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Abstract

This paper is concerned with the probability-constrained filtering problem for a class of time-varying nonlinear

stochastic systems with estimation error variance constraint. The stochastic nonlinearity considered is quite general

that is capable of describing several well-studied stochastic nonlinear systems. The second-order statistics of the noise

sequence are unknown but belong to certain known convex set. The purpose of this paper is to design a filter guaranteeing

a minimized upper-bound on the estimation error variance. The existence condition for the desired filter is established,

in terms of the feasibility of a set of difference Riccati-like equations, which can be solved forward in time. Then, under

the probability constraints, a minimax estimation problem is proposed for determining the suboptimal filter structure

that minimizes the worst-case performance on the estimation error variance with respect to the uncertain second-order

statistics. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed method.
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I. Introduction

For several decades, nonlinear stochastic systems have been attracting tremendous interest in the system

science and control community due to their extensive applications in a variety of areas such as communi-

cation, transportation, manufacturing, building automation, computing, automotive, and chemical industry

[1–3]. Nowadays, nonlinear stochastic systems are playing more and more prevalent roles in various branches

of theoretical research and engineering applications, especially those related to signal processing and stochas-

tic control [4–7]. As is well known, in many stochastic filtering problems such as the maneuvering target

tracking problem, the performance requirements are naturally expressed as upper-bounds on the filtering

error variances, see, e.g. [8–10]. Unfortunately, the traditional filtering design techniques (e.g. H∞ filtering
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algorithm and minimum variance filtering approach) are no longer effective in handling variance-constrained

filtering problem since they lack a convenient avenue for directly imposing design objectives stated in terms

of the upper-bounds on the individual error variance values. The covariance control theory [11] developed in

the late 80s has provided a direct filtering methodology for achieving the individual error variance constraints

imposed on the states. It should be emphasized that, since then, due to the elegancy and convenience in

dealing with variance-related problems, the covariance control theory has been serving as a practical method

for variance-constrained control/filtering design as well as a foundation for linear system theory.

In recent years, there has been a renewed research interest on the design technique for the variance-

constrained filtering problem for more complicated systems such as nonlinear stochastic systems and time-

varying stochastic systems [14, 15]. However, it should be pointed out that limited work has been reported

due mainly to the fact that either nonlinearities or time-varying parameters exhibit much more complicated

dynamics than that resulting from the traditional linear time-invariant systems, and this has inevitably led to

unanticipated difficulties in handling the state/output/error covariance. In [12], the error variance-constrained

filtering problem has been solved for linear time-varying stochastic systems in terms of certain Riccati equa-

tions. For a special type of nonlinear stochastic systems, a sufficient condition has been proposed in [13] to

the existence of an optimal filter expressed by the feasibility of a set of Riccati-like equations, and the optimal

filter parameters can be obtained by the gradient method. Unfortunately, filtering problems for more complex

nonlinear time-varying systems with variance constraints have not yet been investigated adequately.

On another research frontier, the past several decades have witnessed the extensive studies and applications

of the celebrated Kalman filtering in the area of signal processing, see [16–19] and the references therein. As

is well known, the standard Kalman filtering algorithm is only applicable to the systems with precise system

models and known statistics of the noises, and this has placed certain restriction in practical engineering.

To improve the robustness of the filter performances, in recent years, much research effort has been devoted

to the robust filtering problem in the branches of stochastic estimation and control theory [20–24]. Several

techniques have been proposed in the literature, among which the well-known minimax estimation approach

has stirred special research interests due to its robustness against the system uncertainties. Such an algorithm

aims to find an optimal scheme such that the worst-case performance over all possible values of the uncertain

parameters is minimized, see [25,26] and the references therein.

It is worth mentioning that, though the minimax algorithm appears to be elegant, it suffers from certain

limitations. The most notable limitation is arguably the conservatism since the minimization is implemented

subject to the worst-case situation that is very likely to be a small probability event. As a result, much work

has been done to reduce the conservatism and several approaches have been exploited. A particular method

incorporating the known constraints (imposed on the system states) into the minimax estimation framework

has proven to be fairly effective. For example, in [27, 28], a receding horizon approximation method has

been proposed to give an optimal filtering algorithm while taking the known constraints on system state

into account, thereby largely reducing the conservatism. Recently, the probability constraint imposed on the

system measured output has been incorporated in [29] to design a minimax filtering algorithm guaranteeing

a minimal worst-case performance index with respect to the unknown disturbance.

It is worth mentioning that the discussion on the system uncertainties has mainly concerned with the

unknown external disturbance (e.g. white Gaussian noises with unknown covariances mentioned above in [29]

or random factors with unknown covariances [30]) and other frequently occurred incomplete measurements

have not been taken into adequate consideration. In practical systems within networked environments (e.g.,
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sensor networks and networked control systems), due to various reasons such as sensor temporal failure, limited

capacity of device or network transmission delay/loss, the measurement signals may have different network-

induced issues such as information loss, equipment failures and nonlinear disturbances. Such a phenomenon is

often referred to as the measurement degradation, which would drastically deteriorate the system performance

and therefore has attracted considerable research attention in the past few years, see [31–35] for some latest

publications. Unfortunately, so far, to the best of our knowledge, the robust filtering problem for nonlinear

stochastic systems with probability constraints on system outputs has not yet been thoroughly investigated,

which still remains as a challenging problem.

