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Abstract—We study the stationary operation of an open queueing network with non-active 
customers and informational signals. The amount of work to service a claim is a random value 
with an arbitrary distribution. The stationary distribution of network state probabilities has a 
multiplicative form and is insensitive with respect to the functional form of the distribution of 
the work needed to service a claim.
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1. INTRODUCTION

At present, the studies of reliability of servicing systems in the theory of queueing networks 
become more and more relevant. However, it is not only the servicing system that can stop 
working, the claims arriving in the system also may lose their qualitative characteristics.

From the point of view of reliability of incoming claims, queueing networks with non-active 
customers are especially interesting. Claims in such networks fall into two classes: some can be 
serviced by nodes while others are temporarily inactive and are not serviced, accumulating into 
queues at the nodes. The incoming flows of informational signals let claims change their state from 
inactive to the state where they can be serviced and vice versa. In most cases, researchers are 
interested in characteristics of stationary operation for such networks, in particular, the form of 
the stationary distribution of state probabilities.

Inactive claims can be interpreted as claims with some defect that makes them unfit for servicing. 
Indeed, in data transmission in informational and telecommunicational networks there may arise a 
situation when the transmitted claim becomes unfit for servicing as a result of some kind of fault 
in the process of its transmission. Thus, studies of networks with temporarily non-active claims 
present practical interest as well.

The work [1] considers stationary operation of an open network with non-active customers and 
studies the stationary distribution of state probabilities under the assumption that the servicing 
duration of the claims have exponential distribution. The works [2, 3] study the stationary operation 
of networks which generalize the model from [1] to the cases of the circulation of claims and signals 
of different kinds and flows of non-active claims arriving in the network.

A classical Jackson open queueing network has been studied in [4] under the assumption that 
a claim’s servicing duration has exponential distribution, but this assumption seldom holds in 
practice. Indeed, in practice the distribution law of a claim’s servicing duration is often far from 
exponential, so studies of queueing networks with arbitrary distribution functions of the servicing 
time represent an important problem in queueing theory and has been attracting more and more
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attention of the researchers [5-9]. The works [8, 9] are devoted to the studies of insensitivity for 
the stationary distribution of state probabilities in closed and open queueing networks with non­
active claims in case of an arbitrary distribution of servicing durations. It has been established 
that the stationary distribution of state probabilities in such networks has multiplicative form and 
is insensitive with respect to the functional form of the servicing duration distribution.

In [7], V.A. Ivnitskii in his studies of non-Markov queueing networks introduced the notion of 
piecewise linear (PLQN) and piecewise continuous queueing networks (PCQN). Servicing in such 
networks has “energy-based” rather than “time-based” meaning, i.e., each servicing operation is 
characterized by a random value of the work that needs to be done. Since for arbitrary distribution 
functions on the amount of work needed to service a claim the random process characterizing 
the number of claims in each node will not be Markov, that work, similar to most works on 
insensitivity, uses the method of extending the phase space (with additional variables). Depending 
on how the additional variables characterizing the residual amount of work needed to finish a 
servicing operation behave, the non-Markov networks are divided into PLQN and PCQN. For 
PLQN, additional variables ((t) decrease in a linear fashion, and the rate of decrease may depend 
on the node state or the network state as a whole,

d((t)
dt

^  — a.

For PCQN, the rate of decrease depends on the residual amount of work. This dependence is given 
by some continuous function

^
The work [7] shows insensitivity results for many open and closed queueing networks with differ­

ent “instantaneous” disciplines: for a Jackson network where servicing and circulation parameters 
depend on the network state, for a network with different classes of claims and servicing and cir­
culation flow parameters depending on the network state, for a network with generalized group 
servicing, a network with deterministic circulation, for a closed star-like network, an open network 
with losses, and many other queueing networks.

The energy-based interpretation generalizes the notion of a servicing process, is highly interesting 
from the practical point of view, and lets one consider a much wider class of problems and study 
more complex and more interesting network models. For instance, the works [6, 10, 11] find the 
form of the stationary distribution of state probabilities, ergodicity conditions, and establish the 
insensitivity of the stationary distribution of state probabilities with respect to the functional form 
of the distribution of the amount of work needed to service claims. Networks with negative claims 
and multimodal strategies are considered in [12], which establishes the insensitivity of stationary 
distribution state probabilities with respect to the functional form of the distribution of amount 
of work needed to switch modes. The work [13] establishes the insensitivity of the stationary 
distribution in case of energy-based setting for a closed queueing network with non-active customers.

