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Abstract:  

High resolution automotive radar sensors are required in order to meet the high bar of 

autonomous vehicles needs and regulations. However, current radar systems are limited in 

their angular resolution causing a technological gap. An industry and academic trend to 

improve angular resolution by increasing the number of physical channels, also increases 

system complexity, requires sensitive calibration processes, lowers robustness to hardware 

malfunctions and drives higher costs. We offer an alternative approach, named Radar signal 

Reconstruction using Self Supervision (R2-S2), which significantly improves the angular 

resolution of a given radar array without increasing the number of physical channels.  R2-

S2 is a family of algorithms which use a Deep Neural Network (DNN) with complex range-

Doppler radar data as input and trained in a self-supervised method using a loss function 

which operates in multiple data representation spaces. Improvement of 4x in angular 

resolution was demonstrated using a real-world dataset collected in urban and highway 

environments during clear and rainy weather conditions. 

 

 

 

INTRODUCTION 

 

Autonomous vehicles attracted great attention in recent years due to their tremendous 

impact on the economy  and society (1) as well as their potential to save lives (2). The 

evolution from current driver assistance systems into fully autonomous vehicles requires 

several, functionally independent sensing modalities for real time sensing and perception 

(3). The requirement for sensing redundancy (4) spurred research toward more advanced 

camera and LiDAR based solutions. However, these sensing modalities suffer from inherent 

sensitivity to harsh weather and limited effective range, due to the electromagnetic spectrum 

they utilize, usually 400 − 800𝑛𝑚 for cameras and 850 − 950𝑛𝑚 or 1.45 − 1.55𝜇𝑚 for 

LiDARs. 

 

In contrast, automotive radar usually utilizes a frequency spectrum of 76 − 81𝐺𝐻𝑧, which 

offers robustness to weather conditions as well as longer effective range. However, 

utilization of radar for autonomous driving is hindered in part due to the relatively limited 

angular resolution currently provided by available commercial platforms.  

 

The angular resolution of a radar translates to the ability to distinguish and separate between 

targets and is proportional to the antenna diameter. In automotive scenarios, where the 

environment is usually rich with objects and targets (i.e. cluttered environment), angular 

resolution is critical. For example, two cars driving in adjacent lanes might be miss-detected 

as a single object by a limited angular resolution radar.   
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In a radar array, the individual antenna elements are usually positioned about 𝜆 2⁄  apart from 

each other, with 𝜆 representing the central wavelength in free-space; therefore increasing 

the number of antenna elements should enlarge the dimensions of the physical aperture. 

Following this principal, an industry and academic trend has emerged to enlarge the aperture 

by increasing the number of physical transmitting and receiving channels. The drawbacks 

of this approach are complex system architecture prone to hardware failure, requirement for 

sensitive calibration process and high costs which hinder the adaptation of such systems in 

commercial applications. 

 

An additional important factor affecting a radar’s angular resolution is the algorithm used 

for beamforming. Fast Fourier Transform (FFT) performed on the angular dimensions of a 

radar array is considered a conventional beamformer and sets the Fourier resolution of a 

radar. Super-resolution (SR) methods which aim to achieve sub-Fourier resolution, include 

Estimation of Signal Parameters via Rotation Invariance Techniques (5) (ESPRIT) or the 

popular Multiple Signal Classification (6) (MUSIC). MUSIC’s main disadvantages are a 

requirement of prior information on the number of targets, assumption on coexistent targets 

to be uncorrelated and high computation costs. These limitations make its use in real-world 

automotive radar applications more challenging. In addition, most current SR methods 

usually require using several snapshots (i.e. frames) in order to improve the estimation of 

the spatial covariance matrix. This requirement is problematic in safety critical, automotive 

applications since each added snapshot increases the response time of the system. 

 

Recently, deep learning has begun to make an impact on traditional radar signal processing, 

perception and system design. Radar data was used with DNN for high resolution road 

segmentation (7), road user classification (8), multi-class object classification (9), road user 

detection (10), vehicle detection (11), lane detection (12) and semantic segmentation (13, 

14). Apart from perception tasks, DNNs have proven useful for cognitive antenna design in 

phased array radar (15) and enhanced radar imaging (16). 

 

Another class of algorithms in radar signal processing is Compressed Sensing (CS), which 

usually exploit sparseness in a scene to reconstruct one or more dimensions of a radar data 

tensor (i.e. range-Doppler-azimuth-elevation). However, this is a property that does not 

often occur in cluttered, urban driving scenarios. Further details on the lack of sparsity in 

the dataset used in this work are provided in the supplementary material and shown in Fig. 

S1. Complex Block Sparse Bayesian Learning was demonstrated for radar signal 

reconstruction (17). A spatial CS framework (18) was developed and evaluated by 

numerical simulations for 5 targets with constant Signal to Noise Ratio (SNR). The authors 

assumed the number of targets is known, noise level is available and forewent from 

estimation of measurements in the range and Doppler dimensions. Iterative method with 

adaptive thresholding (19) was used for a sparse Multiple In Multiple Out (MIMO) radar 

array where the authors (20) conducted examinations of a corner reflector in an anechoic 

chamber and a single parked vehicle at a range of 4m. Examination of CS for MIMO radar 

(21) concluded that these techniques remain valid when there are under 106 scatter points 

in a scene. However, in typical urban scenes which may contain many more scatter points, 

these methods require using a high SNR threshold in order to minimize the number of 

scatterers.  

 

Research towards utilizing DNNs to improve radar angular resolution is in its early stages. 

Radar data in range-Doppler representation was used with a Generative Adversarial 
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Network (GAN) architecture to demonstrate SR in two specific cases (22): pedestrian 

micro-Doppler signature by collecting data of people walking on a treadmill and a staircase 

which achieved angular SR with a factor of 2𝑥. The authors (22) point out the difficulty of 

assembling a large manually labelled dataset in real-world scenarios for the general case of 

numerous types of objects, classes, materials and shapes. 