In this paper, it is our objective to design a filter that achieves the prespecified variance constraints on the

filtering errors over a finite horizon subject to a probability constraint imposed on the system output. The main

contribution of this paper lies in the following two aspects. 1) A suboptimal filtering algorithm is proposed by

taking the parameter uncertainty, the measurements degradation, the stochastic nonlinear disturbance and

the noise with unknown covariance into simultaneous consideration. 2) The probability constraint imposed on

system measured output is considered to reduce the conservatism of the proposed robust filtering algorithm.

The rest of this paper is organized as follows: Section II formulates the suboptimal robust filter design

problem. Section III presents a filter design algorithm such that the upper-bound of estimation error variance

can be guaranteed. Section IV gives the solution to the addressed suboptimal robust filter design problem

with probability constraint. Section V presents a numerical example. Section VI is our conclusion.

Natation The notation used here is fairly standard except where otherwise stated. R
n denotes the n-

dimensional Euclidean space. The notation X ≥ Y (respectively X > Y ) where X and Y are symmetric

matrices, means that X − Y is positive semi-definite (respectively positive definite). E{x} stands for the

expectation of stochastic variable x and E{x|y} for the expectation of x conditional on y. The superscript

“T ” denotes the transpose. ‖a‖22 where a is a vector represents aTa, while ‖a‖2A means aTAa. tr[A] means

the trace of matrix A. diag{F1, F2, . . . , Fn} denotes a block diagonal matrix whose diagonal blocks are given

by F1, F2, . . . , Fn.

II. Problem Formulation

Consider the following time-varying nonlinear stochastic system defined on k ∈ [0, N ]:






xk+1 = Akxk +Bkωk,

yk = Θk(Ck +∆Ck)xk +Gkg(xk, k) +Dkωk,

zk = Lkxk +Mkωk

(1)

where xk ∈ R
n is the system state, yk ∈ R

m and zk ∈ R
m represent the measured outputs. ωk ∈ R

r represents

the external disturbance which is a white Gaussian sequence with zero mean. The covariance of ωk is denoted

by Wk which is unknown but belongs to a compact and convex set W. Ak, Bk, Ck, Dk, Gk, Lk, and Mk are

known real time-varying matrices with appropriate dimensions. It is assumed that the mean and covariance

of initial state x0 are also known, characterized by x̄0 and X0 respectively. Without loss of generality, it is

assumed that BkWkD
T
k = 0.

The matrix ∆Ck represents the parameter uncertainty and satisfies:

∆Ck = HkFkEk, FT
k Fk ≤ I, (2)

where Hk and Ek are known matrices. The parameter uncertainty ∆Ck is said to be admissible if it satisfies

(2).



REVISED 4

The stochastic matrix Θk describes the phenomenon of multiple measurements degradation in the process

of information retrieval from the sensor output. Θk is defined as

Θk , diag{θ1k, θ2k, . . . , θmk} (3)

with θjk(j = 1, 2, . . . ,m) being m mutually independent random variables which are also independent from

ω(k). It is assumed that θjk has the probabilistic density function pj(s) on the interval [0, 1] with mathematical

expectation θ̄jk and variance σ2
jk.

Remark 1: In the system measurement process with multiple sensors, the stochastic matrix Θk describes the

working status of these sensors. Notice that θjk has the probabilistic density function pj(s) on the interval [0, 1].

In this case, the measurement output model in this paper is more general than those in existing literature where

a Bernoulli distributed stochastic sequence is assumed to take values on 0 or 1 only. In our measurement model,

when θjk = 1, it means that the jth sensor is in good condition, otherwise there might be partial or complete

sensor failure. More specifically, when θjk = 0, the sensor is totally out of order and the measurements are

completely missing, while 0 < θjk < 1 means that we could only measure the output signals with reduced

gains leading to degraded measurements. In this sense, the model (1) offers a comprehensive means to reflect

systems complexity such as nonlinearities, stochasticity and data degraded from multiple sensors.

The nonlinear stochastic function g(xk, k) is assumed to satisfy:

E {g(xk, k)|xk} = 0,

E
{
gT(xj , j)g(xk , k)|xk

}
= 0, k 6= j

E
{
gT(xk, k)g(xk , k)|xk

}
=

q
∑

i=1

Πik(x
T
k Γikxk)

(4)

where Πik and Γik (i = 1, 2, . . . , q) are known semi-positive definite matrices with appropriate dimensions.