In this work, we consider a generalization of the model from [8] to the case of the “energy-based” 
interpretation of the servicing process. The purpose of this work is to study an open PLQN with 
temporarily non-active claims and informational signals. We assume that amounts of work needed 
to service claims at the nodes are distributed according to an arbitrary law. We establish the 
insensitivity of the stationary distribution of network states with respect to the functional form of 
the distribution of the amounts of work needed to service claims for fixed first moments.

2. NETWORK MODEL DESCRIPTION
We consider an open queueing network with the set of nodes J =  {1 ,. . . ,W }. Nodes of the 

network receive from the outside independent Poisson flows of claims with intensities Xi, i G J . All
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claims in the network are divided into regular, which can be serviced, and inactive. We assume 
that nodes of the network receive from the outside independent Poisson flows of informational 
signals with intensities Vi and , i G J . An information signal arrived to the ith node with 
intensity v i reduces the number of regular claims by one and increases by one the number of non­
active claims; in case when there are no regular claims at the ith node the signal leaves the network. 
An informational signal arriving at the ith node with intensity ^ i reduces the number of non-active 
claims by one and increases by one the number of regular claims; if there are no non-active claims 
at the i th node the signal leaves the network. Informational signals do not require servicing.

The network state at time moment t  is characterized by a vector z (t ) =  ( (ni(t),n^(t ) ) , i G J ) , 
where (n i (t ) , n ' i(t )) is the state of the ith node at time moment t. Here n i (t ) and n i (t ) are the 
number of regular and non-active claims respectively at the ith node at time moment t, and the 
total number of claims at the ith node is n ,,(t) +  n i (t ). The process z(t) has countable phase 
space Z .

We number regular claims in each node’s queue from the “tail” of the queue to the servicing 
device, i.e., if the ith node has п, regular (active) claims, then the claim currently being serviced is 
numbered n , , and the last claim in the queue is numbered 1. Inactive claims in the ith node’s queue 
are numbered as follows: the claim that last became inactive has number n i . A signal v ,  arriving 
at node i acts on a regular claim numbered 1, which becomes an inactive claim number n ' , +  1. A 
signal acts on a non-active claim with number n i , which becomes a regular claim number 1.

The servicing discipline is L C F S -P R . A claim arriving at node i begins servicing immediately 
and is assigned number n ,  +  1, and a pushed out claim keeps number n ,  and becomes the first in the 
afterservice queue. We assume that at the initial time moment there are no temporarily non-active 
claims in the network.

If at time moment t  the state of the ith node is a vector (n i (t ) , n ' î(t )), and immediately after this 
moment the node receives a claim, which, as we have noted above, starts servicing immediately, then 
the amount of work for servicing it becomes a random value п,(п, +  n i  +  1) with distribution func­
tion В,(п, +  n i  +  1, z) and mean т,(п, +  n i  +  1) < те. We assume that В,(п, +  n i  +  1,0) =  0, i G J . 
If at time moment t  the state of the ith node is (n i (t ) , n '̂ (t )), servicing is done with rate a i (n i +  ni),
i.e., it depends on the node state, i G J . Servicing in such network has “energy-based” rather than 
“time-based” interpretation: each servicing operation is characterized by a random value of the work 
that has to be done. A claim that has been serviced at the i th node instantaneously with probabil­
ity p i ,j  passes to node j , and with probability p i ,0 leaves the netw ork '^j e J P i ,j  +  P i ,0 =  1, i G J ) . 
Without loss of generality we assume that p i ,i =  0, i G J . The routing matrix is assumed to be 
irreducible.

It has been shown for open networks that if the routing matrix (p j^ j) is irreducible the system 
of traffic equations

N

ĵ =  ^j îPi:
i=1

j j  G J, (1)

has a unique positive solution [ ej , j  G J }  [4].

3. INSENSITIVITY OF THE STATIONARY PROBABILITY DISTRIBUTION
FOR NETWORK STATES

The work [1] considers the case when B i (ni +  nj , z) =  1—exp[—̂ iz} (pi > 0, z >  0), Ti (ni + nj) =  
1/pi with unit servicing rate a i(ni+nj) =  1, i.e., in this case B i (ni+nj, z) is the distribution function 
of the exponential servicing time, i G J . Then z(t) is a Markov process that satisfies the following 
theorem.
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Theorem 1 [1]. Given that

<  h i  ■)

^i <  h i ^ i
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(2)
(3)

the Markov process z(t) is ergodic, and the stationary distribution of state probabilities for this 
process is

p((ni,n'i) , ( un )) =  pi(ni ,n’i ) . . .pN (un , u’n ).