 

Instead of real-world data, synthetic data was used for training with a single radar snapshot 

as input (23). However, using synthetic data for training before deployment in a real-world 

environment usually results in relatively lower performance caused by modelling and 

numerical errors in the simulation used to create the synthetic data. This is also referred to 

as the sim-to-real adaptation challenge. 

 

Multiple snapshots of a spatial covariance matrix were used with a Convolutional Neural 

Network (CNN) and a 1D antenna array with simulated data  for Direction of Arrival (DOA) 

estimation and SR (24). A single snapshot of a spatial covariance matrix was used with a 

fully connected model for DOA estimation and super resolution of a 2D antenna array  with 

simulated data (25) and a 1D antenna array with both simulation and real-world data where 

the targets were corner reflectors (26). Two snapshots were used with an anechoic chamber 

setup to generate a dataset which was used with a fully connected model for DOA estimation 

(27).  

 

Although shown only for simulated data or controlled scenarios with very few targets, these 

works show the potential DNN have for super-resolving radar arrays in real-world 

environments which usually contain many targets and reflections. We hypothesize that 

previous methods for DNN-based radar SR failed or did not try to generalize to 

uncontrolled, real-world environments mainly due to a lack of a suitable training 

methodology. 

 

Self-supervised learning is a young research area and is considered a part of unsupervised 

training, where one part of a data is used to predict a different part of the same data. The 

strength and disruptive potential of this training methodology lies in the fact that in many 

applications, data is in abundance, however labeling the data, which is essential for 

supervised training, is a time consuming and expensive process. Furthermore, in some 

applications such as image denoising (28), manual labeling is not a viable solution. Self-

supervised techniques showed promising early results for semantic image segmentation 

(29–31), temporal cycle-consistency to learn temporal alignment between videos (32), 

dense shape correspondence for 3D objects (33) and feature representation for visual tasks 

(34–36).  

 

The field of image SR has also utilized self-supervision to create State-Of-The-Art (SOTA) 

result (37–40). At its fundamentals, self-supervision for image SR uses a high-resolution 

image which is down-sampled to create a low-resolution image. A DNN is then trained 

using the low-resolution image as input and the high-resolution image as label. 

 

Apart from computer vision, research into signal processing has also begun using self-

supervised learning with other forms of data. In audio data, it was used for speech 

enhancement (41),  pitch estimation (42, 43), source separation (44) and feature 

representation (45–47). In electroencephalography data, self-supervision was used for 

representation learning (48) and in electrocardiogram data, self-supervised learning was 

utilized for emotion recognition (49). 
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This work proposes to leverage self-supervised learning to super-resolve a radar array. More 

specifically, R2-S2 uses an auto-encoder trained in a self-supervised method with a diluted 

radar array and used to reconstruct the amplitude and phase of missing receiving channels, 

where the dilution of the radar array was designed to limit the resolution of the input array. 

To enforce coherence during the reconstruction process, a loss function which operate on 

multiple data representation spaces was utilized.  

 

In contrast to several radar-based CS and SR methods, R2-S2 does not require sparsity in 

the range-Doppler-azimuth dimensions, it can be used in highly cluttered environments such 

as crowded urban streets with numerous objects and targets present in the radar Field of 

View (FOV) and does not require prior knowledge on the number of targets in a scene. 

Validation was performed on a real-world dataset collected using a vehicle mounting a radar 

unit and driven in urban and highway environments in both clear and rainy weather 

conditions. 

 

 

RESULTS  

 

Data 

In this work we target the general application of radar SR. To demonstrate our approach, a 

dataset was collected in uncontrolled urban and highway environments in both clear and 

rainy weather conditions, using a vehicle mounting a temporally synced camera and radar 

with their field of view overlapped. The dataset was split into 85,671 frames for training 

and 6,632 frames for validation. The validation dataset was separated from the training 

dataset by collecting data during different dates and locations in order to avoid the 

appearance of similar frames in both datasets, which could have occurred in the case of 

simple random split. Samples from the training dataset are shown in Fig. 1. 

 

We used a Frequency Modulated Continuous Wave (FMCW) MIMO radar with a 79GHz 

carrier frequency. A FMCW radar transmits a linear chirp signal whose frequency increases 

linearly with time. When combined with means of signal processing (mainly FFT), it is 

possible to extract useful information from the raw signal such as, range, velocity and DOA 

(50). 

 

MIMO radar is comprised of multiple transmitters (Tx) and receivers (Rx) antennas. Each 

transmitter can transmit a waveform independently of the other transmitting antennas while 

each of the receiving antennas can also receive these signals independently. By processing 

measurements from different transmitting and receiving antennas, one can create a virtual 

aperture whose size is larger than the physical aperture. i.e. an antenna array comprised of 

𝑁𝑇𝑥 transmitters and an array of 𝑁𝑅𝑥 receivers, results in a virtual array of 𝑁𝑇𝑥×𝑁𝑅𝑥 

channels. This increase in aperture size, translates to improved performance such as: spatial 

resolution, resistance to interference and probability of detection of the targets (51). In this 

work a collocated MIMO radar was used, however, the proposed method can be applied to 

a non-collocated MIMO radar as well. In addition, although we focus on MIMO radar in 

this work, a similar approach can be applied with other multi-channel radars.  

