
games have been specifically designed to address social decisions in conflicting situations which may
involve  coordination,  reciprocity,  risk-taking,  competition,  altruism,  and  other  mechanisms.  In
particular, the “Chicken game” (Rapoport & Chammah, 1966) depicts a situation in which two drivers
move towards each other on a collision course: one must yield (deviate), otherwise both cars crash. If
only one of them yields, this player is called a "chicken" (i.e. coward). In this game, cooperation (i.e.
when both deviate) leads to the highest joint payoff while unilateral cooperation (i.e. when only one
deviates)  is  disadvantageous.  Competitive  approach  (driving  straight  towards  the  other  player)
generates the maximal individual payoff, if it is unilateral, but with the risk of a high punishment in
case the other player decides for the same action.

The chicken game has been previously employed in human neuroscience research; for instance,  to
investigate the influence of personal traits (Wang et al., 2017) or dyad familiarity (Chen et al., 2017) on
participants’  behavior and neural activity.  More generally,  various studies have combined strategic
games with neuroimaging techniques in the quest for a better understanding of the neural mechanisms
at play in social decision-making (see Rilling & Sanfey (2011) for a review). However, these studies
are generally screen-based and lack the ecological  validity of real-time interactions.  In this  regard,
robots  offer  a  powerful  solution  for  the  design  of  controlled,  yet  naturalistic  and  embodied,
interactions.  Previous  works  in  human-robot  interaction  have  also  proposed experiments  based  on
strategic games, comparing different types of robot strategy (Asher et al., 2012; Sandoval et al., 2016),
robot embodiment (Chaminade et al., 2012; Takahashi et al., 2014), payoff incentives (Hsieh et al.,
2020), or group sizes in an intergroup competition (Fraune et al., 2019). Notably, some of these studies
also recorded participants’ brain activity using functional magnetic resonance imaging (fMRI) while
they  played  the  game  on-screen  inside  the  scanner  (Chaminade  et  al.,  2012),  sometimes  after
interacting with different robots outside the scanner (Takahashi et al., 2014). Nevertheless, the effect of
robots’ communicative behavior  during the game in real-time interaction with a physically  present
embodied robot has remained unexplored.
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Figure 1: Human-robot Chicken game. A) Schematic illustration of the experiment, trial structure and payoff matrix.
Participants sat facing the iCub robot while the game was displayed on screen placed between them. The players
played an adaptation of the Chicken game in which we manipulated the robot gaze during the decision period (2-7 s).
After looking at iCub, participants had to decide whether to go straight or deviate. The outcome of the trials and each
player’s payoff was determined by the combination of the two players’ choices. B) During the entire trial, except for
the decision period, iCub looked at the screen (neutral gaze). During the decision step, iCub either established or
avoided eye contact with the participant (mutual or averted gaze, respectively)

In  this  paper,  we  present  a  novel  study  of  human  decision-making  under  the  influence  of  the
communicative behavior  (here,  gaze)  exhibited by a humanoid robot  in an interactive setup.  More
precisely, we examine the influence of mutual versus averted gaze on participants’ behavior and  neural
activity, measured by electroencephalography (EEG), while they play the Chicken game against the
iCub robot (Metta et  al.,  2010). We hypothesize that,  as a key communicative signal,  mutual gaze
would  affect  participants’  performance  and strategy in  the  decision-making task.  Additionally,  we
hypothesize that the robot’s gaze would modulate  participants’  brain responses during the decision
period and after outcome presentation. 

Implementation of the Human-robot Chicken game

Participants sat in front of the iCub robot while the game was displayed on a screen placed horizontally
on a table between them and the robot (Fig 1A). The experiment consisted of an adaptation of the
Chicken game (Rapoport & Chammah, 1966). In the beginning of every round (hereafter “trial”), two
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car images, one per player, were shown on each side the screen. The cars started moving toward each
other and stopped halfway before reaching the center. Then, the screen turned black and a fixation
cross was shown for 1 second. After fixation crossed disappeared, the screen remained black for 5
seconds and both players had to choose their move between going straight or deviating.  Critically,
during this period, participants were instructed to look at the robot and the robot either look directly at
the participant (hereafter labeled Mutual gaze) or avoid eye contact by looking to the side (hereafter
labeled Averted gaze; see Fig 1B). At the end of the trial, the cars appeared on the screen again and
displayed the action selected by the players. The possible outcomes were: i) both go straight and crash,
resulting in the highest loss for both, ii) both deviate, obtaining the highest joint payoff, iii) only one
goes straight obtaining the highest individual payoff.  The points obtained (or lost) in the current trial
were shown on each player’s  side of the screen (see Fig 1A for the payoff  matrix).  Moreover,  to
maintain participants’ engagement, iCub verbally reacted to the outcome in 40 % of the trials within
each block by randomly selecting one of the predefined utterances associated with that outcome (see
Supp Table 1). 

Apart from the decision period when the robot’s gaze was manipulated (mutual or averted gaze), for
the remaining time of the trial, the robot was looking at the screen, making periodic random saccades
within that visual area. In this experiment, participants completed 250 trials divided in 5 blocks. They
were assigned to either the group with 70% Mutual or 70% Averted conditions, meaning that in each
block, iCub performed the type of gaze corresponding to the condition (e.g., mutual gaze in the 70%
Mutual condition) in 70% of the trials within each block in a  pseudo-randomized manner. The other
type of gaze (e.g. averted gaze in the 70% Mutual condition) was performed in the remaining 30% of
the  trials.  With  this  manipulation,  we  sought  to  investigate  how  participants’  behavior  could  be
influenced by mutual  gaze when established prior  to decision-making (within-participants)  and the
effect of the degree of exposure to mutual versus averted gaze on their overall strategy in the game
(between-participants).

Participants were told that their objective was to maximize their total score regardless of the robot’s.
This was to make the always-go-straight strategy less appealing, because as much as it guarantees a
higher score than the opponent, this strategy can lead to very low negative scores due to numerous
crashes. Moreover, iCub followed a win-stay-lose-shift strategy (WSLS, Nowak & Sigmund, 1993)
with a probability of 80%; meaning that it was most likely to repeat an action (i.e. stay) if it had led to a
positive outcome in the previous trial and do the other action (i.e. shift) otherwise. Thereby, the robot’s
sequence of choices had a certain structure (WSLS) that participants could capture without it being too
obvious. Altogether, we gave both the incentive and the opportunity to participants to reason about the
robot’s actions during the experiment. 

Results

Performance in the human-robot Chicken game

Participants’ scores were markedly higher than the average score obtained when we simulated the risky
always-go-straight strategy (Fig 2A). In  fact, 45 % of the participants obtained a positive total score
and 55 % obtained a higher score than iCub. However, total scores did not differ between conditions

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.21.345876doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.345876
http://creativecommons.org/licenses/by/4.0/


(70% Mutual versus 70% Averted,  t(19)=0.50, p=0.61, t-test; Fig 2A). In addition, total scores were
much lower than the average score obtained by simulation of the optimal strategy which consists in
choosing the best action assuming that the opponent is using the WSLS strategy (Fig 2A). Indeed, a
custom-made post-hoc questionnaire  showed that 25 % of the participants thought that iCub had a
strategy and only 12.5 % identified the actual WSLS strategy. These results are in line with those of
pilot  study we conducted prior  to  this  experiment  (see Materials  and Methods and Supplementary
Materials).