Here (fni,n'i), . . . ,  (nN,n 'N)) G Z , and,

(4)

=  ( 1 - ^ )
h J  \ h i

1 Si Vi

h d p M  \ h i ‘p i

Si Vi

is the station^ary distribution of state probabilities at the ith node, { Sj , j  G J }  is a solution of the 
system of traffic Eqs. (1).

The work [9] has considered a generalization of the model from [1] to the case of an arbitrary 
distribution of servicing durations. Stationary distribution of state probabilities and ergodicity 
conditions have been found, and it has been proven that of the stationary distribution of state 
probabilities is insensitive with respect to the functional form of the servicing durations distribution. 
In [8], a similar result has been obtained for the case of a closed network with non-active claims.

We now turn to a more general case, considering the energy-based interpretation of the servicing 
process. Suppose that the amount of work needed to service a claim is a random value pi (ni +  n'i ) 
with an arbitrary distribution function Bi (ni +  n'̂,,z) and expectation ті,(ni +  n',̂ ) < те. Let фі ,^ (t) 
denote the amount of work remaining to be done from time moment t to finish servicing the claim 
which at time moment t occupies the kth position at the ith node, ^ i (t) =  (^ i ,i ( t ) , . . . ,  фі ,пі+n '.(t)), 
i G J . Due to the above, if the state of the ith node is (ni ,n'i ) then

d ' f i / n i + n i  (f) 

dt
=  - ai(ni +  ni), i G J.

Then in the general case the process z (t) is not Markov, and we can consider a piecewise linear 
Markov process ( (t) =  (z(t), ^(t)) by adding to z(t) a continuous component ^(t) =  (^1(t) ,. . . ,
^N (t)).

We introduce the following notation:

F (z, x) F  ẑ , x l,l, . . . ,  x 1,ni+n1; x2,1, . . . ,  x2,n2+n2 ; . . .  ; x N,1, . . . ,  x N,nN +п'̂ ^

=  lim P|z(t) =  z,^i,i(t) <x i , i , . . . , ^ i  +n'.(t) <Xini+n'.,i G Л ,  

z G Z, Xk,l G R V k, l.

Functions F(z, x) are called stationary distribution functions of state probabilities for the piecewise 
linear process Z(t), since for every fixed z function F(z,x)  in the part of continuous components is 
a distribution function.

Theorem 2. If it holds that

N

z ^ Z i=1
Y. d(z) П I ( ̂  ) * П A(s)ai(s)- 1 < те, (5)

5=1
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N
q(z) +  Ti{s)- l ai(s) +  Vi +  ,

i=l

the process ( (t) is ergodic, and the stationary distributions of functions of state probabilities F  (z,x)  
are given by formulas

F (z,x) =  Pl(ni,nl)p2(n2,n2) . . . PN (nN ,^N )
N ni +'ni .
П П ^
i=1 s=1 Ti(s)

■̂ г,в

J  (1 — Bi(s,u))du, z G Z,

(6)

where

n/ Ui+n'.

ei can be found from (1), and

(7)

oc oc

M 0,0)= П
\Ui=0 n' = 0 ^ i S=1

n{s)
ai{s)

-1

i G J. (8)

Proof of Theorem 2 is given in the Appendix.
We denote by {p(z) , z G Z }  the stationary distribution of state probabilities for the process z(t). 

Theorem 2 together with equality p(z)=  F(z,  + те) implies the following corollary.

Corollary. If relation (5) holds then process z(t) is ergodic, and its station^ary distribution of 
state probabilities { p(z), z G Z }  does not depend on the fun^ctional form of the distributions Bi (s,x),  
i G J, and has multiplicative form

p(z) =  Pi (ni,n'i)p2 (П2,п2) . . .pN (nN ,^ n  ) ,

where pi (ni ,n'i) are given by formulas (7), (8). Here pi (ni ,n'i),i G J, is the station^ary distribution 
of state probabilities at the isolated node.