 

Data preprocessing 

A radar signal in its raw form, contains a variety of information originating from different 

physical phenomena in the environment such as targets reflections and electromagnetic 
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wave propagation through the atmosphere. In addition, hardware related effects originating 

from components such as the signal generator, receive/transmit chains and antenna elements 

also greatly impact data fidelity. The combination of numerous, simultaneous, sometimes 

non-linear and often coupled mechanisms which affect a radar signal, also make it 

mathematical modeling very difficult (52, 53). To differentiate between different 

interactions, FFT has long become a staple for radar signal processing. More specifically, 

FFT is used to transform a signal from its raw measurement form to different representation 

spaces, such as range-Doppler for example. In this work, the radar used a Uniform Linear 

Array (ULA) antenna array configuration with 16 virtual channels, providing the ability to 

process both amplitude and phase information in 3 dimensions: range, Doppler and azimuth. 

The waveform used was configured to 48 sweeps and 256 samples with maximum detection 

range of 64m and maximal relative velocity of 5.8m/s. While the FOV was configured to 

100ᵒ horizontal.  

 

The input to the model was created by applying a window function and FFT on both sweeps 

and samples dimensions to generate a complex data tensor with the dimensions of virtual 

channel, range and Doppler. More specifically, the original signal 𝑥𝑟𝑎𝑤 has the dimensions 

of (virtual channel, samples, sweeps) and first goes through the range processing described 

in eq. 1 which includes windowing and real to complex FFT on the sample dimension.  

 𝑥𝑟𝑎𝑛𝑔𝑒 = ℱ𝑠𝑎𝑚𝑝𝑙𝑒(𝑊𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑟𝑎𝑤)) (1) 

Where ℱ is FFT and 𝑊 is a window function. The transformed signal 𝑥𝑟𝑎𝑛𝑔𝑒  has the 

dimensions of (virtual channel, range, sweeps) and goes through Doppler processing which 

includes windowing and complex to complex FFT on the sweeps dimension, as described 

in eq. 2. 

𝑥𝑟𝑎𝑛𝑔𝑒−𝐷𝑜𝑝𝑝𝑙𝑒𝑟 = ℱ𝑠𝑤𝑒𝑒𝑝(𝑊𝑠𝑤𝑒𝑒𝑝(𝑥𝑟𝑎𝑛𝑔𝑒)) (2) 

The resulting signal 𝑥𝑟𝑎𝑛𝑔𝑒−𝐷𝑜𝑝𝑝𝑙𝑒𝑟 has the dimensions of (virtual channel, range, Doppler) 

and is then used as input to a DNN. The suggested method holds several important 

characteristics in regard to data preprocessing which contribute to its generality and 

robustness while addressing the shortcoming of previous approaches to radar SR. Mainly, 

there is no requirement for specific filtering, there are no assumptions on the sparsity of the 

data, there is no minimum SNR threshold, no calibration is required, there is no maximum 

number of scatter points and there are no requirements of prior information on the scene. In 

addition, in order to remove the requirement for complex radar signal modelling, R2-S2 was 

designed as an end-to-end approach, forcing a DNN to implicitly learn a signal model as 

part the reconstruction process. Meaning, there is no need to provide an accurate and 

detailed mathematical description of the signal.  
 

 

Experiments 

The model was given as input a diluted 1D sub-array of complex (both amplitude and phase) 

range-Doppler maps while the remainder array was used as label. Meaning, the training is 

performed in self-supervised manner. As there are numerous possible permutations for the 

choice between input and label receiving channels, experiments were performed using an 

example configuration described in the ‘Materials and Methods’ section and shown in Fig. 

2 where a virtual array of 16 channels was split to 4 receiving channels used as an input 

array while the remainder 12 receiving channels are used as label. Meaning, the combined 

array has 4x improved resolution than the input array. 
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Sample results from the validation dataset are provided in Fig. 3 showing representative 

scenarios from urban and highway environments in both clear and rainy weather conditions. 

Also provided in Fig. 3, cartesian view comparison between the label and predicted 

beamformers which were obtained by performing FFT on the channel dimension of the 

original array and the predicted array as shown in Fig. 2. These results demonstrate the use 

of R2-S2 to super-resolve a limited angular resolution RADAR array thereby achieving 4x 

improved resolution in scenarios representing various combinations of dynamic and static 

objects, including vehicles, vegetation, sidewalks, poles and structures. 

 

Further validation was performed using two evaluation metrics:  L1 and PSNR. Both were 

averaged over the validation dataset. Lower L1 error corresponds to improved 

reconstruction and was calculated by eq. 3: 

L1 =
1

𝑁𝑖𝑁𝑗
∑

|𝑦𝑖,𝑗
𝑝𝑟𝑒𝑑 − 𝑦𝑖,𝑗

𝑙𝑎𝑏𝑒𝑙|

|𝑦𝑖,𝑗
𝑙𝑎𝑏𝑒𝑙|

𝑖,𝑗

 (3) 

Where 𝐿1 is the reconstruction metric. In the range-Doppler representation space both 

metrics were calculated for each receiving channel separately while in the beamformer 

representation space (i.e. rang-Doppler-azimuth) the metrics were calculated globally to 

focus on coherence. 

 

Since R2-S2 deals with coherent reconstruction of an array’s response, the important 

metrics are associated with the beamformer representation space and more specifically, the 

combination of low L1 and high PSNR which correlate to coherent beamforming.  

 

Table 1 displays an ablation study performed on the loss function described in the ‘Materials 

and Methods’ section and was averaged over the validation dataset. The results show that 

the best performances (in bold) are achieved by using all parts of the loss function, 

suggesting improved coherence is attained by adding the beamformer constraints to the 

optimization process. 

 

The critical importance of superior angular resolution for automotive radars can be further 

understood by examining common everyday driving scenarios as demonstrated in Fig. 4. 

These examples demonstrate how limited-resolution radars (i.e. the input radar array used) 

can falsely detect objects in front of the vehicle even though the road ahead is clear. In 

addition, adjacent objects can also be falsely detected as a single object. These highly 

undesired phenomena can be resolved by using our method to increase the angular 

resolution of the radar array.  