Figure  2:  Participants’  performance  and  response  times.  A) Participants’  total  scores  did  not  differ  between
conditions. Average performance from simulations of two extreme strategies are provided for comparison (see text).
B) No main effects or interaction of the condition or gaze type was found on the proportion of “straight” choices. C)
The gaze type (within-subject) had a significant main effect on participants’ response times. D) The drift diffusion
model describes decisions as a noisy drift process where an action is selected when the corresponding boundary is
crossed. Five variants were tested assuming that the robot’s gaze had an effect of one, two or none of the model
parameters.  Upon Bayesian parameter  estimation,  the best  fitting model was found to be the one imputing the
difference in response times to an effect on both the non-decision time t and the decision threshold a. DIC: deviance
information criterion. BPIC: Bayesian predictive information criterion. Lower values are better. E) Posterior density
of the effect distributions for the best fitting model showing significant effects on both  a and  t parameters. HDI:
highest  density  interval.  Inset,  effect  sizes  (see  Materials  and  Methods).  Error  bars  represent  95% confidence
intervals. ** p < 0.01, *** p < 0.001. n.s., not significant at p > 0.05.   
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Increased reaction times and decision threshold following mutual gaze

Using a two-way ANOVA with gaze condition within- and between-subject as factors, we found no
significant main effect, all Fs<1, nor interaction, F=1.46, p=0.24, in the frequency of selected actions
(Fig 2B). This means that the robot’s gaze did not influence participant’s subsequent choices, nor did
the overall degree of exposure to the two gaze types. However, the same analysis showed a significant
main effect of iCub’s gaze on participants’ mean response times, F=35.11, p<0.001, independent of the
group they were assigned to (70% Mutual or 70% Averted). More specifically, participants responded
faster  following an averted  gaze  than following a mutual  gaze  (in  70% Mutual,  M averted=1993 ms,
SEM=106, Mmutual=2117, SEM=99; in 70% Averted, Maverted=2086, SEM=180, Mmutual=2256, SEM=174;
Fig 2C). This within-subject effect of gaze was also revealed by our pilot study where participants were
exposed to the same amount of mutual and averted gaze instances (see Materials  and Methods for
procedure description and Supp Figure 1A for results). Thus, in this task, mutual gaze consistently
elicited longer response times compared to averted gaze, whether the former was predominant, equally
frequent or more occasional than the latter. 

The delayed responses within-subjects  following mutual  gaze may suggest that  direct  gaze elicited
more reasoning about iCub’s choices. To further investigate this hypothesis, we analyzed participants’
choices with the drift diffusion model (Ratcliff & McKoon, 2008). This widely used computational
model assumes that decisions arise from relative evidence accumulation over time in favor of one of
two alternatives  (see illustration  in  Fig 2D).  The main parameters  include the  drift  rate  v (rate  of
evidence accumulation), decision boundary  a (threshold to be reached to make a decision) and non-
decision time  t (dedicated to stimulus encoding and motor execution,  for example). By fitting both
alternatives’ selection rates and response time distributions with this model, we sought to infer the
latent psychological processes explaining the delayed responses following mutual gaze. Specifically, a
longer  and  more  effortful  reasoning  process  predicts  an  effect  on  decision  threshold  (Ratcliff  &
McKoon, 2008). Using hierarchical Bayesian parameter estimation (see Materials and Methods), we
compared the fitness of different models assuming that the robot’s gaze had an effect on either the drift
rate, the non-decision time or the decision boundary. Based on the deviance information criterion (DIC)
and the Bayesian predictive information criterion (BPIC), we found that the two best fitting models
were those presuming an effect on non-decision time or decision threshold: a difference in non-decision
time explained the data slightly better in the main experiment (Fig 2D) whereas a difference in decision
threshold explained the data better in the pilot study (Supp Fig 1C). Therefore, we also tested a model
imputing the response delay to both non-decision time and decision threshold. This model fitted the
data better than the others in both datasets (Fig 2D and Supp Fig 1C). In the main experiment, both the
decision  threshold  a and  the  non-decision  time  t were  significantly  higher  following  mutual  gaze
compared to averted gaze (P(∆a>0)=1.0, P(∆t>0)=1.0) with a larger effect size for the former (Fig 2E).
However,  in  the  pilot  study,  only  the  difference  in  decision  threshold  reached  significance
(P(∆a>0)=0.99, P(∆t>0)=0.87; Supp Fig 1D). Taken together, these results show that the effect of gaze
on response time is mainly driven by an effect of the decision threshold, which suggests a longer and
more effortful decision process in case of mutual gaze, possibly due to the influence of more social
components in this process.
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More synchronized alpha rhythm during mutual gaze

Behavioral  analysis  during  decision  period  revealed  a  clear  effect  of  iCub’s  gaze  on  participants’
response time. We investigated whether this effect would also translate into distinct neural responses.
For  instance,  time-frequency  analysis  can  reveal  different  oscillatory  activities  across  time  in  the
human  brain’s  prominent  rhythms  that  are  linked  to  distinct  neural  processes  (e.g.,  Ward,  2003).
Therefore, we analyzed participants’ brain activity in the time period between the completion of the
robot gaze movement (eyes and neck) and the average response time. We focused on theta and alpha
bands which have been shown to be modulated by decision-making (Jacobs et al, 2006; Rajan et al,
2019), attention (Ward, 2003; Foxe & Snyder, 2011) and eye contact (Gale et al., 1972; Hietanen et al.,
2008; Kompatsiari et al., 2019). 

Figure 3: Scalp topographies between gaze types during decision period. Topographies show t-values maps of the
difference in elicited alpha oscillations (8-12 Hz) between gaze conditions (averted gaze – mutual gaze). Statistically
significant clusters are marked by x crosses. Differences between conditions were found by non-parametric cluster-
based permutation tests. t-values are defined as the ratio of the difference between the estimated mean values of two
conditions to its standard error. The topographies are depicted in a time range of t = 0.31 s to t = 0.95 s, relative to
the establishment of the exhibited gaze (every 320 ms).

We did not observe any significant  differences  in  theta  frequency range.  However,  we found that
participants responded with a higher alpha synchronization during mutual gaze compared to averted
gaze in a parietal area (corrected for multiple comparisons p = .03; see Materials and Methods) during
the  time  window 0.31-0.95  s  relative  to  the  initiation  of  robot’s  head movement  toward  the  gaze
direction (see Figure 3). To locate the specific cluster of electrodes, we further averaged the data across
the entire temporal period and compared the spatial data across conditions using the same analysis as
above. Results showed that the parietal cluster consisted of six electrodes Pz, P3, P1, PO3, POz, P2.
The averaged alpha values were lower in averted gaze M = 131.02 ± 4.34 compared to mutual gaze M
= 323.97  ± 52.55.  Increase in alpha power has been associated with  brain processes related to the
suppressing function of attention, i.e., suppressing cortical activity related to distractors or irrelevant
information  (Jensen,  2002,  Cooper  et  al,  2003,  for  a  review  see  Ward,  2003).   Higher  alpha
synchronization in mutual gaze might indicate an increased need to suppress distraction related to the
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gaze exhibited by the robot, while focusing attention on  task-related relevant information. The higher
need  for  suppression  of  the  irrelevant  signal  (iCub’s  gaze  directed  at  the  participant)  might  have
resulted in the observed behavior with longer reaction times for mutual, relative to averted gaze, trials.

Reasoning about the robot’s actions throughout the game

In order to assess how much participants  reasoned about  the robot’s choices  during the game,  we
simulated three computational models taken from the literature (Hampton et al., 2008). These models
make value-based decisions and compute different types of prediction errors to update the choices
values over time (Fig 4A; see Materials and Methods for implementation details). The first model is a
classical reinforcement learning model in which the action that was most rewarded in the recent past is
more likely to be repeated (Rescorla and Wagner, 1972). The second model attempts to predict the
opponent’s decision by estimating the probability that they select an action based on their recent history
of choices. The model then selects the action which maximizes the gain (or minimizes the loss) based
on  the  payoff  matrix  (Hampton  et  al.,  2008).  The  third  model  builds  on  the  second  model  and
incorporates the influence of the player’s own recent choices on the opponent’s decisions by assuming
that the other is tracking the player’s probabilities of choices too (Hampton et al., 2008). These models
thus describe three levels of reasoning about the other (i.e. mentalizing). While the first model derives
decisions solely from recent rewards (level 0), the second builds predictions of the opponent’s choices
based on the recent history (level 1) and the third does so by also assuming a model of the other’s
strategy (level 2).