4. CONCLUSION

We have studied the operation of an open queueing network with non-active customers and 
informational signals. The servicing discipline was an absolute priority of incoming claims with 
afterserviced of claims pushed out of a servicing device. For the case of an arbitrary distribution of 
the amount of work needed to service a claim we have established that the stationary distribution of 
network states is insensitive with respect to the functional form of the distributions of the amounts 
of work for fixed first moments. We have found an ergodicity condition. It has been established 
that the stationary distribution of the network has the form of a product where each factor is 
a distribution at a separate node in a fictional environment. The results of our studies of these 
networks can be used in practice to analyze stationary operation of real objects that have network 
structure and admit non-active state of claims.
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APPENDIX

Proof of Theorem 2. Consider the process ( (t). Under condition (5) ( (t) is ergodic. A formal 
proof of this fact can proceed with Smith’s limit theorem [10] if we take into account that random 
process Z(t) is regenerating. Indeed, the network’s operation can be schematically represented as 
an alternation of periods when the network is at the “0” state (the nodes have neither regular 
nor non-active claims) and periods when the network is busy (otherwise). The moment when the 
network transitions into the free state “0” is the moment of regeneration, and then the proof reduces 
to applying Smith’s theorem for regenerating processes.

We call changes in the state of the piecewise linear process Z(t) due to claims arriving in the 
network or informational signals that transfer claims from regular state to non-active and vice versa 
spontaneous changes.

We denote by Ci G Z the vector all of whose coordinates are zero except for (ui, n'l) =  (1,0); by 
e'̂  G Z , the vector all of whose coordinates are zero except (ni,n'i) =  (0,1).

Let h be small. Consider the probability of the event
P {z ( t  +  h) =  z,^i,i(t +  h) < xii,.. .,^ini+ni^(t +  h) <Xi,ni+ni, i G 

This event can occur in the following mutually exclusive ways.
1. Since time moment t over time h there have been no spontaneous changes, and servicing has 

not finished in any node. The probability of this case is

^ z ( t )  =  z,^i,i(t) <Xi , i , . . . ,ai (ui  +  n'i)hIni>0 ^ Фі,пі+пі(t)

< Xi,ni+ni +  ai(ni +  n'i)hIni>0 , i G j }

X ^1 — Л̂і +  viIni>0 +  ^іIni>0  ̂h +  o(h^  .

2. Over time h, a claim has arrived at the ith node which started servicing immediately, no 
node has finished servicing, and there have been no other spontaneous changes. The probability of 
this case is

^ z ( t )  =  z — Ci,^k,i(t) <Xk, i , . . . ,ak(nk  +  n’k)hInk>0 ^ ^h,nk+n'k(t)

< x k,nk+n'k +  ak(nk +  nk)hInk>o, к G J, к =  i, 
фi,l(t) < Xi,i,. . . ,  ai (ni +  n'i — 1)(h — 9)Ini>i Ф Фi,ni+n'i-l(t )

< Xi,ni+ni-i +  ai(ni +  n'i — 1)(h — e)Ini>i, i G j }  

xBi (ні +  n'i, Xî m+ni +  ai(ni +  n i)^  Im>o (Aih +  o(h)) ,

where (h — в) is the time that has passed since time moment t until the claim arrived, and в is the 
time from the moment when the claim arrived to t +  h, 0 < в < h.

AUTOMATION AND REMOTE CONTROL Vol. 76 No. 12 2015



2174 KRUK, DUDOVSKAYA

3. Over time h, a claim has been serviced at the j th node and immediately transferred to the 
ith node, and there have been no spontaneous changes. The probability of this event is

^ z ( t )  =  z -  +  ej < x k ,i , .. . , a k (nk +  n’̂ )hIn k>o ^ Фк,пи+п ^ (t)

< x k,nk+n 'k +  a k (nk +  nk )hIn k>0j k G J, к =  i, к =  j ,

' ĵ , l(t) < x j , l, ■ ■ ■ ,'Фj ,n j +п '. (t) < x j ,n j +п '. ,'Фj ,n j  +п '. + l (t)
< a j  (nj  +  n’j  +  1)(h — 9),

Фi ,l(t) < x i ,i, ■■■, a i (ni +  n’i — 1)(h — 9)In i > i Ф Фi,n i+n 'i-l(t)

< Xi ,n i+n i- i  +  a i (ni +  n’i — 1)(h — 9)In i > i }

x B i (ui +  n'i , Xi ,n ,+ni +  ai(ni +  n i)^  Pj , iIn i> o +  o(h),

where (h — 9) is the time that passed since time moment t until the claim finished servicing, 
0 < 9  <h .