 

To further support the general applications of R2-S2, experiments were performed with a 

different permutation of input and label receiving channels. This configuration, which was 

called ‘sparse array configuration’ is displayed in Fig. 5 where R2-S2 is used to interpolate 

receiving channels between sparsely spaced input receiving channels. Sample results from 

the validation dataset are provided in Fig. 6, where 4 uniformly spaced receiving channels 

are used as input and 12 receiving channels are used as label. In this configuration, the 

resolution of the input and label arrays are similar (they share aperture size), however due 

to the large spacing between receiving antenna elements in the input array, the input 

beamformer suffers from high grating lobes which severely degrade performance. By 

applying R2-S2 we were able to coherently reconstruct the missing receiving channels and 

match the performance of the label array. 
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Additional validation of the sparse array configuration was performed on the validation 

dataset and compared to bi-cubic interpolation. The results provided in Table 2 show that 

bi-cubic interpolation does not enforce coherence during the reconstruction process, as 

evident by the high L1 score in the beamformer representation space. In contrast, R2-S2 is 

able to reconstruct the array correctly and coherently. 

 

Since R2-S2 uses signal reconstruction to improve resolution, it can also be used for 

mitigation of hardware failure. More specifically, in cases where one or more receiving 

channels are randomly corrupted, the suggested method can be used to replace them with 

artificial receiving channels. This configuration, which was called ‘random missing 

channels configuration’ is displayed in Fig. S2.  

 

To demonstrate this approach, experiments were performed where a DNN is used to 

estimate random missing receiving channels. Since the number and position of the missing 

receiving channels can vary and is not known in advance, the DNN first needs to determine 

if each receiving channel is corrupt and then coherently reconstruct it based on the 

remaining receiving channels. To assess the performance of this configuration we first 

conduct a quantitative comparison to bi-cubic interpolation with a single randomly missing 

receiving channel. The results are provided in Table S1 and were performed using the 

validation dataset, where R2-S2 outperforms bi-cubic interpolation as evident in lower L1 

and high PSNR in the beamformer representation space. Note that bi-cubic interpolation 

cannot estimate receiving channels at the edge of an array whereas our method is able to 

extrapolate as well as interpolate. 

 

A generalized version of this configuration utilizing a single DNN trained to predict a 

random number of randomly positioned receiving channels was also assessed. A 

quantitative comparison of a DNN trained with up to 8 random missing channels and 

validated over the validation dataset is shown in Fig. S3. As expected, we observe a decrease 

in performance as reflected in L1 and PSNR metrics as the number of random missing 

channels increases. Sample results from the validation dataset are provided in Fig. S4 

showing a detailed analysis of R2-S2 for the random missing channels configuration where 

we observe that R2-S2 can reconstruct the range-Doppler maps and create a coherent array. 

By combining this analysis with a specific performance criterion, it is possible to set a 

maximum number of missing channels for which this configuration may be used for in a 

real-world application. 

 

 

DISCUSSION  

 

Limited angular resolution is one of the main limiting factors in automotive radar 

applications. An industry trend to improve angular resolution by increasing the number of 

physical receiving channels also increases system complexity, creates cumbersome 

calibration processes, adds sensitivity to hardware failure, decreases power efficiency and 

drives higher cost. An alternative approach is to use SR algorithms. However, unless very 

carefully designed and implemented, this can also introduce sensitivity to calibration, 

increase latency, add limitations on the number of targets and in some cases a requirement 

for prior knowledge on the environment.  
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To address these limitations, R2-S2 was designed with a single snapshot as input which is 

an important property in automotive applications where reaction time is critical. 

Furthermore, the dataset was collected in uncontrolled urban and highway environments 

during both clear and rainy weather conditions and was not focused on a specific class of 

objects. The preprocessing stage did not contain special filtering nor requires any calibration 

process, there is no requirement for prior knowledge on the number of targets in a scene and 

no minimum SNR threshold. In addition, the run-time is invariant to the number of 

detections in a frame. Meaning, a highly cluttered scene will not cause a bottleneck in 

processing time which is an important characteristic in real-time applications. 

 

The proposed approach can replace or used in addition to existing SR methods and uses 

self-supervised learning to train a DNN to predict artificial receiving channels in range-

Doppler representation outside of an array’s aperture. The combined, original and artificial 

receiving channels create a larger aperture, if coherence is maintained, the improvements of 

the larger array are improved angular resolution and higher SNR. 

 

To enforce coherence, additional constraints were introduced during the training process. 

These constraints were in the form of additional loss terms operating in the beamformer 

representation space. Training was performed using both representation spaces (i.e. range-

Doppler and beamformer representations) simultaneously.  

 

In this work, FFT was chosen as a beamformer. However, alternative beamformers can also 

be used. For example, the constraints introduced in the loss function as ℒ𝑏𝑓 can be created 

by applying SR algorithm such as MUSIC. By combining the suggested approach with other 

SR methods, it may be possible to achieve higher improvement factors than previously 

achieved. 

 

Experiments were performed with a configuration of 4 input receiving channels and 12 label 

receiving channels which achieved a 4x improved angular resolution factor. However, 

additional permutations are also possible, for example, 8 input receiving channels and 8 

labels receiving channels would have created a 2x improved angular resolution factor. 

Furthermore, given a larger original radar array, the suggested method can potentially 

achieve larger improvement factors. For example, an array with 64 receiving channels can 

be split into 8 input receiving channels and 56 label receiving channels which results in 8x 

improved resolution factor. 

 

An important observation is shown in Fig. 4c, which demonstrates a case where the radar is 

stationary as evident by the Doppler plot centered around 𝑣 = 0 𝑚/𝑠. In this case, similar 

qualitative results arise in comparison to cases where the radar was moving, which suggests 

that in contrast to previous methods (22), a DNN trained with R2-S2 does not rely 

exclusively on the Doppler and micro-Doppler effects during the reconstruction process. 