Remark 2: As discussed in [36], the nonlinear description (4) can cover several well-studied nonlinear

stochastic systems, such as system with state-dependent multiplicative noises, nonlinear systems with ran-

dom sequences whose powers depend on sector-bound nonlinear function of the state, nonlinear systems with

a random sequence whose power depends on the sign of a nonlinear function of the state, to name just a few.

The measurement zk satisfies the following probability constraint:

Prob{zk ≤ ϕk} ≥ γk, (5)

where ϕk and γk are given vectors and the inequality holds in an element-wise manner.

It is noted that the system (1) has two different types of outputs, namely, yk and zk. Here, yk is the usual

system measurements that are subjected to certain imprecision resulting from variations of operating points,

aging of devices, identification errors, abrupt changes of working circumstances and temporal failures, to name

just a few. The measured output yk in the addressed model is comprehensive to accounts for parameter uncer-

tainties, randomly occurring nonlinearities, external white noises as well as randomly occurring measurement

degradations.

Remark 3: As discussed in [29], in this paper, zk is the output of interest that is assumed to satisfy the

probability constraint (5). In practical engineering, based on our previous experience/knowledge, we might

have high confidence that certain system output satisfies some upper bound constraints during the estimation

interval. An adequate usage of such kind of additional knowledge, expressed in the form of (5), would definitely

help improve the estimation performance.
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One practical application of the problem formulation (1)–(5) might be the target tracking problem. Nowa-

days, due to the high maneuverability of modern aircrafts, it is often the case that we will have to exploit

as much information as possible from different sensing sources implemented distributively but connected via

networks. In addition, sometimes we might receive the data shared by other allied tracking units. In such a

setting, yk represents the physical data obtained from the sensing sources with adequate knowledge (i.e, the

working condition, the device information, etc) , which allows us to adopt a relatively accurate measurement

model to describe the evolution precisely. On the other hand, zk stands for those information we are interested

and we have a priori knowledge about it. In our case, we have certain confidence (quantified by probability)

that zk is constrained by a known upper bound, and the probability constraint could be obtained and verified

via experiments, training, or actual combat experiences.

Now, consider the following filter for the uncertain discrete time-varying nonlinear stochastic system (1):

F : x̂k+1 = Afkx̂k +Kfk(yk − Θ̄kCkx̂k) (6)

where Θ̄k , E{Θk}, and x̂k ∈ R
n is the state estimate, Afk andKfk are the filter parameters to be determined.

In this paper, it is our objective to design a finite-horizon filter of the structure (6), such that

(1) For all admissible parameter uncertainty, possible degraded measurements and nonlinear distur-

bances, there exists a sequence of positive-definite matrices Qk satisfying:

E{(xk − x̂k)(xk − x̂k)
T} ≤ Qk. (7)

That is, at each time point k, the finite upper-bound on the state estimation error covariance is

guaranteed. It is worth mentioning that, usually, the desired filter satisfying constraint (7) is not

unique but belongs to certain set.

(2) The performance index defined by the following cost function

Jk(F ;Wk) = tr[Qk+1] (8)

is minimized at each time point over all possible values of the unknown noise covariance Wk subject

to the probability constraint (5), and a suboptimal filter is obtained eventually.

In short, it is our aim in this paper to seek a suboptimal filtering algorithm via solving the following

minimization estimation problem over the finite horizon k ∈ [0, N ]:

Jopt

k = inf
F

sup
Wk

J(F ;Wk)

subject to : Wk ∈ W, Prob{zk ≤ ϕk} ≥ γk.

(9)

Now, we shall recall a lemma which is useful for the subsequent derivation.

Lemma 1: [29] Consider system (1) and the filter F of the form (6). If the noise covariance Wk belongs

to a compact convex set W, then there exists a Jopt

k such that

inf
F

sup
Wk

Jk(F ;Wk) = Jopt

k = sup
Wk

inf
F

Jk(F ;Wk). (10)

With the benefit of Lemma 1, the required suboptimal filter can be determined via the procedure stated as

follows:

Step 1. At each time point, find the upper-bound Qk on the state estimation error covariance in the presence

of parameter uncertainty, measurements degradation and nonlinear stochastic disturbance occurring

during the process of measurement collecting;
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Step 2. Solve the following optimization problem:

J̃k = inf
F

Jk(F ;Wk), (11)

to determine the parameters Akf and Kkf capable of minimizing the performance index defined by

cost function (8) at each time point. In this step, we could obtain the parametric expressions of filter

parameters Akf and Kkf in terms of Wk;

Step 3. Obtain the ultimate suboptimal filter via solving the optimization problem:

Jopt

k = sup
Wk

J̃k = sup
Wk

inf
F

Jk(F ;Wk), (12)

by incorporating the additional knowledge on Wk subject to probability constraint (5), and then

obtain the desired filter parameters.