4. Over time h, a claim has been serviced at the jth node and then left the network, and there 
have been no spontaneous changes. The probability of this event is

^ z ( t )  =  z +  ej ,фк,і(Ф) < X k ,l,■■■,ak (nk +  n’k )hIn k>o ^ Фк,пи+п ^ (t)

<  x k,nk+n 'k +  ak (nk +  nk )hIn k > 0j к G Jj к =  jj 

фj , 1(t) < Xj , 1, ■ ■ ■ ,фj ,n j +п '. (t) < Xj ,n j +п '. ,фj ,n j  +п '. + 1(t)

< a j  (nj  +  nj  +  1)(h — 9^ pj ,o +  o(h)^

5. Over time h, an informational signal of intensity vi has arrived at the jth node, and it 
decreased the number of regular claims by one and increased by one the number of non-active 
claims; there have been no other spontaneous changes, servicing has not ended at any node. The 
probability of this case is

^ z ( t )  =  z +  ei — e'i ,фk ,l(t) < Xk ,i, ■ ■ ■jak (nk +  n’k )hIn k >o ^ Фk,nk+n 'k (t)

<  x k,nk+n 'k +  a k (nk +  nk )hIn k> o, к G J, к =  i, 
фi , l(t) < X i ,!,■■■, a i (ni +  n’i) )h ^ Фі,пі+п'. (t)

< Xi,m+ni +  ai(ni +  n’i )hf (vi h +  o(h))Ini>ô

6. Over time h, an informational signal of intensity p i has arrived at the j  th node, and it 
decreased the number of non-active claims by one and increased by one the number of regular 
claims, there have been no other spontaneous changes, and servicing has not finished at any node. 
The probability of this event is

^ z ( t )  =  z — ei +  e’i ,фk ,l(t) < Xk ,i, ■ ■ ■jak (nk +  n’k )hIn k > o  ^ Фk,nk+n 'k (t)

< Xk,nk+n'k +  a k (nk +  nk )hIn k> o , к G J, к =  i,
Фi , l (t) < X i ,l,■■■,ai (ni +  n’i )hIn i > i Ф Фі ,п і+пі (t)

< Xi^n.+ni +  a i (ni +  n’i )h!n i > ^ ( P i h +  o(h))In i> o ^

7. Finally, over time h there have been at least two changes in the network state. The probability 
of this event is o(h).
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Naturally, each of these cases and each node has its own parameter в, but we do not introduce 
any indexing for в in order to make computations less tedious.

Due to the above we have that

P {z ( t  +  h) =  +  h) < +ni(t +  h) , i e j ]

=  ^ z ( t )  =  г,фі,і(t) <  x i,i,.. . ,аі(пі  +  u'i)hIni>o ^ Фі,пі+пі(t)

< Хі,пі+пі +  аі(пі +  n'i)hIni>0, i e  ^  ^1 “  (̂ Аі +  ^іІпі>0 +  ^іIni>0  ̂h +  o(h)^

N
^ 2  ^ z ( t )  =  z -  ei,фk,l(t) < xk,i, .. . ,ak(uk +  n’̂ )hInk>o ^ Фк,пи+п (̂t)

і=1
< x k,nk+n'k +  ak(пк +  пк)hInk>0i k G J, к =  "Ь,

Фi,l(t) < Хі,і,. . . ,  аі (пі +  п’і -  1)(h -  e)Ini>i Ф Фi,ni+n'i-l(t )

< Хі,пі+пі- і +  аі(пі +  п’і -  1)(h -  e)Ini>i, i G j }  

хБі (ні +  п’і, Хі,пі+пі +  аі(пі +  п’і )^  !пі>о(^іh +  o(h))
N N

+ 5 3  53  ^ z ( t )  =  z -  ві +  ej ,фk,l(t) < Хк,і,. . . ,  ак (пк +  nk)hInk>o
і=1 j =1,j=i

Ф Фk,nk+n'k (t) < x k,nk+n'k +  ак(пк +  пк)hInk>0, к G J, к =  "i, к =  j,

Фj,l(t) < Хj,l,. . . ,  фj,nj +nj (t) < Хjnj +nj ,Фj,nj +nj+i(t) < aj (nj +  n'j +  1)(h -  в),