Upon optimization, we found that participants choice sequences altogether were best reproduced by the
model  with  the  highest  level  of  mentalizing  (log(L)  across  models,  H=23.64,  p<0.0001,  Kruskal-
Wallis test; Inf versus Fic,  U=433.0, p=0.0002, Fic versus RL,  U=547.0, p=0.007,  Mann-Whitney
tests;  Fig 4B).  By replicating  previous  findings  in  human-human strategic  games (Hampton et  al.,
2008), we demonstrated that participants reasoned about iCub’s actions in a way that is similar to
settings  involving  human  opponents.  Nevertheless,  examining  the  best  fitting  model  for  each
participant individually revealed little difference between our experimental conditions. In other words,
participants exposed to 70% of mutual or averted gaze were fitted in similar proportions by the models
(Fig 4C). Moreover, we examined the percentage of choices that were correctly predicted by the best
fitting model for each participant. Results showed no significant effect of the trial’s gaze type within
each condition (in 70% Mutual, U=171.5, p=0.22; in 70% Averted, U=192.0, p=0.41, Mann-Whitney
test; Fig 4D). Overall, while suggesting that participants reasoned about the robot’s actions during the
game,  these  computational  models  were  unable  to  capture  subtle  differences  which  could  further
explain the effect of the mutual gaze on participants’ behavior.
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Figure 4: Computational models of participants' degree of reasoning about iCub's actions. A) Schematic illustration
of the models. The reinforcement learning model (RL) makes decisions based on the recently selected actions and
their outcome. The fictitious play model (Fic) makes decisions based on the game’s payoff matrix and the predicted
action of the opponent. The influence model (Inf) does the same while assuming the opponent is also predicting the
player’s choices and incorporating the influence of its own actions in its predictions of the opponent’s decisions. B)
The overall log-likelihood of the influence model fitted to participants’ choices is significantly greater than the two
other models, suggesting a high level of reasoning about iCub during the game.  C) Considering the best fitting
model for each participant individually did not reveal a strong difference between those exposed more to one type of
gaze compared to the other. D) The percentage of trial-by-trial choices predicted by the model was similar following
a mutual  or  averted gaze.  Error  bars  represent  95% confidence intervals.  * p < 0.05,  *** p < 0.001. n.s.,  not
significant at p > 0.05.   

More self-oriented strategic patterns under higher exposure to averted gaze

To  further  investigate  the  influence  of  iCub’s  gaze  on  participants’  decisions,  we  analyzed  the
frequency of occurrence of three patterns of strategic behavior in their choice sequences which could
characterize the extent to which they incorporated information about their opponent in their decisions.
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The  first  pattern  is  ‘win-stay-lose-shift’  (WSLS),  which  is  a  typical  decision-making  strategy.  It
consists in repeating the previous action if it led to a positive outcome and abandoning it otherwise.
This strategy is self-oriented,  in the sense that it  only requires information about the player’s own
actions and outcome history and can be employed even in individual decision-making contexts. As a
reminder, this was iCub’s strategy in 80% of the trials.

The second pattern that we examined is classical strategy in game theory called ‘tit-for-tat’ (T4T). The
idea here is to reproduce the opponent’s previous choice.  This strategy is known to be efficient in
strategic games as it dissuades opponents from attacking and encourages them to cooperate by favoring
actions  which  generate  mutual  gains.  Additionally,  we  added  another  pattern  labeled  ‘stay-shift-
imitation’ (SS-Imit). In this strategy, the player copies the opponent’s behavior in repeating the last
trial’s choice or changing. In contrast to the first strategy, the two latter are other-oriented since they
process information about the opponent’s history of actions and outcomes.

Figure  5:  Patterns  of  self-oriented  and  other-oriented  strategic  behaviors  in  participants'  choice  sequences.  A)
Occurrence rates of one self-oriented (win-stay-lose-shift, WSLS) and two other-oriented (tit-for-tat, T4T; stay-shift-
imitation, SS-Imit) patterns (see text for detailed description). Self-oriented WSLS appeared significantly less in the
choices of participant who were more exposed to the mutual gaze. No significant difference was found for T4T and
SS-Imit.  B) The average length of sequences of the WSLS pattern was significantly greater in the 70% Averted
condition. No significant difference was found for T4T and SS-Imit. Error bars represent 95% confidence intervals. *
p < 0.05, ** p < 0.01. n.s., not significant at p > 0.05.
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We analyzed participants’ choice sequences trial-by-trial looking for occurrences of these patterns of
strategic behavior. Results showed that the pattern WSLS was found more frequently in the sequences
of participants of the 70% Averted condition compared to 70% Mutual (U=108.5, p=0.006, Mann-
Whitney test; Fig 5A). In other words, the occurrence rate of the self-oriented pattern was significantly
lower under higher exposure to the mutual gaze. Interestingly, considering data from a pilot study, we
found that when participants  were equally exposed the both types of gaze,  the occurrence rates of
WSLS was similar to the 70% Mutual condition and also contrasted significantly with the 70% Averted
condition (see Supplementary materials and Supp fig 3A). However, the difference between conditions
for T4T and SS-Imit was not significant (T4T,  t(19)=-1.07, p=0.28, SS-Imit,  t(19)=-1.02, p=0.30, t-
test; Fig 5A). Furthermore, we computed the average length of sequences of the strategic patterns to
test for their recurrence over several trials. Again, we found a difference between the 70% Mutual and
70% Averted conditions for the WSLS pattern (U=120.0, p=0.015, Mann-Whitney test; Fig 5B) with
longer sequences in the latter condition. On the other hand, the average length of sequences of the other
patterns did not differ significantly between conditions (T4T,  U=150.5, p=0.092, SS-Imit,  U=189.0,
p=0.38, Mann-Whitney test; Fig 5B). In summary, this analysis suggests that the likelihood of adopting
self-oriented strategy was higher among those who were exposed mainly to averted gaze, relative to
those who were exposed mainly or equally to mutual gaze.

EEG markers of performance monitoring modulated by gaze

Because  participants  exhibited  different  strategic  patterns  depending on the  degree  of  exposure to
mutual or averted gaze, we reasoned that they would process their outcomes distinctly, as the analyzed
strategies  are  inherently  related  to  processing  outcome  and  performance.  At  the  neural  level,
performance and outcome monitoring are typically reflected in event-related potentials (ERPs) of the
EEG signal, such as feedback-related negativity (FRN), error-related negativity (ERN) and the positive
component  P2 preceding FRN (e.g.,  San Martin,  2012,  Gehring  et  al.,  2013,  Pollezi  et  al.,  2008;
Holroyd,  & Coles  2002).   Therefore,  we examined ERPs during the period when participants  had
access to information about the outcome of the trial, i.e., within the broad time window from the offset
of the black screen (the moment when the cars start moving after the action decisions have taken place)
to the period after the score was presented (from 1000 ms to 3500 ms after onset of the animations; see
Fig 1A). However, as our task was a dynamic game, with information about performance becoming
available only gradually, the observed ERPs might not map onto classical ERP components reported in
literature. Therefore, we refrained from typical component-based interpretations and focused on how
activity  evolved  over  time  around maximum/minimum peak amplitude  across  consecutive  400-ms
segments (see Materials and Methods for details about the procedure). 

Our analyses showed that at first, exposure to mainly mutual or mainly averted gaze affected the EEG
activity (Figure 6, T1, blue box), modulating the first positive peak of the entire sequence, with larger
positivity M = 1.16, SEM = 0.27 for group with mostly averted gaze, compared to participants mostly
exposed to mutual gaze, M = 0.43, SEM = 0.20, F (1, 37) = 4.44, p = .042, np2= 0.1. In a subsequent
time window, there was no impact of gaze, but the EEG activity differed with respect to the outcome of
participants’ decisions (Figure 6, T2, pink box). In particular, “winning” animations elicited a larger
negative deflection, M=-1.01, SEM = 0.12 compared to the “losing” animations, M=-0.78, SEM = 0.1,
F (1, 37) = 12.17, p = .001, np2= 0.25. This was then followed by another positive peak (Figure 6, T3,
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light green box) which also showed that outcome (but not gaze) modulated activity in this time period,
with “winning” animations showing a larger positivity, M=0.92, SEM = 0.09 compared to the “losing”
animations, M=0.6, SEM = 0.07, F (1, 37) = 17.19, p < .001, np2= 0.32. Last, in the segment following
the presentation of the score (Fig 6, T4, yellow box), the positive peak was modulated both by gaze and
feedback, but independently of each other. Participants mostly exposed to averted gaze showed a larger
positive component M = 0.98, SEM = 0.21 compared to participants mostly exposed to mutual gaze, M
= 0.48, SEM = 0.16, F (1, 37) = 4.6, p = .038, np2= 0.11. In parallel, winning feedback points showed a
larger positivity, M=0.82, SEM = 0.13 compared to the losing feedback points, M=0.6, SEM = 0.15, F
(1, 37) = 3.8, p =0.06, np2= 0.32.