 

R2-S2 can also be used with different a type of configuration, which was called ‘sparse 

array’ and simulates a sparse radar array. Meaning, the distance between each virtual 

antenna element is larger than 𝜆 2⁄ , which is optimal in terms of grating lobes and spatial 

ambiguity. This allows the array to have a larger aperture size, thus improving its angular 

resolution. However, this enlarged element distance causes degraded performance in the 

element pattern of the array as observed in Fig. 6. Where we demonstrate that when only 

using the sparse input receiving channels for beamforming, there is a significant reduction 

in SNR compared to using the entire array. However, by utilizing R2-S2, coherent artificial 
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receiving channels are predicted to fill in the gaps, which make it possible to have a larger 

aperture and still maintain high performance, matching those of the full array. 

 

Additional application of R2-S2 refers to its use for mitigation in cases of corrupt receiving 

channels. This configuration trains a DNN to predict one or more random receiving channels 

from the remaining functional receiving channels. During inference, the missing receiving 

channels can be any receiving channel in the array, without the need to change configuration 

or ‘notify’ the model which receiving channel is missing. Meaning, the model identifies 

which receiving channel is missing and predicts the appropriated artificial receiving 

channel. 

 

This work offers an alternative approach to conventional radar beamforming and super 

resolution which challenges an industry and academic trend towards increasing the number 

of physical channels in radar arrays in order to achieve improved angular resolution. The 

suggested method, termed R2-S2, uses a DNN trained in a self-supervised method with a 

diluted antenna array to super-resolve a radar by coherently predicting the amplitude and 

phase of receiving channels outside of the physical or virtual aperture using a novel loss 

function in multiple data representation spaces. The results demonstrated robust, real time 

performance and an improvement factor of 4x in cluttered scenarios by using a real-world 

dataset collected in urban and highway environments during clear and rainy weather 

conditions. In addition, R2-S2 can also be used for mitigation of hardware failure which can 

further increase the reliability of automotive radars. 

 

This work suggests that learning based methods can be combined or replace traditional 

methods for radar super-resolution in real-world applications. We hope our method will 

assist to bridge the technological gap in radar angular resolution and enable radar centric 

autonomous driving. In a broader sense, this work demonstrates how self-supervised 

learning can be used for radar signal processing which we hope will inspire more research 

in this direction. 

 

 

MATERIALS AND METHODS 

 

Training methodology 

A fundamental concept of self-supervised learning involves manipulating, augmenting or 

masking parts of an input data and then predicting the original data, part of the original data 

or which manipulation was performed. In this work we propose to use self-supervision to 

predict radar data and treat the SR problem as a signal reconstruction problem while 

combining it with traditional beamformers. Meaning, our method can work in combination 

with other SR methods.  

 

In order to improve a radar array’s angular resolution, R2-S2 uses a DNN to predict received 

data outside of the physical or virtual array aperture. The combination of the original 

receiving channels and the predicted receiving channels create an artificial radar array with 

a larger aperture and thus improved angular resolution. In this work, the term artificial 

receiving channels is used for the predicted receiving channels in order to differentiate them 

from virtual receiving channels created by a MIMO process. 

 

We propose to expand a virtual MIMO array and create an artificial array comprised of 

virtual receiving channels from the MIMO array and artificial receiving channels from the 
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DNN’s prediction. Together, all channels can then be used with a beamformer. In this work, 

FFT was used as beamformer, however R2-S2 can also be applied with other beamformers, 

for example MUSIC or ESPRIT. The coherence of the predicted artificial channels requires 

special attention. Otherwise, the resulting beamforming will not achieve SR. This task is 

especially difficult since it requires a DNN to extrapolate coherent data for receiving 

channels positioned far from the original input receiving channels.  

 

Our method allows for flexibility in the partitioning between input and label receiving 

channels. For example, in a ULA with 16 channels, a partitioning of 8 input receiving 

channels and 8 label receiving channels will result in a 2x angular resolution improvement 

factor. Another example for the receiving channels partitioning is displayed in Fig. 2, where 

a ULA with 16 receiving channels is considered. The central 4 receiving channels are used 

as input to a DNN while the remainder 12 receiving channels are used as label, as seen in 

Fig. 2a. During inference mode, the original input receiving channels are used twice, first 

as an input to a DNN from which 12 receiving channels are predicted. Second, they are used 

together with the predicted receiving channels to create an artificial array which has a total 

of 16 receiving channels, thus 4x improved resolution from the original 4 receiving channels 

input array, as seen in Fig. 2b. 

 

Model 

The model used in all experiments was adapted from (7) and based on the encoder-decoder 

Unet (54) model combined with position embedding and self-attention (55) layers working 

on the channel dimension to encourage learned cross channel correlations. Additional layers 

used were average pooling, leaky-Relu activation and instance normalization. All 

convolution and transpose convolution used a 3x3 kernel. The proposed model has about 

1.4M parameters and achieves 15ms inference time on 2080Ti GPU, which makes the 

suggested approach attractive for embedded, real time applications.  

 

Loss Function 

In order to coherently reconstruct a radar array’s response, a loss function was constructed 

which operates in two data representation spaces simultaneously. As a general partitioning, 

the first loss representation space was range-Doppler (ℒ𝑟𝑑) and was used to reconstruct the 

amplitude. The second loss representation space, termed ‘Beamformer’ (ℒ𝑏𝑓), was achieved 

by applying FFT on the channel dimension and was used mainly to reconstruct the phase 

while enforcing coherence throughout the array.  