Generally speaking, in this paper, we shall try to design a filter F using the output measurement yk

while taking advantage of the additional knowledge of the bounded measurement output zk subject to the

probability constraint (5) with the hope of reducing the conservatism of the proposed minimization approach,

thereby improving the estimation accuracy. This problem will be referred to as a probability constrained

finite-horizon robust filtering problem.

III. Finite-Horizon Filter Design

In this section, a robust filter design problem for the discrete nonlinear stochastic system (1) will be discussed

over the finite horizon. Specifically, we shall proceed to deal with Step 1 and Step 2 of the design procedures

for the required suboptimal filter mentioned in the previous section.

First of all, by defining a new vector as ξk , [xTk x̂Tk ]
T, we can obtain the following augmented system

from system (1) and filter (6):

ξk+1 = (Āk + Ãk)ξk + B̄kωk + Ḡkg(xk, k), (13)

where

Āk =

[

Ak 0

KfkΘ̄k(Ck +∆Ck) Afk −KfkΘ̄kCk

]

, Ãk =

[

0 0

KfkΘ̃k(Ck +∆Ck) 0

]

,

B̄k =

[

Bk

KfkDk

]

, Ḡk =

[

0

KfkGk

]

, Θ̃k = Θk − Θ̄k.

Define the following second moment for the augmented system (13):

Ξ̃k , E{ξkξTk } = E







[

xk

x̂k

] [

xk

x̂k

]T





. (14)

According to (13) and (14), we could obtain a Lyapunov equation that governs the evolution of Ξ̃k+1 as

follows:

Ξ̃k+1 = E

{(
(Āk + Ãk)ξk + B̄kωk + Ḡkg(xk, k)

)(
(Āk + Ãk)ξk + B̄kωk + Ḡkg(xk, k)

)T
}

. (15)

Taking the statistical properties of stochastic nonlinear function g(xk, k) and white noise ωk into consideration,

we shall have

Ξ̃k+1 =E
{
(Āk + Ãk)ξkξ

T
k (Āk + Ãk)

T
}
+ E

{
B̄kωkω

T
k B̄

T
k

}
+ E

{
Ḡkg(xk, k)g

T(xk, k)Ḡ
T
k

}

=ĀkΞ̃kĀ
T
k +

m∑

j=1

σ2
jkC̄jkΞ̃kC̄

T
jk + B̄kWkB̄

T
k + Ḡk

q
∑

i=1

Πiktr[ΓikPk]Ḡ
T
k ,

(16)
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where

Pk = E{xkxTk }, C̄jk =

[

0 0

Kfkej(Ck +∆Ck) 0

]

, ej = diag{0, . . . , 0
︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

m−j

}.

It is worth noting that the parameter uncertainty ∆Ck is involved in equation (16) which hinders us from

obtaining the exact value of the matrix Ξ̃k. Consequently, in the following stage, we shall proceed to propose

an algorithm to eliminate the parameter uncertainty ∆Ck, and then give an alternative way by which a set

of upper-bounds for Ξ̃k can be guaranteed. To this end, a useful lemma that is capable of dealing with the

parameter uncertainty is firstly introduced.

Lemma 2: [13] Given matrices A, H, E, and F with compatible dimensions such that FFT ≤ I. Let X be

a symmetric positive definite matrix and α > 0 be an arbitrary positive constant such that α−1I−EXET > 0,

then the following inequality holds

(A+HFE)X(A +HFE)T ≤ A(X−1 − αETE)−1AT + α−1HHT. (17)

Next, in order to eliminate the parameter uncertainty, we rewrite the uncertain terms in (16) as follows:

ĀkΞ̃kĀ
T
k = (Âk + H̃1kFkẼk)Ξ̃k(Âk + H̃1kFkẼk)

T, (18)

m∑

j=1

σ2
jkC̄jkΞ̃kC̄

T
jk =

m∑

j=1

σ2
jk(Ĉjk + H̃2kFkẼk)Ξ̃k(Ĉjk + H̃2kFkẼk)

T, (19)

where

Âk =

[

Ak 0

KfkΘ̄kCk Afk −KfkΘ̄kCk

]

, Ĉjk =

[

0 0

KfkejCk 0

]

,

H̃1k =

[

0

KfkΘ̄kHk

]

, H̃2k =

[

0

KfkejHk

]

, Ẽk =
[

Ek 0
]

.