Figure  6: Grand-averaged  ERP waveforms  time-locked  (t=0)  to  onset  of  feedback  animation.  The  average  is
performed over F1, F2, Fz, CP1, CP2 electrodes on data from participants in the 70% Mutual and 70% Averted
groups split into win (+1 or +3 points) or lose (0 or -4 points) trials. Activity over time around maximum/minimum
peak amplitude across consecutive 400-ms segments showed differentiated responses to gaze condition in the first
time window, then to outcomes in the following two time windows and finally to both gaze and outcomes. Division
in segments: Segment 1: t = 0-400 ms; Segment 2: t = 400-800 ms; Segment 3: t = 800-1200 ms; Segment 4: t =
1200-1600 ms. Time windows of analyses (Tn) within each segment:  Within Segment 1: T1 = 244-299 ms (light
blue box) 10% around positive peak at 272 ms (black arrow); Within Segment 2: T2 = 457-558 ms (orange box),
10% around the negative peak at 508 ms (black arrow); Within Segment 3: T3 = 741-906 ms (green box), 10%
around positive peak at 824 ms (black arrow);  Within Segment 4: T4 = 1241-1295 ms (yellow box), 10% around the
positive peak at 1268 ms (black arrow). Onset of score presentation: 1000 ms.

This pattern of results on how ERPs unfolded over the critical period of time, shows that the brain was
initially  affected  by  gaze:  participants  who  were  mainly  exposed  to  avoiding  gaze  showed  larger
positivity.  This  is  perhaps  an after-effect  of  the  preceding  period  where  the  two gaze  types  were
displayed by the robot. However, this initial impact of gaze was in the later time windows overridden
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by the influence of the unfolding outcome of participants’ decisions, as participants observed the car
animations and realized whether they have lost or won. In this time period, winning trials evoked a
more pronounced deflection (larger positivity or negativity, dependent on whether the component was
positive  or  negative),  relative  to  losing  trials.  This  clearly  shows  that  at  this  point,  the  brain
differentiated the wins from losses, and this was overriding the impact of gaze. Interestingly, though,
upon receiving the scores, participants’  neural activity was affected both by feedback and by gaze
condition. In other words, later stages of processing of performance (information about performance
ultimately  confirmed  by  the  presented  score)  was  modulated  by  the  type  of  robot  gaze  to  which
participants were most exposed throughout the experiment.

Discussion

Few studies  have  investigated  the  effect  of  social  cues  on  human  decision-making  in  naturalistic
interactions. Our novel paradigm which made use of the humanoid robot iCub allowed us to overcome
some of the methodological  challenges  of naturalistic  interactive scenarios and enabled a real-time
controlled interaction with a physically present and embodied agent. As such, it allows to shed light on
the profound influence of others’ communicative signals (gaze in this case) on individuals’ behavior in
strategic interactions. 

In our experiment, participants played an adaptation of the Chicken game with iCub while the robot
established  or  avoided  eye  contact  with  them  prior  to  decision.  Our  results  showed  changes  in
participants’ behavior depending on iCub’s gaze. First, we observed that mutual gaze with the robot
delayed  participants’  responses.  This  difference  in  reaction  times  arose  from  a  higher  decision
threshold in the mutual gaze condition compared to the averted gaze, thereby suggesting a longer and
more  effortful  focus  on  the  task.  This  behavioral  effect  was  paralleled  by  a  differential  effect  in
synchronized  alpha  activity  during  the  period  of  eye  contact,  with  higher  alpha  synchronization
compared to averted gaze.  Alpha synchronization  has been interpreted  in literature as a marker  of
increased  need  for  suppression  of  distractor  information  (for  a  review  see  Ward,  2003).  In  our
experiment, iCub’s gaze was totally independent from its action and could thereby be considered by
our participants as a distractor once the dissociation was detected. Therefore, mutual gaze might have
required higher need for suppressing irrelevant signals in the environment (mutual gaze in this case),
which presumably resulted in longer reaction times and higher decision threshold.

In addition to within-participants effects across different trials, we also analyzed strategic processes
across the entire  experiment,  dependent  on whether  participants  belonged to the group which was
mostly exposed to the mutual gaze or to the avoiding gaze condition. We observed that while the type
of gaze that participants mostly saw had no influence on choice frequencies or overall performance,
patterns of strategic behaviors in participants’ choice sequence differed between conditions. Indeed,
when  exposed  more  to  averted  gaze,  participants  exhibited  self-oriented  patterns  of  choices  more
frequently. These results may suggest that higher exposure to averted gaze could make participants
disengage more easily from the social interaction and rely more on self-centered information to make
their decisions.

In search for the neural trace of performance/outcome monitoring processes, which would presumably
underlie the different likelihood of adopting self-oriented strategy during the task, we examined ERPs
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of the EEG signal in the entire epoch when participants could monitor the outcome of their action
decision.  The results  showed that  the brain was indeed differentially  processing information  about
winning and losing trials  as this  information  was becoming available  (as  the car  trajectories  were
gradually unfolding). Most importantly, being exposed mostly to mutual gaze or mostly to avoiding
gaze affected the way the brain processed feedback.  The group of  participants  who were exposed
mostly to avoiding gaze showed larger amplitude than the group mostly exposed to mutual gaze. This
differential neural processing might actually be one of the mechanisms underlying the behavioral result
of differential  strategies across the two groups of participants – those that were mostly exposed to
averted gaze showed perhaps more sensitivity to feedback and, in result, showed larger proportion of
self-oriented win-stay-lose-shift strategy relative to those that were mostly exposed to mutual gaze.

In summary, our results suggest that mutual gaze engages brain resources for managing social signals,
which may or may not be relevant for the decisions to be made. In our experiment the robot gaze
modulated response times, decision threshold, neural synchronization, as well as choice strategies and
sensitivity  to  outcomes.  Thus,  two  mechanical  cameras  were  treated  as  a  social  signal,  thereby
providing striking  evidence  for  the  flexibility  of  human socio-cognitive  mechanisms.  As we build
increasingly  complex  machines,  it  is  therefore  crucial  that  we  endow  them  with  adequate
communicative behaviors.

Materials and Methods

Participants

43 participants were recruited for the main experiment, 3 were excluded due to high number of missing
trials,  excessive EEG artifacts,  or  technical  issues during EEG recording.  In  total,  data  sets  of  40
participants (mean  age  =  24.53  ± 4.5,  23  women,  5  left-handed)  were  analyzed  for  the  main
experiment, 18 participants (mean age = 30.38 ± 4.77, 10 women, 4 left-handed) for the first pilot study
and 8 participants (mean age= 31 ± 4.87, 5 women) for the second pilot study. No statistical methods
were used to  predetermine  sample  sizes,  but  our  sample  sizes  are  comparable  to  similar  previous
studies (Wang et al., 2017, Kompatsiari et al., 2018). All participants were healthy and had normal or
corrected-to normal vision. No participant who took part in the pilot study was recruited also for the
main experiment, meaning that each participant took part only in one of the experiments. Participants
were debriefed about the purpose of the study at the end of the experiment. The experiments were
performed at the Istituto Italiano di Tecnologia (IIT). Participants who took part in the pilot studies
were  employed  by  IIT.  Only  external  participants  (participants  of  the  main  experiment)  received
honorarium (30 €)  for  their  participation.  All  experiments  were conducted  in  accordance  with the
ethical standards laid down in the 2013 Declaration of Helsinki and were approved by the local ethical
committee (Comitato Etico Regione Liguria). All participants provided written informed consent prior
to participation. Data were stored and analyzed anonymously. The data related to this study will be
accessible online upon acceptance of the manuscript.

Stimuli and apparatus

Task: The experiments were carried out in a noise-attenuated room. Participants were seated facing the
iCub robot at opposite sides of a table at a distance of 130 cm. iCub is a humanoid robot (Metta et al.,
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2010), with 3 degrees of freedom in the eyes (common tilt, vergence, and version) and three additional
degrees  of  freedom  in  the  neck  (roll,  pitch,  yaw).  In  our  experiments,  iCub  was mounted  on  a
supporting frame such that its eyes were at 124 cm from the floor which was estimated to be aligned
with participants’ eyes. A 24-inch LCD screen was placed horizontally on the table such that both
players (participant + iCub) could see the stimuli being displayed. The stimuli consisted of a series of
animations describing the events occurring during the adapted Chicken game. In the beginning of every
trial, two car images, one per player, were shown on each side the screen. The cars started moving
toward each other and stopped halfway before reaching the center. Then, the screen turned black for 5
seconds and both players had to choose their next move between going straight or deviating. In the
main experiment, a fixation cross was displayed prior to this step for 1 second. At the end of the trial,
the cars appeared on the screen again and displayed the behavior selected by the players. Then the
points obtained (or lost) in the current trial were shown on each player’s side of the screen. In 40 % of
the trials within each block, iCub verbally reacted to the outcome by randomly selecting one of the
predefined utterances associated with that outcome (see Supp table 1).