 

The loss term is a sum of range-Doppler based and beamformer based losses: ℒ = ℒ𝑟𝑑 +
ℒ𝑏𝑓. The resulting multi-objective loss function combines two different physical 

representation, therefore addition of such loss terms should be done carefully. During 

experimentation, normalization of each loss term was examined, however, no significant 

performance improvements were observed.  

 

Both loss terms are composed of three components: reconstruction loss, energy conservation 

and total variation. In the range-Doppler representation space, the loss function is displayed 

in eq. 4:  

ℒ𝑟𝑑 = 𝜆𝑟𝑑𝑟𝑒𝑐
ℒ𝑟𝑑𝑟𝑒𝑐

+ 𝜆𝑟𝑑𝑒𝑛𝑒𝑟𝑔𝑦
ℒ𝑟𝑑𝑒𝑛𝑒𝑟𝑔𝑦

+ 𝜆𝑟𝑑𝑡𝑣
ℒ𝑟𝑑𝑡𝑣

 (4) 

Where (𝜆𝑟𝑑𝑟𝑒𝑐
, 𝜆𝑟𝑑𝑒𝑛𝑒𝑟𝑔𝑦

, 𝜆𝑟𝑑𝑡𝑣
) are hyperparameters for the reconstruction, energy and total 

variation losses respectively. ℒ𝑟𝑑𝑟𝑒𝑐
 is the L2 reconstruction loss, shown in eq. 5: 
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ℒ𝑟𝑑𝑟𝑒𝑐
=

1

𝑁𝑖𝑁𝑗
∑(𝑦𝑖,𝑗

𝑝𝑟𝑒𝑑 − 𝑦𝑖,𝑗
𝑙𝑎𝑏𝑒𝑙)

2

𝑖,𝑗

 (5) 

𝑁𝑖 is the number of samples, 𝑁𝑗 is the number of receiving channels, 𝑦𝑖,𝑗
𝑝𝑟𝑒𝑑

 is the DNN 

prediction for sample 𝑖 of a receiving channel 𝑗 in range-Doppler representation and 𝑦𝑖,𝑗
𝑙𝑎𝑏𝑒𝑙 

is the associated label.  ℒ𝑟𝑑𝑒𝑛𝑒𝑟𝑔𝑦
 is a smooth L1 energy conservation loss, shown in eq. 6,7: 

ℒ𝑟𝑑𝑒𝑛𝑒𝑟𝑔𝑦
=

1

𝑁𝑖𝑁𝑗
∑ 𝑧𝑖,𝑗

𝑖,𝑗

 (6) 

𝑧𝑖,𝑗 = {
0.5 ∙ (|𝑦𝑖,𝑗

𝑝𝑟𝑒𝑑| − |𝑦𝑖,𝑗
𝑙𝑎𝑏𝑒𝑙|)

2
𝑖𝑓 ||𝑦𝑖,𝑗

𝑝𝑟𝑒𝑑| − |𝑦𝑖,𝑗
𝑙𝑎𝑏𝑒𝑙|| < 0.5 

||𝑦𝑖,𝑗
𝑝𝑟𝑒𝑑| − |𝑦𝑖,𝑗

𝑙𝑎𝑏𝑒𝑙|| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

|𝑦𝑖,𝑗
𝑝𝑟𝑒𝑑| is the amplitude of the DNN’s prediction. Displayed in eq. 8 and 9, ℒ𝑟𝑑𝑡𝑣

 is the total 

variation loss calculated over the range and Doppler dimensions: 

ℒ𝑟𝑑𝑡𝑣
=

1

𝑁𝑖𝑁𝑗
∑ 𝑡𝑣𝑖,𝑗

𝑖,𝑗

 (8) 

𝑡𝑣𝑖,𝑗 =
1

𝑁𝑘𝑁𝑙
∑ ||𝑦𝑖,𝑗

𝑝𝑟𝑒𝑑(𝑘, 𝑙)| − |𝑦𝑖,𝑗
𝑝𝑟𝑒𝑑(𝑘 − 1, 𝑙 − 1)||

𝑘,𝑙

 (9) 

Where (𝑁𝑘, 𝑁𝑙) are the number of range and Doppler bins respectively. All three loss terms 

were calculated per receiving channel separately to enforce tighter constraints and facilitate 

better reconstruction results. 

 

The second loss term ℒ𝑏𝑓  , which operates in the beamformer representation space was 

calculated with similar expressions for the reconstruction, energy conservation and total 

variation losses. Key differences were made in order to encourage correct phase 

reconstruction. Here, the reconstruction loss ℒ𝑏𝑓𝑟𝑒𝑐
 is calculated globally, in order to enforce 

coherence between the different channels as shown in eq. 10: 

ℒ𝑏𝑓𝑟𝑒𝑐
=

1

𝑁𝑖
∑(𝑦𝑖

𝑝𝑟𝑒𝑑 − 𝑦𝑖
𝑙𝑎𝑏𝑒𝑙)

2

𝑖

 (10) 

In addition, energy conservation loss ℒ𝑏𝑓𝑒𝑛𝑒𝑟𝑔𝑦
 is calculated per azimuth bin, as shown in 

eq. 11: 

ℒ𝑏𝑓𝑒𝑛𝑒𝑟𝑔𝑦
=

1

𝑁𝑖𝑁𝑚
∑ 𝑧𝑖,𝑚

𝑖,𝑚

 (11) 

Where 𝑁𝑚 is the number of azimuth bins and 𝑧𝑖,𝑚 is described in eq. 6. Total variation ℒ𝑏𝑓𝑡𝑣
 

was performed on the range and azimuth dimensions, as shown in eq. 12,13: 

ℒ𝑏𝑓𝑡𝑣
=

1

𝑁𝑖𝑁𝑙
∑ 𝑡𝑣𝑖,𝑙

𝑖,𝑙

 (12) 