фi,l(t) < Хі,!,. . . ,  аі (пі +  п’і -  1)(h -  e)Ini>i Ф Фi,ni+ni-l(t) (A.1)

< Хі,пі+пі- !  +  аі(пі +  п’і -  1)(h -  в)1т>2^ 

хБі (ні + пі,, '̂і п̂і+п̂ і +  аі(пі +  п'і)^ Pj,iIni>o +  o(h)
N

^ 5 ^ z ( t )  =  z +  e j,фk,l(t) <Хк, ! , . . . , ак(пк +  пк)hInk>о Ф Фk,nk+nk(t)
j=i

< x k,nk+n'k +  ак(пк +  nk)hInk>0, к G J, к =  j ,

^ j,i(t) < Хj,1, . . . ,Фj,nj +nj (t) < Хj,nj +nj ,Фj,nj +nj + i (t) < aj (nj +  ^j +  1)(h -  в^  Pj,0 +  o(h)
N

^ 5  ^ z ( t )  =  z +  еі -  е'і,фк,!(Ф) < Хк,!,.. . ,ак(пк +  п’к)hInk>о
і=!
Ф фk,nk+n'k (t) < x k,nk +n'k +  ак(пк +  пк)hInk>0, к G J, к =  i,

фi,l(t) < Хі,!,. . . ,  аі(пі +  п'і )h Ф Фі,пі+пі (t) < Хі,п,+пі +  аі (пі +  п і )^  (vih +  o(h))Ini >о 
N

^ 5  ^ z ( t )  =  z -  еі +  ei,фk,l(t) < Хк,!,. . . ,  ак (пк +  п’к )hInk >о
і=!
Ф фk,nk+n'k (t) < x k,nk +n'k +  ак(пк +  пк)hInk>0, к G J, к =  i, 

фi,l(t) < Х ц , . . . , а і ( п і  +  n'i)hIni>l Ф Фіпі+пі(t)

< Хі,пі+пі +  аі(пі +  n'i)hIni> Л (^іh +  o(h))Ini>о +  o(h).
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Further, let us express each probability in the equations above via functions of the form

Ft(z,x)  =  ^ z ( t )  =  Z,^i,i(t) < Xi,i, . . .,фг,пі+пі (t) < Xi,ni+ni, І ^ J  ■

Considering Ft(z,x)  as complex functions of h and assuming that they have first order partial 
derivatives with respect to variables t and Xi,n.+n ,̂ we write decompositions of these functions in 
Taylor series with residual term in the form of Peano, taking into account that

^ z ( t )  =  z,^i,i(t) < Xi,i,.. .,ai(Ui +  n'i)h ^ Фіпі+пі(t) < Xin̂ +n'̂  +  ai(ui +  n'i)h, г G J

=  Ft [z,Xi,i, .. .,Xî n̂ i+n'  ̂ +  ai(ui +  n'i)h, г G J  
N

^ 2  Fj^z,Xi,i,.. .,Xi,ni+ni +  ai(ui +  n'i)h, i G J,i =  k; Xk,i,.. .,Xk,nk +nk-i,ak(uk +  n’̂ )hj +  ...
k=i

+  Ft (^z,Xi,i,...,Xini+ni-i,ai(ni +  n'i)h, i G J  .

Obviously, those functions Ft(z, x) that have h as their arguments at least twice will give o(h) in 
their Taylor series decompositions. Therefore,

^ z ( t )  =  z,^i,i(t) < Xi,i,.. . ,ai(ni  +  ni)h Ф Фі,пі+пі(t) < Xi,ni+ni +  ai(пі +  n’i)h,i G j''̂

/ \ N  dFt(z,Xi i , . . . , X in. ,ni , i  G J)
=  Ft i G j )  + Y , ------------ -̂---------------------------- афт +  пфП
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i=i dXi,ni+ni

- Y .
dFt(z, Xl,i, . . . ,  Xl,ni+n', , l G J, l =  i ; Xi,i, . . . ,  Xi,ni +ni — i, 0)

i=i dXi,ni+ni
ai (ni +  n’i)h +  o(h).

We also decompose expressions of the form Bi (ni +  n’.t , Xi ,n .+n  ̂+  a i (ni +  n’i )e') into Taylor series 
as a function of the variable 9.