It follows from Lemma 2 that, if there exists αk > 0 such that α−1
k I− ẼkΞ̃kẼ

T > 0, then the following matrix

inequalities hold:

ĀkΞ̃kĀ
T
k ≤ Âk(Ξ̃

−1
k − αkẼ

T
k Ẽk)

−1ÂT
k + α−1

k H̃1kH̃
T
1k, (20)

m∑

j=1

σ2
jkC̄jkΞ̃kC̄

T
jk ≤

m∑

j=1

σ2
jk

(

Ĉjk(Ξ̃
−1
k − αkẼ

T
k Ẽk)

−1ĈT
jk + α−1

k H̃2kH̃
T
2k

)

. (21)

Therefore, we can conclude that the following matrix inequality of Ξ̃k is satisfied:

Ξ̃k+1 ≤Âk(Ξ̃
−1
k − αkẼ

T
k Ẽk)

−1ÂT
k + α−1

k H̃1kH̃
T
1k

+
m∑

j=1

σ2
jk

(

Ĉjk(Ξ̃
−1
k − αkẼ

T
k Ẽk)

−1ĈT
jk + α−1

k H̃2kH̃
T
2k

)

+ B̄kWkB̄
T
k + Ḡk

q
∑

i=1

Πiktr[ΓikPk]Ḡ
T
k .

(22)

Up to now, we have eliminated the parameter uncertainty ∆Ck by means of the technique introduced by

Lemma 2. We now turn to seek the upper-bound of Ξ̃k defined in (14). We will show that it can be found

via solving a set of Riccati-like difference equations at corresponding time point. Before giving the detailed

design technique, a useful lemma is introduced.
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Lemma 3: [13] For 0 ≤ k ≤ N , suppose that X = XT > 0, and fk(X) = fT
k (X), hk(X) = hTk (X), where

fk(·) and hk(·) are matrix-valued functionals. If there exists Y = Y T > X such that

fk(Y ) ≥ fk(X), (23)

and

hk(Y ) ≥ fk(Y ), (24)

then the solutions Xk and Yk to the following difference equations

Xk+1 = fk(Xk), Yk+1 = hk(Yk), X0 = Y0 (25)

satisfy Xk ≤ Yk.

Construct a matrix-valued difference equation as:

Ξk+1 ,Âk(Ξ
−1
k − αkẼ

T
k Ẽk)

−1ÂT
k + α−1

k H̃1kH̃
T
1k

+

m∑

j=1

σ2
jk

(

Ĉjk(Ξ
−1
k − αkẼ

T
k Ẽk)

−1ĈT
jk + α−1

k H̃2kH̃
T
2k

)

+ B̄kWkB̄
T
k + Ḡk

q
∑

i=1

Πiktr[ΓikPk]Ḡ
T
k ,

(26)

and a matrix inequality as:

α−1
k I − ẼkΞkẼ

T > 0, (27)

with some positive scalars αk > 0 and the initial condition Ξ0 = Ξ̃0. According to (22), (26), (27), and based

on Lemma 3, the following theorem gives a conclusion that the solution Ξk to the difference equation (26)

and matrix inequality (27) provide an upper-bound on Ξ̃k defined in (15).

Theorem 1: Given Ξ̃k satisfying equation (15), Ξk satisfying equation (26) and inequality (27). If the initial

condition satisfies Ξ̃0 = Ξ0, then Ξ̃k ≤ Ξk holds. In other words, Ξk is the upper-bound on Ξ̃k.

Proof: We define two matrix equations from (15) and (26) as follows:

fk(Ξ̃k) ,ĀkΞ̃kĀ
T
k +

m∑

j=1

σ2
jkC̄jkΞ̃kC̄

T
jk + B̄kWkB̄

T
k + Ḡk

q
∑

i=1

Πiktr[ΓikPk]Ḡ
T
k ,

hk(Ξk) ,Âk(Ξ
−1
k − αkẼ

T
k Ẽk)

−1ÂT
k + α−1

k H̃1kH̃
T
1k

+

m∑

j=1

σ2
jk

(

Ĉjk(Ξ
−1
k − αkẼ

T
k Ẽk)

−1ĈT
jk + α−1

k H̃2kH̃
T
2k

)

+ B̄kWkB̄
T
k + Ḡk

q
∑

i=1

Πiktr[ΓikPk]Ḡ
T
k .

(28)

Then it can be easily checked from Lemma 3 that Ξ̃k ≤ Ξk holds provided initial condition Ξ̃0 = Ξ0.

Remark 4: Theorem 1 shows that the upper-bound on Ξ̃k defined in (14) for the augmented system (13) can

be guaranteed in terms of the solution Ξk to the equation (26) with inequality (27). It is worth mentioning

that such solutions are not unique generally. In the following, an attempt will be made to solve (26) and (27)

to select the filter parameters Afk and Kfk so that the obtained upper-bound is minimized.
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Theorem 2: Consider system (1). Let αk > 0 be a sequence of positive scalars satisfying α−1
k I−EkPkE

T
k > 0.

