Skip to main content
Log in

Stability of nonlinear 2D systems described by the continuous-time Roesser model

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper considers systems with two-dimensional dynamics (2D systems) described by the continuous-time nonlinear state-space Roesser model. The sufficient conditions of exponential stability in terms of vector Lyapunov functions are established. These conditions are then applied to analysis of the absolute stability of a certain class of systems comprising a linear continuous-time plant in the form of the Roesser model with a nonlinear characteristic in the feedback loop, which satisfies quadratic constraints. The absolute stability conditions are reduced to computable expressions in the form of linear matrix inequalities. The obtained results are extended to the class of continuous-time systems governed by the Roesser model with Markovian switching. The problems of absolute stability and stabilization via state- and output-feedback are solved for linear systems of the above class. The solution procedures for these problems are in the form of algorithms based on linear matrix inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, E., Ga-lkowski, K., and Owens, D.H., Control Systems Theory and Applications for Linear Repetitive Processes, Lecture Notes Control Inform. Sci., vol. 349, Berlin: Springer-Verlag, 2007.

    MATH  Google Scholar 

  2. Roesser, R.P., A Discrete State-Space Model for Linear Image Processing, IEEE Trans. Automat. Control, 1975, vol. AC-20, pp. 1–10.

    Article  MathSciNet  Google Scholar 

  3. Fornasini, E. and Marchesini, G., Doubly Indexed Dynamical Systems: State Models and Structural Properties, Math. Syst. Theory, 1978, vol. 12, pp. 59–72.

    Article  MATH  MathSciNet  Google Scholar 

  4. Hladowski, L., Galkowski, K., Cai, Z., Rogers, E., Freeman, C.T., and Lewin, P.L., Experimentally Supported 2D Systems Based Iterative Learning Control Law Design for Error Convergence and Performance, Control Eng. Practice, 2010, vol. 18, pp. 339–348.

    Article  Google Scholar 

  5. Yeh, K.-H. and Lu, H.-C., Robust Stability Analysis for Two-dimensional Systems via Eigenvalue Sensitivity, Multidimens. Syst. Signal Proc., 1995, vol. 6, pp. 223–236.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ooba, T., On Stability Robustness of 2-D Systems Described by the Fornasini-Marchesini Model, Multidimens. Syst. Signal Proc., 2000, vol. 12, pp. 81–88.

    Article  MathSciNet  Google Scholar 

  7. Du, C. and Xie, L., Stability Analysis and Stabilization of Uncertain Two-dimensional Discrete Systems: An LMI Approach, IEEE Trans. Circuits Syst. I: Fundament. Theory Appl., 1999, vol. 46, pp. 1371–1374.

    Article  MATH  Google Scholar 

  8. Xu, S., Lam, J., Lin, Z., and Galkowski, K., Positive Real Control for Uncertain Two-dimensional Systems, IEEE Trans. Circuits Syst. I: Fundament. Theory Appl., 2002, vol. 49, pp. 1659–1666.

    Article  MathSciNet  Google Scholar 

  9. Lam, J., Xu, S., Zou, Y., Lin, Z., and Galkowski, K., Robust Output Feedback Stabilization for Two-dimensional Continuous Systems in Roesser Form, Appl. Math. Lett., 2004, vol. 17, pp. 1331–1341.

    Article  MATH  MathSciNet  Google Scholar 

  10. Kurek, J.E., Stability of Nonlinear Time-varying Digital 2-D Fornasini-Marchesini System, Multidimens. Syst. Signal Proc., 2012, vol. 23. Available in open access by http://link.springer.com/article/10.1007/s11045-012-0193-4.

  11. Pakshin, P., Galkowski, K., and Rogers, E., Absolute Stability and Stabilization of 2D Roesser Systems with Nonlinear Output Feedback, Proc. 50th IEEE Conf. Decision Control Eur. Control Conf. (CDCECC 2011), Orlando, December 12–15, 2011, pp. 6736–6741.

  12. Yeganefar, Nim., Yeganefar, Nad., Ghamgui, M., and Moulay, E., Lyapunov Theory for 2-D Nonlinear Roesser Models: Application to Asymptotic and Exponential Stability, IEEE Transact. Automat. Control, 2013, vol. 58, pp. 1299–1304.

    Article  MathSciNet  Google Scholar 

  13. Lin, Z., Zou, Q., and Ober, R.J., The Fisher Information Matrix for Two-dimensional Data Sets, Proc. IEEE Int. Conf. Acoustics, Speech, Sign. Process. (ICASSP’ 03), 2003, vol. 3. pp. 453-456.

  14. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibria), Moscow: Nauka, 1978.