When the screen turned black (i.e. at the beginning of the decision step), iCub’s gaze changed to either
make eye contact with the participant (mutual gaze) or avoid eye contact (averted gaze) by looking to
the right or left of the table. During the rest of the trial, the robot was looking at the screen (neutral
gaze),  gazing  at  different  fixation  points  randomly  generated  within  the  same  field  of  view.
Importantly, the target points to look at, in both the direct and the averted gaze conditions, have been
selected in order to guarantee comparable conditions in terms of joints trajectories. During the rest of
the trial, the robot was looking at the screen (neutral gaze), gazing at different fixation points randomly
generated within the same field of view.

iCub behavior: The robot behavior was programmed using the YARP (Yet Another Robot Platform
Python wrappers (Metta et al, 2006). We used iKinGazeCtrl, a 6-DOF gaze controller, to control iCub
neck and eyes (Roncone et al., 2016). Specifically, Azimuth, Elevation and Vergence were provided to
the controller in order to make iCub look at the desired 3D Cartesian coordinates (see Supp table 3). In
addition, gaze shifts in head movements were embedded in order to make the gaze more naturalistic.
The button press was controlled using a position controller, specifically YARP IPositionControl. The
facial expression (always neutral in our experiment) and lip movements were controlled using the iCub
faceExpressions application. Robot speech on the other hand simply consisted of audio files played on
the main workstation with external speaker placed below the robot. The audio files were recorded from
female human voices and edited using the free open-source Audacity software to increase the pitch. A
custom-made software programmed in Python 3 and running on a with Ubuntu 20.04 LTS operating
system was used to control iCub behavior,  stimulus presentation,  and data collection.  Both players
selected their  actions by pressing switch buttons connected to a custom response box designed for
converting input signals into regular keyboard key presses. 

EEG apparatus: EEG was recorded from 64 electrode sites of an active electrode system using Ag-
AgCl electrodes, at a sampling rate of 1 kHz (ActiCap, Brain Products, GmbH, Munich, Germany).
FT9 and FT10 electrodes were displaced to F9 and F10 electrode positions to capture the horizontal
ocular movements. All electrodes were referenced to FCz and re-referenced offline to average of all
electrodes. Electrode impedances were kept below 10 kΩ throughout the experimental procedure. 
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Procedure

Upon EEG head preparation and after receiving the task instructions, participants started a practice
session to make sure that they were performing the task properly. 

Pilot study 1: The experiment lasted approximately 45 min. Participants completed 200 trials divided
in 20 blocks, 10 for each condition (direct gaze vs. averted gaze). There were breaks of 15 seconds
between blocks.  The order of the blocks was pseudo-randomized and it was counterbalanced across
participants. Half of the participants experienced a sequence starting with a direct gaze block, while the
other  half  experienced  the  opposite  sequence.  In  each  block,  iCub  performed  the  type  of  gaze
corresponding to the current block (i.e. either direct or averted gaze) in 60% of the trials. To avoid a
continuous exposure to one specific kind of gaze, the robot continued looking at  the screen in the
remaining  40  % of  the  trials.  Here,  the  averted  gaze  was  always  directed  to  the  right  from the
participant’s perspective.

In this pilot study, we collected also participants’ Galvanic Skin Response (GSR) in order to investigate
whether it differed across conditions. However, due to the high number and variety of stimuli to which
participants are exposed in this experiment, we found that the GSR signal was too noisy. We concluded
that our experimental design is not compatible with this type of physiological response and discarded
the GSR measure from the following experiments.

Pilot study 2: The procedure in this pilot study was exactly the same as in pilot study 1, except that the
averted gaze was directed to the left from the participant’s perspective. The reason was that in Pilot
study 1, both the robot’s and the participant’s button were placed on the right side of the table from the
participant’s perspective. We thus wanted to test whether the difference in response time observed in
Pilot Study 1 was due to a higher action readiness caused by the averted gaze being directed to the side
on which the buttons were placed. Upon verifying that the pattern of results in Pilot Study 2 was in line
with Pilot Study 1, and thus the pattern was not related to the direction of the robot gaze (direction to
the right), we did not further analyze this dataset. Results related to the “Pilot study” in the main text
and supplementary material only concern data collected in Pilot study 1.

Main experiment:  The experiment  lasted approximately  55 min.  Participants  completed  250 trials
divided in 5 blocks. Between-block breaks lasted 90 seconds after the first, second and fourth block,
whereas participants could take a longer break after the third block and decide when they wanted to
resume the experiment. This experiment consisted of two between-participants conditions: 70% Mutual
(20  participants)  or  70% Averted  (20  participants).  For  example,  participants  in  the  70% Mutual
condition experienced the mutual gaze in 70% of the trials and the averted gaze in the remaining 30%
of each block. The sequence of trials  was pseudo-randomized and participants in the 70% Averted
condition experienced the exact opposite sequence. The direction of the averted gaze (left or right) was
counterbalanced across two subgroups in each condition. Put differently, participants were assigned to
one of the following four subgroups: 70% Mutual with averted gaze to the right, 70% Mutual with
averted gaze to the left, 70% Averted with averted gaze to the right, 70% Averted with averted gaze to
the left.  

Prior to the main experiment, we collected resting state EEG data with eyes closed and eyes open.
After  all  experiments  were  over,  participants  were  also  asked  to  answer  two  questionnaires:  one
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custom-made  questionnaire  related  to  self  and  robot’s  strategy,  and  a  competitiveness  index
questionnaire  (Houston  et  al.  2000).  Informal  discussions  after  the  experiment  confirmed  that  all
participants  noticed  the  gaze  manipulation.  The  resting  state  and  the  competitiveness  index
questionnaire were aimed at targeting possible individual differences, which is out of the scope of this
paper. Therefore, these data are not reported here.

Drift diffusion model

The drift  diffusion model is  a well-established computational  model which describes the intra-trial
decision process in two-alternative forced choice tasks as the relative accumulation of evidence over
time  (Ratcliff  & McKoon,  2008).  The  main  parameters  include  the  drift  rate  v (rate  of  evidence
accumulation), decision boundary a (threshold to be reached to make a decision) and non-decision time
t (dedicated to stimulus encoding or motor execution, for example). Choices are represented by one of
the boundaries. A noisy drift-process accumulates evidence until it crosses one of the two boundaries
which indicates the selection of the associated alternative. Described as such, the model aims to infer
the  latent  psychological  processes  underlying  subjects’  decisions  by  fitting  the  two  alternatives’
selection rates and response time distributions.

To fit  the model  to our data,  we used the HDDM (hierarchical  drift  diffusion model)  open-source
python package (Wiecki et al., 2013). HDDM relies Markov chain Monte Carlo (MCMC) algorithm to
perform Bayesian estimation of the model’s parameters such that subject parameters are assumed to be
drawn  from  the  group  distribution  (see  Kruschke  (2013)  for  details  about  Bayesian  parameter
estimation in a non-hierarchical setting). The toolbox also allows flexible model construction where
multiple posterior distributions are estimated for specific parameters which are assumed to be affected
by certain experimental conditions. To evaluate within-subject effects (e.g. influence of gaze type in
our experiment), individual parameters can be described by a linear model with independent variables
specified as covariates. 