If the following set of matrix-valued difference equations:

Pk+1 = AkPkA
T
k +BkWkB

T
k , (29)

Qk+1 =−
(
Ak(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k +BkWkD

T
k

)
Ω−1
k

×
(
Ak(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k +BkWkD

T
k

)T

+Ak(Q
−1
k − αkE

T
k Ek)

−1AT
k +BkWkB

T
k ,

(30)

where
Ωk =Θ̄kCk(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k + α−1

k Θ̄kHkH
T
k Θ̄k

+
m∑

j=1

σ2
jk

(

ejCk(Q
−1
k − αkE

T
k Ek)

−1CT
k ej + α−1

k ejHkH
T
k ej

)

+

q
∑

i=1

GkΠiktr[ΓikPk]G
T
k +DkWkD

T
k ,

(31)

have positive definite solutions Pk and Qk such that Pk −Qk > 0, then there exists a required filter with the

parameters

Afk = Ak + (Ak −KfkΘ̄kCk)QkE
T
k (α

−1
k I − EkQkE

T
k )

−1Ek, (32)

and

Kfk =
(
BkWkD

T
k +Ak(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k

)
Ω−1
k , (33)

such that the state estimation error covariance satisfies

E{(xk − x̂k)(xk − x̂k)
T} ≤ Qk. (34)

In other words, Qk is the upper-bound of the estimation error covariance. Moreover, with the obtained filter

parameters Afk and Kfk, such an upper-bound Qk is minimized in the sense of matrix norm, which indicates

that the minimum of J̃k defined in (11) is guaranteed.

Proof: First, assume that Ξk can be decomposed as follows:

Ξk =

[

Pk Pk −Qk

Pk −Qk Pk −Qk

]

(35)

where Pk and Qk are defined in (29) and (30) respectively.

Next, we shall show that Ξk defined in (35) is a solution to (26). To this end, substituting the filter

parameters Afk and Kfk in (32) and (33) into Pk+1 of (29) and Qk+1 of (30) respectively, after some tedious

but straightforward manipulations, we can find out that Ξk is a solution to the matrix-valued function (26).

Therefore, according to Theorem 1, Ξk is the upper-bound of the covariance of system (13). The rest of the

proof is to show the obtained Afk and Kfk can minimize the estimation error covariance upper-bound Qk.
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To this end, it is obvious to see that

Qk+1 =
[

I −I
]

Ξk+1

[

I −I
]T

=
[

Ak −KfkΘ̄kCk −Afk −KfkΘ̄kCk

]

(Ξ−1
k − αkẼ

T
k Ẽk)

−1

×
[

Ak −KfkΘ̄kCk −Afk −KfkΘ̄kCk

]T

+

m∑

j=1

σ2
jk

[

−KfkejCk 0
]

(Ξ−1
k − αkẼ

T
k Ẽk)

−1
[

−KfkejCk 0
]T

+
m∑

j=1

σ2
jkα

−1
k KfkejHkH

T
k ejK

T
fk + α−1

k KfkΘ̄kHkH
T
k Θ̄kK

T
fk

+ (Bk −KfkDk)Wk(Bk −KfkDk)
T +

q
∑

i=1

KfkGkΠiktr[ΓikPk]G
T
kK

T
fk.

(36)

In order to find out the filter parameters minimizing the upper-bound of estimation error variance Qk at

each time point k, we take the first variation of (36) with respective to Afk and Kfk as follows:

∂Qk+1

∂Afk

=2
[

Ak −KfkΘ̄kCk −Afk −KfkΘ̄kCk

]

× (Ξ−1
k − αkẼ

T
k Ẽk)

−1
[

0 −I
]

= 0,

(37)

∂Qk+1

∂Kfk

=2
[

Ak −KfkΘ̄kCk −Afk −KfkΘ̄kCk

]

× (Ξ−1
k − αkẼ

T
k Ẽk)

−1
[

−Θ̄kCk Θ̄kCk

]T

+ 2
m∑

j=1

σ2
jk

[

−KfkejCk 0
]

(Ξ−1
k − αkẼ

T
k Ẽk)

−1
[

−ejCk 0
]T

+ 2

m∑

j=1

σ2
jkα

−1
k KfkejHkH

T
k ej + 2α−1

k KfkΘ̄kHkH
T
k Θ̄k

− 2(Bk −KfkDk)WkD
T
k + 2

q
∑

i=1

KfkGkΠiktr[ΓikPk]G
T
k = 0.

(38)

Then, Afk can be obtained by

Afk =Ak + (Ak −KfkΘ̄kCk)QkE
T
k (α

−1
k I −EkPkE

T
k )

−1Ek

×
(
I − (Qk − Pk)E

T
k (α

−1
k I − EkPkE

T
k )

−1Ek

)
−1

=Ak + (Ak −KfkΘ̄kCk)QkE
T
k Ek(α

−1
k I − PkE

T
k Ek)

−1

×
(
I − (Qk − Pk)E

T
k Ek(α

−1
k I − EkPkE

T
k )

−1
)
−1

=Ak + (Ak −KfkΘ̄kCk)QkE
T
k Ek(α

−1
k I −QkE

T
k Ek)

−1

=Ak + (Ak −KfkΘ̄kCk)QkE
T
k (α

−1
k I −EkQkE

T
k )

−1Ek,

(39)

which is exactly the form in (32).