Tending t to infinity and taking into account that in this case the partial derivative Ft (z, x ) with 
respect to variable t tends to zero, we arrive at the following system of equations:

N
F (z,x) = F  (z,x) +  ^ 2 a i  (ni +  n’i)

i=i

dF (z,x) (  dF (z,x) * x
Ld x  / \ d^^ W  \ nid '^'i/ni+^'i \ d '^'i/ni+^'i / x  . = 0

x i,ni+n'.

n i> 0

-  (̂ î +  viLni>0 +  ^iIni>o) h +  o (h^  F(z, x)

N
^  {^ih +  o(h))Bi(ni +  U'1, î,ni+n'i )F(z -  ei,x)

i=i

(A.2)

N N
7 V—'' V—'' / / \ / dF (z +  ej ei ,x) \2^  ajirij +  rij +  l)pj,iBi{rii +  щ, Жі,„.+„/) ---- —-- -̂------------

j=i i=i,i=j \ dXi,ni +nj+ i / ,

+h  ^  aj {rij +  n’j +  l)pyo [  
j= i V j

Lni >  0

j/nj + n'. + 1=0

j,n j + n .  +  i /  „/ x  , /  11=0j,n j +n'. +1 j
N N

^ 2  F(z  +  ei -  Фі , x)(v i h +  o(h))Ln i> 0 ^ 2  F(z -  ei +  e'i , x) (p i h +  o(h))Ln i> 0 +  o(h).
i=i i=i
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Next we subtract F(z,x)  from both sides, divided the remaining nonzero right-hand side by h, and 
tend h to zero. Thus, F (z,x) satisfies the following system of differential-difference equations:

N
F ( z , x ) ^  (Xi +  Vi In  i > 0 +  ^i In'i > o)

i=l
N

J2^i  (ni +  ni)
i=l

dF (z,x) (  dF (z,x)
dx

\
i,ni+n^- dx Inn i> 0

i,ni+n'.i / x ■ , / = 0 ,i,ni+n. ‘i i
N

^ 2  XiBi(ni +  n'i, Xin̂ +n' )̂F(z -  ei ,x)
i=l

N N
+ E  E  aj (nj +  n'j +  1)Vj,iBi(ni +  n'i, xini+n '̂ ) 

j=l i=l,i=j

dF(z  +  ej — ei, x)
dx

3

'j,n j +n'. + l
Inni >  0

x j,n j +n'. + 1 = 0

N
^ 2  a j  ( n j  +  n 'j +  1 ) p.pj,0

j=l

dF{z  +  Cj,x)
d x j,n j +n'. + l

Xj,n j +n'. + 1 = 0

N N
^  F(z  +  ei — e'i, x)viIn', >0 +  E F (z — ei +  e'i , x )^i Ini>0-

i=l * i=l

We divide this system of equations into local balance equations:

(A.3)

f ;  KF(z,.) = f ;  a ,( n + +  dw,»
i=l j=l \ ĵĵ nj + l

j,n j +n'. +1 J
=0

F(z, x){ViIrn>0 +  ^iIn'.>^ =  F(z  +  ei — e'i, x)viIn'> 0  +  F(z — ei +  eJi, x)^iIm>0 ,

ai(ni +  n'i)
dF(z, x) dF(z, x)
dxi,ni+n]

i '  x i,ni +n'. = 0
dx Inni>0

Xi Bi (ui +  n'i, xi,ni+n'  ̂F  (z — ei, x)
N

^  E  a j  (nj  +  n'j  +  1)pj , iB i (ni +  n'i , x i n i+n '.)
j=l,j=i
( dF{z  +  ej -  ei,x)
\ dxj,nj +n'. + l

I n i > 0 , i S J-

j,nj +n'j + 1=0

(A.4)

(A.5)

(A.6)

Let us show that distribution functions of probabilities F(z, x) given by formulas (6) are solutions 
of the system of Eqs. (A.4)-(A.6), and therefore also the system of Eqs. (A.3).

If ni >  0, then, substituting (6) into Eq. (A.6), canceling similar terms, and dividing both parts 
of the resulting relation by Bi(ni +  n',̂ , x i,ni+n.)F (z  — ei,x)  we get the traffic Eq. (1); if ni =  0 then 
(A.6) becomes an identity. Substituting (6) into (A.4), we get the corollary of traffic equations 
1 ^>^N=l ^jPj,0. Finally, substituting (6) into (A.5) we get an identity.
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