For each one of the five model  variants  that  we tested (see text  and Fig 2D),  we set the MCMC
sampling algorithm to draw 30000 samples from which the first half was discarded as burn-in. Then
MCMC chain convergence was first assessed by visually inspecting the trace, the autocorrelation, and
the  marginal  posterior  for  each  parameter  chain  (Wiecki  et  al.,  2013).  In  addition,  by  running  3
independent  parameter  estimation  processes  for  each  model,  we also  measured  the  Gelman-Rubin
convergence criterion (Gelman and Rubin, 1992). The value of this statistics was smaller than 1.02 for
all the chains, which indicates good convergence for all the models. Once the convergence checked, we
performed model  comparison based on the deviance  information  criterion  (DIC) and the  Bayesian
predictive information criterion (BPIC). Lower values of these two criteria indicated better fitness. We
then inspected the posterior distributions to assess the extent to which the models accounted for the
effect of the experimental manipulation. Specifically, by defining a linear model to describe the effect,
the fitting procedure estimates a posterior distribution of the difference Δ between the two conditions.
The  size  of  the  portion  of  this  effect  distribution  that  is  above  zero  was  used  to  determine  the

significance of the effect.  Similarly to Kruschke (2013),  effect  sizes were estimated as  Δk / (√σ k
2
/2)

where  Δk is  the estimated  difference between conditions  for a parameter  k and σk is  the estimated
standard deviation.
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Value-based decision-making models

This  family  of  computational  models  aims  to  describe  the  inter-trial  learning  process  underlying
decision-making. In this framework, choices are made based on the available options’ values, which
are updated trial by trial. In this paper, we used this type of models to study the mechanisms on which
participants relied during the game. Specifically, the degree to which participants reasoned about the
robot’s action. To do so, we readapted three computational models taken from the literature (Rescorla
and Wagner, 1972; Hampton et al., 2008). Model 1 is a reinforcement learning where most recently
rewarded actions are selected and involves no reasoning about the opponent. Model 2 estimates the
probabilities of opponent’s actions based on recently selected choices then constructs its action values
by combining the estimated probabilities with expected outcomes from the payoff matrix.  Model 3
adds another  level  of reasoning about  the opponent  by integrating  the influence  of its  own recent
choices on the opponent’s decisions. These models are detailed in Supplementary materials. 

We optimized the models’ hyperparameters to fit each participant’s sequence of choices by maximizing
the log-likelihood: 

log ( L )=∑
trials

A s ( t ) log ( Ps ( t ) )+ Ad log (Pd ( t ) )

The optimization procedure was performed using the fmin function from the scipy.optimize Python
module (version 1.5.0) by minimizing the negative log likelihood -log(L). To avoid local minima, we
repeated the procedure with n initial points (n = 10 times the number of model hyperparameter). 

Prior to fitting the actual data from our participants, we sought to assess the model fitting procedure. To
do so, we simulated 100 surrogate subjects with each model, then fitted all models to all simulated data.
As a result, we found that all models had good recovery rates (Supp fig 2A), though Model 2 (Fic) had
a  higher  confusion  rate  compared  to  the  reinforcement  learning  and  the  influence  models.  This
indicated that this model was less likely to emerge as the best fit for participants’ data in the actual
fitting procedure.

Then, upon optimization of the models’ hyperparameters to fit the experimental data, we performed an
additional validation step. We simulated again the best model of each participant with the best fitting
parameters in order to check that the observed behavior was properly reproduced. Specifically,  we
averaged the probability of going straight, the probability of repeating the same choice as the previous
trial, and the total score over 10 repetitions for each best fitting model and compared the simulated
performance to the actual participants’ performance. Linear regressions confirmed that simulated and
experimental  data  were  strongly  correlated  (r  >  0.75)  for  the  first  two  measures  and  moderately
correlated (r > 0.5) for the third measure (Supp fig 2B, 2C and 2D).

EEG data analysis 

Preprocessing: EEG data were analyzed using MATLAB® version R2018b (The Mathworks Inc.,
2018), the EEGLAB (Delorme & Makeig, 2004), FieldTrip toolboxes (Oostenveld et al.,2011) and
customized scripts. The data were down-sampled to 250 Hz, while a band-pass filter (0.5–100 Hz) and
a  notch  filter  (50  Hz)  were  applied.  The  signal  was  re-referenced  to  the  common average  of  all
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electrodes. Data from one participant (from the 70% Averted group) were excluded only from EEG
analyses due to a large number of noisy electrodes (> 10), resulting in N=39 for EEG analyses.

Time-frequency analysis during decision (and gaze) period: To analyze participants’ neural activity
during the decision period, data were segmented into trials of 6 s length, including the fixation cross (1
s) and the gaze plus response period (5 s). Each trial was baseline-corrected by removing the values
averaged over a period of 500 ms during the fixation cross (0.2 to 0.7 s relative to stimulus onset).  The
specific baseline window was chosen in order to ensure a relatively large task-unrelated window. First,
the extracted segments were visually inspected and trials with large artifacts (i.e., muscle movements
and electric artefacts) were removed. The same procedure was applied to the removal of bad channels.
The mean number of the remaining trials was similar across gaze conditions (mutual or averted) and
equal to 159.87 ± 9.25 (out of 175) for trials of the main gaze (e.g. mutual gaze trials for the 70%
Mutual group) trials and 69.77 ± 4.14 (out of 75) for the other trials on average. On average, 3.28 ±
1.43 electrodes  were  removed  and  interpolated  afterwards.  The  remaining  artefacts,  i.e.,  muscular
activity, ocular activity and channel noise were removed by applying independent component analysis
(ICA).  The number of  removed ICA components  was equivalent  to  26 ± 8 on average.  After  the
artefact removal, noisy channels were spatially interpolated. 

Time-frequency representations  (TFRs) of oscillatory power changes were computed separately for
each condition  (mutual  gaze,  averted gaze)  for the abovementioned period.  Time-frequency power
spectra were estimated using Morlet wavelet analysis based on varying cycles to allow for high spectral
resolution in lower frequencies (3.5 cycles at the lowest considered frequency: 2 Hz) and high temporal
resolution for higher frequencies (18 cycles at the highest considered frequency: 60 Hz). Time steps
were set to 10 ms while frequency steps were set to 1 Hz (Oostenveld et al., 2011). All trials were
averaged for each condition across participants and the butterfly plots were used to inspect for potential
ERPs during the period of interest. ERPs were observed only in the baseline correction period and the
evoked  activity  was  removed.  Subsequently,  an  absolute  baseline  correction  for  each  trial  was
performed by subtracting the average induced oscillatory activity of the 0.2 to 0.7 s during the fixation
cross period (Premoli et al., 2017). This baseline correction was used to avoid any task-related time-
frequency activity. Subsequently, TFRs were averaged across trials per experimental condition. The
epoch of interest consisted of actual mutual/averted gaze phase before participants’ average response
time.  For this  reason, as initial  time point  of statistical  analysis  we annotated the establishment  of
mutual/averted gaze; and as the final time point, the participants’ average response time. TFRs were
cropped to the phase of interest. 

Data were averaged to calculate power within theta (4-7) and alpha (8-12) frequency bands. In each
frequency  range,  spatio-temporal  data  across  conditions  were  compared  by  performing  a  non-
parametric  cluster-based  permutation  analyses  (using  a  Monte-Carlo  method  based  on  paired  t-
statistics) (Maris & Oostenveld, 2007). Samples between gaze conditions with a t-value exceeding an a
priori threshold of p < .05 were clustered on a temporal and spatial adjacency basis.  Subsequently,
comparisons were performed for the maximum values of summed t-values. A permutation test (i.e.,
randomizing data  across conditions  and re-running the statistical  test  for  1500 times)  was used to
approximate  a  reference  distribution  of  the  maximum  of  summed  cluster-level  t-values.  Clusters
consisting of a minimum of two electrodes were considered statistically significant at an alpha level
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of .05 if < 5% of the permutations used to construct the reference distribution yielded a maximum
cluster-level statistic larger than the cluster-level value observed in the original data.

Performance  monitoring  ERPs: In  order  to  examine  how  information  about  participants’
performance in our task was processed at the neural level, we focused on the event-related potentials
ERPs during the period when participants could already understand their performance within a given
trial, i.e., within the broad time window from the offset of the black screen (the moment when the cars
start moving after the action decisions have taken place) to the period after the score was presented
(score was presented 1000 ms after onset of the animations), cf. Fig 1A. Visual inspection of the signal
(cf. Fig. 6) showed clear ERP components. However, the design was not tailored towards specific ERP
components.  Our  task  was  a  dynamic  game,  with  the  information  about  performance  becoming
available only gradually, so the observed ERPs might not map onto more classical ERP components
reported in literature.  Therefore,  we decided to refrain from classical component-based analyses or
interpretations, and we focused rather on how activity evolved over time from the moment of onset of
animations. We analyzed the data focusing on the average activity around maximum/minimum peak
amplitude across consecutive 400-ms segments. As we refrain the interpretation of the components in
terms  of  classical  ERP  components,  we  simply  refer  to  our  analyses  in  terms  of  min/max  peak
amplitude within various time windows (i.e. rather than naming the ERPs as, for example, P1 or N1
components).