𝑡𝑣𝑖,𝑙 =
1

𝑁𝑘𝑁𝑚
∑ ||𝑦𝑖,𝑙

𝑝𝑟𝑒𝑑(𝑘, 𝑚)| − |𝑦𝑖,𝑙
𝑝𝑟𝑒𝑑(𝑘 − 1, 𝑚 − 1)||

𝑘,𝑚

 (13) 

 

Implementation Details 

Training was implemented in Pytorch, optimizer used was Adam with 𝛽1 = 0.9, 𝛽2 =
0.999, batch size 16 and learning rate utilized cosine decay from 3.141 ∙ 10−4 to 

3.141 ∙ 10−7. Training was continued until convergence and took about 30 epochs. 
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Sparse array configuration 

Given a radar array, R2-S2 provides design flexibility in the partitioning between input and 

label receiving channels. As an additional example for this degree of freedom, an additional 

configuration is demonstrated in Fig. 5a where an array of 16 receiving channels is split into 

4 input receiving channels spread uniformly across the original array and 12 label receiving 

channels. Inference mode for this configuration is shown in Fig. 5b, where the 4 input 

receiving channels are first used with a DNN to predict 12 coherent artificial receiving 

channels. Afterwards, both input and predicted receiving channels are arranged in their 

correct place in an array to allow for coherent beamforming. 

 

This configuration is used to predict receiving channels in a MIMO virtual array based on 

neighboring channels. Meaning, a DNN is used to interpolate missing receiving channels in 

a MIMO virtual array. Performance improvement using this configuration can be achieved 

in two ways. First, given a specific performance metric, it is possible to decrease the number 

of receiving channels while still retaining high level of performance, thus saving cost and 

simplifying system architecture and design. Second, given a specific number of receiving 

channels, this configuration allows to increase the aperture size (thus improving the angular 

resolution) and retain coherent beamforming with high SNR and low sidelobes. This is 

achieved by rearranging the receiving channels and spreading them over a larger aperture 

size, which improves the angular resolution. However, simply increasing the distance 

between each receiving channel can decrease the array’s performance significantly. For this 

end, a DNN is used to fill in the gaps with coherent artificial receiving channels and match 

the performance of a larger array.  

 

Random missing channels configuration 

In addition to SR, R2-S2 can also be used for other purposes. In scenarios where a receiving 

channel becomes corrupt or exhibits performance degradation during runtime operation, a 

DNN trained with our method can be used to replace the corrupt receiving channel with an 

artificial receiving channel. To accomplish this, R2-S2 is used to predict random missing 

receiving channels from the reminder active radar array. This task is especially difficult for 

a DNN since the receiving channels are randomly chosen and can also be located at the 

edges of the array, meaning the DNN needs to extrapolate as well as interpolate. 

 

To create a DNN which is invariant to the position of a missing receiving channel a full 

MIMO virtual array is used as input and randomly chosen receiving channels are masked 

while the DNN is tasked to predict the missing receiving channels. The resulting trained 

DNN is invariant to the specific receiving channel missing and is able to reconstruct the 

data of each receiving channel individually without the need to train a separate model for 

each receiving channel. An illustration of the training methodology for this configuration is 

provided in Fig. S2.  
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Figures: 

 
Fig. 1. Sample frames from the training dataset a-f. (a,c,e) camera image. (b,d,f) the 

respective range-Doppler map in dB. Blurry image in e was caused by rain 

droplets on the camera lens during data collection. 
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Fig. 2. Radar super-resolution using self-supervised learning a-b. (a) Training mode: 

in this example, 4 receiving channels are used as input (dark blue) to predict 12 

receiving channels outside of the original aperture (light blue). (b) Inference mode: 

the original array is used as input to a DNN, which predicts adjacent receiving 

channels outside of the original aperture. Afterwards, both input and predicted 

receiving channels are used for coherent beamforming.  The resulting artificial 

array has 16 receiving channels and thus 4x improved resolution from the original 

array.  
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Fig. 3. Sample results from the validation dataset. From left to right: camera image, 

input radar array, predicted beamformer and label beamformer. Both beamformers 

are displayed in cartesian coordinates. The camera image is used for the reader’s 

reference and was not used during training or inference. Blurry images were 

caused by rain droplets on the camera lens during data collection. 
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Fig. 4. Detailed results from the validation dataset for 3 representative cases a-c. 

Each frame displays a reference camera image, input radar array, predicted radar 

array and label radar array, with values in dB. Empty spaces were left to orient the 

reader as to which receiving channel belongs to each group. In addition, range-

Doppler Non-Coherent Integration (NCI) is displayed for each array with values in 

dB and also showing the maximum detection in dotted black lines. The 3 arrays are 

also displayed in cartesian coordinates with values in dB and a dotted black line 

signifying the maximum detection range. Three cross sections of the maximum 

detection are displayed showing the input, predicted and label arrays. In these 

representative scenarios, the vehicles detections occupy significant angular 

coverage in the low-resolution radar (input radar array), sometimes blocking an 

open road, which illustrates the critical need for superior resolution radars. The 

results also show that by using R2-S2, the input array is super-resolved to match 

the performance of the label array. (c) Displays a sample of a stationary scenario, 

meaning the radar is not moving, with similar results to samples where the radar 

was moving. These results suggest the DNN is not relying solely on Doppler and 

micro-Doppler effects during the reconstruction process. Blurry image was caused 

by rain droplets on the camera lens during data collection. 
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Fig. 5. Coherent beamforming using self-supervised learning a-b. (a) Training mode:  

in this example, 4 receiving channels (dark blue) are used as input and 12 receiving 

channels are used as label (light blue). Together they reconstruct a full 16 

receiving channel radar array. 𝑑𝑅𝑥 is the distance between adjacent receiving 

channels. (b) Inference mode: input receiving channels are first used by a DNN to 

predict artificial receiving channels, each at specific missing locations in the full 

array. Afterwards, both input and predicted receiving channels are used for 

coherent beamforming. 
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Fig. 6. Sample results from the validation dataset for the Sparse Array configuration 

a-c. Each frame displays a reference camera image, input radar array, predicted 

radar array and label radar array, with values in dB. Empty spaces were left to 

orient the reader as to which receiving channel belongs to each group. In addition, 

range-Doppler Non-Coherent Integration (NCI) is displayed for each array with 

values in dB and also showing the maximum detection in dotted black lines. The 3 

arrays are also displayed in cartesian coordinates with values in dB and a dotted 

black line signifying the maximum detection range. Three cross sections of the 

maximum detection are displayed showing the input, predicted and label arrays. 