Likewise, by some tedious but straightforward calculations, we can find the parametric expression of pa-

rameter Kfk as follows:

Kfk =
(
BkWkD

T
k +Ak(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k

)
Ω−1
k , (40)
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where
Ωk =Θ̄kCk(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k + α−1

k Θ̄kHkH
T
k Θ̄k

+

m∑

j=1

σ2
jk

(

ejCk(Q
−1
k − αkE

T
k Ek)

−1CT
k ej + α−1

k ejHkH
T
k ej

)

+

q
∑

i=1

GkΠiktr[ΓikPk]G
T
k +DkWkD

T
k .

(41)

It can be easily seen that Kfk is the same as that in (33). The proof is complete.

Up to now, we have completed the design procedure Step 1 and Step 2 and given a sufficient condition of

the existence of the required filter capable of minimizing the state estimation error covariance upper-bound

in terms of the solvability of certain Riccati-like difference equations.

IV. Filter Design with Probability Constraints

In this section, we shall proceed to reduce the conservatism of the results obtained in the previous sections

by incorporating the probability constraint (5) into the optimization problem. By resorting to the technique

developed in [29], the probability constraint can be converted to certain linear matrix inequalities. To this

end, observe system (1) and let Pk and rk denote the unique solutions to

{

Pk+1 = AkPkA
T
k +BkWkB

T
k ,

rk+1 = Akrk,
(42)

with initial conditions P0 = X0 and r0 = x̄0, respectively.

Denote the ith entry of the probability bound vector γk as γi,k and the ith entry of ϕk as ϕi,k. Denote the

ith line of matrices Lk and Mk as li,k and mi,k, respectively. Then the ith entry of measurement zk can be

represented as follows:

zi,k = li,kxk +mi,kωk. (43)

Obviously, the probability constraint (5) is equivalent to

Prob{li,kxk +mi,kωk ≤ ϕi,k} ≥ γi,k, i = 1, 2, . . . ,m. (44)

In the following, a lemma is given to convert the probability constraints into certain linear matrix inequal-

ities.

Lemma 4: [29]Consider system (1). Let γi,k > 1/2 be given and assume that τ∗i,k is the unique solution to

1√
2π

∫ τ∗
i,k

−∞

e−
ς2

2 dς = γi,k. (45)

Then, the probability constraint

Prob{zk ≤ ϕk} ≥ γk (46)

is satisfied if and only if







ϕi,k − li,krk ≥ 0,

li,kPkl
T
i,k +mi,kWkm

T
i,k ≤

(

ϕi,k − li,krk
τ∗i,k

)2

, i = 1, 2, . . . ,m
(47)

where Pk and rk are the solutions of difference matrix equations (42).
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Proof: It is easy to know that zi,k is a random variable with mean and covariance being governed by

E{zi,k} =li,krk,

E{(zi,k − li,krk)(zi,k − li,krk)
T} =li,kPkl

T
i,k +mi,kWkm

T
i,k,

(48)

where Pk and rk are the solutions of difference matrix equations (42).

Define now

τi,k =
ϕi,k − li,krk

√

li,kPkl
T
i,k +mi,kWkm

T
i,k

. (49)

Then it is not difficult to obtain that

Prob{li,kxk +mi,kωk ≤ ϕi,k} =
1√
2π

∫ τi,k

−∞

e−
ς2

2 dς. (50)

Notice that the left hand side of (50) is a monotone increasing function of τi,k. Consequently, it is easy to

know that
Prob{zi,k ≤ ϕi,k} ≥ γi,k

⇐⇒τi,k ≥ τ∗i,k

⇐⇒li,kXkl
T
i,k +mi,kWkm

T
i,k ≤

(

ϕi,k − li,krk
τ∗i,k

)2

.

(51)

The proof is now complete.

Based on Theorem 2 and Lemma 4, we can immediately obtain the following theorem giving a sufficient con-

dition to solve the addressed suboptimal filtering problem for nonlinear time-varying systems with parameter

uncertainty, measurements degradation and stochastic nonlinearity.

Theorem 3: Consider system (1) and the probability constraint (5) with ϕi,k and γi,k > 1/2 being given.

The worst-case performance defined in (9) can be obtained by solving the following minimization problem

Jopt = sup
Wk

inf
F

J(F ;Wk) (52)

subject to the following constraints:

Pk+1 = AkPkA
T
k +BkWkB

T
k (53)

Qk+1 = −
(
Ak(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k +BkWkD

T
k

)
Ω−1
k

×
(
Ak(Q

−1
k − αkE

T
k Ek)

−1CT
k Θ̄k +BkWkD

T
k

)T

+Ak(Q
−1
k − αkE

T
k Ek)

−1AT
k +BkWkB

T
k (54)

0 < Pk −Qk (55)

0 < α−1
k I − EkPkE

T
k (56)

li,kPkl
T
i,k +mi,kWkm

T
i,k ≤

(

ϕi,k − li,krk
τ∗i,k

)2

, i = 1, 2, . . . ,m (57)

Moreover, the suboptimal filtering parameters at each time point can be obtained by (32) and (33).