Data were segmented into trials of 2.2 s length, including 200 ms before the feedback animation, the
feedback animation (t = 0-1 s) and the first second of score presentation (t =1-2 s). Each trial was
baseline-corrected  by removing the  values  averaged over  a  period of  200 ms before  the feedback
animation. After preprocessing, the average remaining trials was similar across groups and equal to:
win trials: 117.15 ± 9.0, lose trials: 118.61 ± 8.21, the number of interpolated electrodes was equal to:
3.28 ± 1.43 (same electrodes with TFA analysis), and the number of removed ICA components was
equal to: 18.66 ±  5.88. Event-related potentials were calculated and low-pass filtered to 30 Hz. We
calculated the minimum and the maximum voltage values within segments of 400 ms starting from the
onset of the feedback animation and until 600 ms after score presentation.  We focused on a set of
frontocentral electrodes, i.e., F1, F2, Fz, FC1, FC2, that are sensitive to feedback presentation (San
Martin, 2012; Gehring et al., 2013; Pollezi et al., 2008). For every maximum/minimum voltage peak in
the respective time window, we computed the average activity over a window of ±10% relative to the
peak. The computed average amplitude values were submitted to a repeated-measures ANOVA with
feedback type (win, lose) as a within-subjects factor, and gaze group (70% mutual gaze, 70% averted
gaze) as a between-subjects factor. 

Statistical analysis

Details about the statistical tests were reported in the main text. Error bars in figures indicate 95%
confidence intervals. For one-factor analyses, parametric statistical tests were used when data followed
a normal distribution (Shapiro test with p > 0.05) and non-parametric tests when they did not. As
parametric  tests,  we  used  t-test  when  comparing  two  groups  or  ANOVA  when  more.  As  non-
parametric tests, we used Mann-Whitney test when comparing two independent groups, Wilcoxon test
when comparing two paired groups and Kruskal-Wallis test when comparing more than two groups.
These tests were applied using the scipy.stats Python module. They were all two-sided except Mann-
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Whitney. Two-factor analyses were performed using the JASP software. In all statistical tests, p > 0.05
was considered to be statistically non-significant.
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- Supplementary material -

Results from the pilot study

In the pilot study, participants completed 200 trials divided in 20 blocks, 10 for each condition ( mutual
gaze vs. averted gaze).  The order of the blocks was pseudo-randomized and it was counterbalanced
across participants. Half of the participants experienced a sequence starting with a mutual gaze block,
while the other half experienced the opposite sequence. In each block, iCub performed the type of gaze
corresponding to the current block (i.e. either mutual or averted gaze) in 60% of the trials. To avoid a
continuous exposure to one specific kind of gaze, the robot continued looking at  the screen in the
remaining 40 % of the trials (see Figure 1B). 

Results  showed  that  47.1  % of  the  participants  obtained  a  negative  total  score,  whereas  58.82%
obtained a higher score than iCub. In addition,  a custom-made post-hoc questionnaire  showed that
38.88 % of the participants thought that iCub had a strategy, 11 % identifying the actual win-stay-lose-
shift strategy. We found no significant difference in the frequency of selected actions (straight versus
deviate, Z= -.64, p = .52, Wilcoxon signed-rank test; see Supplementary Figure 1A). However, mean
response times differed significantly between gaze conditions (Z= -2.86, p = .004, Wilcoxon signed-
rank test; see Supplementary Figure 1B). More specifically, the mutual gaze elicited longer response
times  compared  to  the  averted  gaze  (Mdirect=1879.96  ms,  SEM=169.38;  Maverted=1747.15  ms,
SEM=181.42; Fig 1B). 

We also analyzed participants’ choices using hierarchical Bayesian estimation of the parameters of the
drift diffusion model (Ratcliff & McKoon, 2008). We found that the model assuming an effect of the
gaze on the decision threshold parameter a explained the data better than those assuming an effect on
the drift rate  v or non-decision time  t  (lower DIC and BPIC values; see Supplementary Figure 1C).
Given the results of the same analysis for the main experiment (see Figure 2C), we also tested the
model assuming an effect on both  a and  t and found that it  fitted better than the previous models.
However, while the effect on a showed strong significance and large effect size (P(∆a>0) = 0.99; see
Supplementary  Figure  1D),  the  effect  on  t did  not  reach  significance  (P(∆t>0)  =  0.87;  see
Supplementary  Figure 1D; see Materials  and methods of  the main text  for details  about  Bayesian
estimation of the drift diffusion model parameters)

Supplementary results on patterns of strategic behaviors in the pilot study

In contrast to the main experiment, the pilot study included an equal percentage of mutual and averted
gaze for each participant. Therefore, this data can offer a complementary view on the effect of different
degree of exposure to each type of gaze.  We found that the occurrence rates of win-stay-lose-shift
(WSLS) in the data of pilot experiment were similar to those of the 70% Mutual condition in the main
experiment (see Supplementary Figure 3A). In other words, participants who were the least exposed to
the mutual gaze (i.e. the 70% Averted condition) showed a significantly higher rate of occurrence of
the self-oriented pattern (WSLS) than those who were exposed to equal (pilot data) or higher number of
mutual gaze. 
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In addition the patterns reported in the main text, we analyzed a fourth pattern labeled ‘counter-win-
stay-lose-shift’ (C-WSLS). Given that in our experiment iCub mostly followed the ‘win-stay-lose-shift’
strategy, the optimal strategy for a player aware of iCub’s strategy is to counter with the action which
maximizes the gain or minimizes the loss depending on the predicted robot action. For instance, if iCub
went straight and lost in the previous trial, it is likely to deviate in the following trial, in which case
going straight brings the highest outcome. However, closer examination of the WSLS and C-WSLS
strategies in the context of this experiment revealed that they systematically select opposite actions (see
Supp table 2), thus rendering their comparison in terms of occurrence rate rather trivial. Nevertheless,
the length of sequences of these two strategic patterns indicating their recurrence over several trials
showed distinct results: sequences of WSLS were longer in 70% Averted relative to 70% Mutual while
no significant difference was found for C-WSLS. 

Detailed description of the value-based decision-making models

Similarly  to  Hampton  et  al.  (2008),  we  used  three  computational  models  with  different  levels  of
reasoning about the opponent’s actions in order to analyze participants’ strategies. All three models
rely on a form of prediction error to estimate the value of each action (see details below). The agent
then decides which action to perform (go straight s or deviate d) based on the logistic sigmoid function
f. For example, the probability Ps of going straight at trial t is:

Ps ( t )=f (V s ( t ) −V d ( t ) )=
1

1+exp (− β (V s ( t ) −V d ( t ) − λ ))

where Va is the value of action a, λ is a parameter describing a bias toward going straight, and β is the
inverse temperature parameter which determines the degree of stochasticity in the agent’s choice (high
values increase the propensity of choosing the action with the highest value while low values reduce
the difference between action probabilities). The bias parameter was found to improve model fitting
and recovery.

Level 0 – Reinforcement learning model: This is a classical model using the Rescorla-Wagner rule.
Agents learn the value of each action based on the outcome following the performance of these actions
in the past. After each trial t, the value Va of previous action a is updated as follows:

ΔV a (t )=α ( R (t ) −V a (t ) )

where R is the reward experienced at trial t and α the learning rate. Thus, this model tracks the action
values  using  the  prediction  error  determined  by  the  difference  between  the  expected  and  the
experienced reward. Only the value of the selected action is updated after each trial and the values are
plugged in the decision rule defined above.

Level 1 – Fictitious play model: This model introduces a form of reasoning about the other where the
agent estimates the probability POpp

a that the opponent chooses a certain action as follows:

Δ Pa
Opp (t )=α ( Aa

O pp (t ) − Pa
Opp (t ) )
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where AOpp
a is a binary variable which equals 1 if the action a is performed by the opponent at trial t,

and α is the learning rate. The opponent then attributes values to actions based on the game’s payoff
matrix and the opponent’s probability of actions:

V s ( t )=R s ,d Pd
Opp ( t ) − Rs , s P s

Opp ( t )

V d (t )=Rd,d Pd
Opp (t ) − Rd , s P s

Opp (t )

where Ri,j is the outcome obtained when the agent performs action i and the opponent performs j 
according to the payoff matrix. Thus, this model tracks the probability of the opponent’s actions using 
the prediction error determined by the difference between the expected probability of action and the 
observed realization of an action.