    Google Scholar 

  15. Mariton, M., Jump Linear Systems in Automatic Control, New York: Marcel Dekker, 1990.

    Google Scholar 

  16. Pakshin, P.V., Diskretnye sistemy so sluchainymi parametrami i strukturoi (Discrete Systems with Random Parameters and Structure), Moscow: Fizmatlit, 1994.

    Google Scholar 

  17. Kats, I.Ya., Metod funktsii Lyapunova v zadachakh ustoichivosti i stabilizatsii sistem sluchainoi struktury (The Method of Lyapunov Functions in Stability and Stabilization Problems for Random Structure Systems), Yekaterinburg: Ural. Gos. Akad. Putei Soobshchen., 1998. Translated under the title Stability and Stabilization of Nonlinear Systems with Random Structures, London: Taylor & Francis, 2002.

    Google Scholar 

  18. Zhang, L. and Boukas, E.-K., Stability and Stabilization of Markovian Jump Linear Systems with Partly Unknown Transition Probabilities, Automatica, 2009, vol. 45, pp. 463–468.

    Article  MATH  MathSciNet  Google Scholar 

  19. Xiong, J. and Lam, J., Robust H 2 Control of Markovian Jump Systems with Uncertain Switching Probabilities, Int. J. Syst. Sci., 2009, vol. 40, pp. 255–265.

    Article  MATH  MathSciNet  Google Scholar 

  20. Pakshin, P. and Peaucelle, D., LQR Parametrization of Static Output Feedback Gains for Linear Systems with Markovian Switching and Related Robust Stabilization and Passification Problems, Proc. Joint 48th IEEE Conf. Decision Control and 28th Chinese Control Conf., Shanghai, Dec. 2009, pp. 1157–1162.

  21. Pakshin, P.V., Solov’ev, S.G., and Peaucelle, D., Parametrizing Stabilizing Control in Stochastic Systems, Autom. Remote Control, 2009, vol. 70, no. 9, pp. 1514–1527.

    Article  MATH  MathSciNet  Google Scholar 

  22. Gao, H., Lam, J., Xu, S., and Wang, C., Stabilization and H Control of Two-dimensional Markovian Jump Systems, IMA J. Math. Control Inform., 2004, vol. 21, pp. 377–392.

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, L., Shi, P., Gao, H., and Wang, C., H∞ Filtering for 2D Markovian Jump Systems, Automatica, 2008, vol. 44, pp. 1849–1858.

    Article  MATH  MathSciNet  Google Scholar 

  24. Pakshin, P.V., Galkowski, K., and Rogers, E., Linear-Quadratic Parametrization of Stabilizing Controls in Discrete-Time 2D Systems, Autom. Remote Control, 2011, vol. 72, no. 11, pp. 2364–2378.

    Article  MATH  MathSciNet  Google Scholar 

  25. Krasovskii, N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya (Some Problems in Theory of Motion Stability), Moscow: Fizmatlit, 1959. Translated under the title Problems of the Theory of Stability of Motion, Stanford: Stanford Univ. Press, 1963.

    Google Scholar 

  26. Boyd, S., El-Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  MATH  Google Scholar 

  27. Ait Rami, M. and El Ghaoui, L., LMI Optimization for Nonstandard Riccati Equation Arising in Stochastic Control, IEEE Trans. Automat. Control, 1996, vol. 41, pp. 1666–1671.

    Article  MATH  MathSciNet  Google Scholar 

  28. Matrosov, V.M., Metod vektornykh funktsii Lyapunova: Analiz dinamicheskikh svoistv nelineinykh sistem (Method of Vector Lyapunov Functions: Analysis of Dynamic Properties of Nonlinear Systems), Moscow: Fizmatlit, 2001.

    Google Scholar 

  29. Kojima, C., Rapisarda, P., and Takaba, K., Lyapunov Stability Analysis of Higher-order 2-D Systems, Multidimens. Syst. Signal Proc., 2011, vol. 22, pp. 287–302.

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhukov, V.P., Polevye metody v issledovanii nelineinykh dinamicheskikh sistem (Field Methods in Analysis of Nonlinear Dynamic Systems), Moscow: Nauka, 1992.

    Google Scholar 

  31. Rantzer, A., A Dual to Lyapunov’s Stability Theorem, Syst. Control Lett., 2001, vol. 42, pp. 161–168.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Emelianova.

Additional information

Original Russian Text © J.P. Emelianova, P.V. Pakshin, K. Ga-lkowski, E. Rogers, 2014, published in Avtomatika i Telemekhanika, 2014, No. 5, pp. 50–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelianova, J.P., Pakshin, P.V., Gałkowski, K. et al. Stability of nonlinear 2D systems described by the continuous-time Roesser model. Autom Remote Control 75, 845–858 (2014). https://doi.org/10.1134/S000511791405004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791405004X

Keywords

Navigation