These results show that beamforming on the input radar array suffers from 

degraded performance due to grating lobes caused by the large distance between 

each antenna element. By using R2-S2, the gaps are filled and the performance of 

the predicted beamformer matches the label beamformer. Blurry images were 

caused by rain droplets on the camera lens during data collection. 
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Tables: 

 

 Range-Doppler Beamformer 

Loss 
L1 

[a.u.] 

PSNR 

[dB] 

L1 

[a.u.] 

PSNR 

[dB] 

ℒ𝑟𝑑𝑟𝑒𝑐
 0.898 30.707 0.988 42.243 

ℒ𝑟𝑑𝑟𝑒𝑐
+ ℒ𝑟𝑑𝑒𝑛𝑒𝑟𝑔𝑦

 0.868 34.673 0.959 43.324 

ℒ𝑟𝑑 0.853 34.689 0.957 43.287 

ℒ𝑟𝑑 + ℒ𝑏𝑓𝑟𝑒𝑐
 0.811 37.789 0.843 44.766 

ℒ𝑟𝑑 + ℒ𝑏𝑓𝑟𝑒𝑐
+ ℒ𝑏𝑓𝑒𝑛𝑒𝑟𝑔𝑦

 0.806 37.886 0.846 45.148 

ℒ𝑟𝑑 + ℒ𝑏𝑓 0.796 37.991 0.794 45.584 

 

Table 1. Loss function ablation study. L1 and PSNR metrics for both range-Doppler 

representation and beamformer representation (range-Doppler-azimuth). The 

results were averaged over the validation dataset. 

 

 

 Range-Doppler Beamformer 

 
L1 

[a.u.] 

PSNR 

[dB] 

L1 

[a.u.] 

PSNR 

[dB] 

Bi-cubic 0.668 38.464 1.384 48.098 

Our 0.734 38.649 0.886 48.956 

 

Table 2. Validation loss metrics for the sparse array configuration. Lower L1 

combined with higher PSNR in the beamformer representation space by our 

method in comparison to bi-cubic interpolation further suggests coherent 

reconstruction by R2-S2. 
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Supplementary Text 

Data sparsity examination 

An examination on the sparsity of radar data in urban and highway environment was conducted by 

using the configuration described in Fig 2, where 4 receiving channels are regarded as input radar 

array and the 16 receiving channels are regarded as the original radar array. 

Both radar configurations were compared at each range-Doppler-Azimuth cell for detections above 

a specific CFAR threshold. Sparse cells were considered as empty or with a single detection. Fig 

S1 displays data percentage as a function of CFAR threshold for 4 cases: empty cell (red), single 

detection cell (blue), multiple detections cell (green) and sparse cell (black). Fig. S1b shows static 

data examination and Fig. S1c shows dynamic data examination.  

The results show that the data used in during experimentation especially for static, low CFAR 

thresholds cannot be consider sparse. The lower sparsity level in the static data is caused due to 

stationary clutter present in urban scenes.  
 

 

Fig. S1. Data sparsity examination a-c. Y axis on a scale of (0-1). (a) Data percentage as a 

function of CFAR threshold for 4 cases: empty cell (red), single detection cell (blue), multiple 

detections cell (green) and sparse cell (black). (b) Static data. (c) Dynamic data. 
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Fig. S2. Random missing channel configuration. At training, a random receiving channel is 

chosen and masked to be used as label. The model then identifies the missing receiving channel 

and predicts its measurements. Since the missing receiving channel can be located anywhere in 

the virtual array, this configuration combines both interpolation and extrapolation performed by 

the model. 
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Fig. S3. Sensitivity analysis of the random missing channels configuration a-b. We examined 

the change in L1 loss and PSNR. As expected, there is a performance decrease as the number of 

random missing channels increase. When combined with a specific performance criterion, this 

analysis allows to set a maximum number of missing channels the method may be used for in a 

real-world application. 
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Fig. S4. Sample results from the validation dataset for the Random Missing Channels 

configuration a-c. Each frame displays a reference camera image, input radar array with values 

in dB and an empty space signifying the missing receiving channel. In addition, range-Doppler 

maps are displayed for the predicted and label receiving channels with values in dB and also 

showing the maximum detection in dotted black lines. The predicted and label arrays are also 

displayed in cartesian coordinates with values in dB and a dotted black line signifying the 

maximum detection range. Three cross sections of the maximum detection are displayed showing 

the input, predicted and label arrays. These results show that by using R2-S2 it is possible to 

overcome randomly missing receiving channels and match the performance of the label array. 
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Table S1. Validation Loss metrics for random missing channel configuration. Note that bi-

cubic interpolation cannot be used to estimate the channels at both ends of the array, whereas R2-

S2 is able to extrapolate as well as interpolate. 

 

 Range-Doppler Beamformer 

 
L1 

[a.u.] 

PSNR 

[dB] 

L1 

[a.u.] 

PSNR 

[dB] 

Bi-cubic 0.879 37.360 0.251 48.412 

Our 0.816 31.318 0.213 48.551 

 

 