Considering that POpp
d = 1 - POpp

s and given the payoff matrix used in our experiment, the decision rule 
can be expressed as follows:

Ps (t )=f (2− 6 Ps
Opp (t ) )

Level 2 – Influence model: This model builds on the fictitious play model to take into account the
influence of the agent’s actions on the opponent’s choices. This is done by assuming that the latter is
using a fictitious play strategy. The estimated probability of the opponent’s action is then computed as
follows:

Δ Pa
Opp (t )=α ( Aa

Opp (t )− Pa
Opp (t ) )+η c1 Pa

Opp (t ) (1− Pa
Opp (t ) ) ( Aa

Self (t )− Pa
Self (t ) )

with Pa
Self

( t )=−(
c2

c1

+
1

β c1

log(
1

Pa
Opp − 1))

and c1=Ra ,a − Rā , a− Ra , ā+R ā ,ā

and c2=Ra ,ā − Rā , ā

where AS
a is a binary variable which equals 1 if the action a is performed by the agent at trial t, η is the

influence rate, c1 and c2 are constants computed from the payoff matrix. For example, to estimate POpp
s ,

we calculated that  c1=-6 and  c2=2. Additionally,  PSelf
a is a second-order estimation of the opponent’s

estimation  of  the  probability  that  the  agent  performs  action  a.  This  added  influence  term  is
approximated  by plugging  the  update  rule  of  the  probability  estimation  in  the  equation  for  value
calculation.  The second-order probability  estimation is  obtained by inverting the decision rule (see
Hampton et al., 2008). This model thus incorporates an additional form of prediction error determined
by the difference between the prediction of the expected probability  of the player’s own action as
estimated by the opponent and the observed realization of the action.

To reduce the number of hyperparameters in this model, we also tested a variant in which η=α. This
variant was found to have similar results compared to the full version and was thus preferred for its
simplicity. Thereby, all three models (RL, Fic and Inf) have the same number of hyperparameters (=3):
α,  λ and  β which  were  constrained  between  0  and 1,  0  and  1  and 0  and 10 respectively.  In  the
optimization  procedure,  they  were  randomly  initialized  by  sampling  the  following  distributions:
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α∼Beta (1.1,1 .5 ),  λ∼Beta (1.1,1.1 ),  β∼Beta (1.1,1 .5,10 ). These distributions were defined using the
Python scipy.stats package and when indicated, the third argument described the scaling parameter.
The fitting procedure is explained in the Materials and methods sections of the main text.
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Supplementary  Figure  1:  Participants  performance  and  response  time  in  the  pilot  study.  A) No
significant effect of the gaze was found on the proportion of “straight” choices. C) Response time was
significantly longer following mutual gaze compared to averted gaze.  D) Model comparison for five
variants of the drift diffusion model assuming that the robot’s gaze had an effect of one, two or none of
the model  parameters.  The best  fitting  model  was found to be the one imputing  the difference  in
response times to an effect on both the non-decision time t and the decision threshold a. DIC: deviance
information criterion.  BPIC: Bayesian predictive information criterion.  Lower values are better.  E)
Posterior density of the effect distributions for the best fitting model showing a significant effect on
decision threshold a but not on non-decision time t. HDI: highest density interval. Inset, effect sizes
(see Materials and methods).  N=18 in A and B. Error bars represent 95% confidence intervals. * p <
0.05. n.s., not significant at p > 0.05. 
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Supplementary Figure  2:  Evaluation of hyperparameter optimization for the value-based decision-
making models.  A) Confusion matrix summarizing the results of model recovery. All three models
were fitted to 100 simulated subjects. Each cell represents the proportion of the simulated data that was
best fitted by a certain model. Results showed moderate to strong recovery rates for all models.  B, C
and D) Each participant’s best fitting model was simulated again 10 times and the average probability
of going straight, probability of repeating the previous action, and total scores was compared to actual
participants’  data in  order to validate  the models.  B) Correlation between the probability  of going
straight  in  participants’  data  and in  simulated  data  from each  participant’s  best  fitting  model.  C)
Correlation  between  the  probability  of  repeating  the  previous  action  in  participants’  data  and  in
simulated  data  from each  participant’s  best  fitting  model.  D) Correlation  between  total  scores  in
participants’ data and in simulated data from each participant’s best fitting model.
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Supplementary  Figure  3:  Patterns  of  self-oriented  and  other-oriented  strategic  behaviors  in
participants' choice sequences.  A) Occurrence rates of one self-oriented (win-stay-lose-shift, WSLS)
and three  other-oriented  (counter-win-stay-lose-shift,  C-WSLS;  tit-for-tat,  T4T;  stay-shift-imitation,
SS-Imit) patterns. 70% Averted and 70% Mutual conditions are taken from the main experiment’s data
whereas the Equal condition is based on data from the pilot study. Occurrence rates of WSLS and C-
WSLS in the 70% Mutual condition are similar to the Equal condition. They are significantly lower
than 70 Averted in the case of WLSL and significantly greater in the case of C-WSLSL (70%A vs
70%M, U=108.5, p=0.006, 70%A vs Equal, U=100.0, p=0.017, Mann-Whitney test). No significant
difference was found for T4T and SS-Imit.  B) The average length of sequences of the WSLS pattern
was significantly greater in the 70% Averted condition (70%A vs 70%M, U=120.0, p=0.015, 70%A vs
Equal, U=114.0, p=0.045, Mann-Whitney test). No significant difference was found for C-WSLS, T4T
and  SS-Imit.  N=20  for  70%A  and  70%M  and  N=18  for  Equal  in  A.  Error  bars  represent  95%
confidence intervals. * p < 0.05, ** p < 0.01. n.s., not significant at p > 0.05.
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Trial type Utterance in English Utterance in Italian

Participant goes straight
iCub goes straight

“Oh no!” “Oh no!”

“Ouch!” “Ouch!”

“Too bad!” “Peccato!”

Participant goes straight
iCub deviates

“Ohh” “Ohh”

“Nice move” “Bella mossa”

“Well done” “Ben fatto”

Participant deviates
iCub goes straight

“Yess!” “Sii!”

“Nice!” “Evvai”

“You’re safe” “Sei salvo”

Participant deviates
iCub deviates

“Good” “Bene”

“We’re safe” “Siamo salvi”

“Mmm” “Mmm”

Supplementary  Table  1:  iCub’s  verbal  utterances  in  English  (pilot  study)  and  Italian  (main
experiment) which were randomly sampled 40% of the trials depending on the trial outcome in order to
maintain participants’ engagement in the task

Previous trial Current trial

Players’choices Outcome Predicted iCub’s choice Decision

Ppt: Straight
iCub: Straight

-4 (lose)
-4 (lose) C-WSLS: Deviate

WSLS: Deviate
C-WSLS: Straight

Ppt: Straight
iCub: Deviate

3 (win)
0 (lose) C-WSLS: Straight

WSLS: Straight
C-WSLS: Deviate

Ppt: Deviate
iCub: Straight

0 (lose)
3 (win) C-WSLS: Straight

WSLS: Straight
C-WSLS: Deviate

Ppt: Deviate
iCub: Deviate

1 (win)
1 (win) C-WSLS: Deviate

WSLS: Deviate
C-WSLS: Straight

Supplementary Table 2: Detailed description of the player’s decisions as predicted by the win-stay-
lose-shift (WSLS) and counter-win-stay-lose-shift (C-WSLS) strategies showing that these strategies
lead to opposite choices in the context of our experiment.
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Gaze type Azimuth Elevation Vergence

Mutual gaze 0.0 -5.0 3.0

Averted (right side) 20.0 -25.0 3.0

Averted (left side) -20.0 -25.0 3.0

Neutral (at screen) 0.0 -25.0 3.0

Supplementary Table  3:  Azimuth,  Elevation  and Vergence  (in  degrees)  in  the  absolute  frame of
reference fed to the robot gaze controller to direct eye movements to the desired positions.
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