Proof: Based on Theorem 2 and Lemma 4, the proof of Theorem 3 is quite straightforward, and therefore

is omitted here.

So far, the whole procedures of the addressed suboptimal filter design problem has been finished. The

existence of the desired filter can be checked by solving the set of Riccati-like difference equations and linear
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matrix inequalities. The filter gains at each time point can be determined by solving the corresponding set of

equations and inequalities provided the minimization problem is solvable. The following algorithm presents a

iterative computing method to gain the desired filter parameters by solving the corresponding minimization

problem.

Algorithm 1: Computational Algorithm

Step 1 Set k = 0. Select properly the initial values x̄0, P0 and Q0.

Step 2 Obtain the range of unknown Wk by inequalities (57) at the time step k with known parameters.

Step 3 Solve the minimization problem (52) subject to constraints (53)–(56) with the range of Wk obtained

in Step 2, and calculate Pk+1 and Qk+1. Based on this, the filter parameters at time step k, that is,

Afk and Kfk can also be computed.

Step 4 Set k = k+1. If k < Nmax (Nmax is the maximum iterative times), then go to Step 2. Otherwise go

to Step 5.

Step 5 Stop.

V. An Illustrative Example

In this section, we shall present a numerical illustrative example to show the effectiveness and applicability of

the proposed suboptimal filtering technique. Consider the following time-varying nonlinear stochastic system







xk+1 =

([

0 0.6 + 0.01 sin(0.5k)

0.3 + 0.01 cos(0.5k) 0.2

])

xk +

[

0.8 + 0.01 sin(0.5k)

0.1

]

ωk,

yk =Θk

([

0.1 + 0.05 cos(0.4k) 0.5
]

+ 0.3Fk

[

0.5 0.7
])

xk + g(xk, k) + 0.1ωk,

zk =
[

1 1
]

xk + ωk,

where ωk is a zero mean Gaussian white noise process whose covariance is unknown but belongs to certain

range as Wk ∈ [a, b] with a > 0 and b > 0 being known lower- and upper-bounds. Fk = 0.3 sin(3k) is a

deterministic perturbation matrix satisfying FkF
T
k ≤ I.

In addition, we assume the stochastic matrix Θk obey uniform distribution on the interval [0, 1]. Hence,

the mathematical expectation and variance can be easily calculated as Θ̄k = 1/2, and σ2
jk = 1/12.

The nonlinear function g(xk, k) is taken as follows:

g(xk, k) =
[

0.2 0.3
]

xkξk,

where ξk is zero mean Gaussian white noise process with unity covariance. Assume that ξk is uncorrelated

with ωk and Θk. Thus, the above stochastic nonlinearity satisfies

E

{
[

g(xk, k)
]
∣
∣
∣
∣
∣
xk

}

= 0,

E

{
[

gT(xk, k)
] [

g(xk, k)
]
∣
∣
∣
∣
∣
xk

}

= xTk

[

0.04 0.06

0.06 0.09

]

xk.

It is assumed that the measured output zk satisfies the following probability constraint:

Prob{zk ≤ 2.2} ≥ 0.8.
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Set N = 200, k = 0, a = 2, b = 8 and choose the parameters’ initial values as follows:

r0 = x̄0 =

[

0

0

]

, x̂0 =

[

1

1

]

, P0 =

[

1 1

1 1

]

, Q0 =

[

1 1

1 0

]

.

Solving the minimization problem (52), we could obtain the filtering parameters by equations (32) and (33).

The detailed simulation results are shown in Table I and Figs. 1–3.

Table I shows the worst-case performance index Jopt

k calculated based on Theorem 3, where the second/third

columns are the values of Jopt

k obtained from the design without/with consideration of probability constraint,

respectively. It should be noted that the last column shows a decrease rate of around 47% on Jopt

k when the

probability constraint (5) is taken into account. The plots of upper-bounds as well as the actual variances

for the states x1k and x2k are given in Figs. 1 and 2. It can be seen, obviously, the actual variances for the

states stay below their upper-bounds, which indicates that the proposed method is effective and accurate.

Furthermore, the upper-bounds of each state variance in Fig. 1 are larger than those in Fig. 2, and therefore

we can conclude that the obtained worst-case performance index Jopt

k without probability constraint is larger

than that with probability constraint, shown in Fig. 3. It proves, as we have anticipated, that the increase of

system accuracy is apparent when the probability constraint is taken into consideration.

TABLE I

Comparison of Jopt

k
in different cases

Jopt

k = inf
F

sup
Wk

J(F ;Wk)

time(k) Without probability constraint With probability constraint Jopt

k decreases

40 5.7444 3.0031 48%

80 5.6314 2.9942 48%

120 5.5113 2.9048 47%

160 5.4026 2.8807 47%

200 5.5240 2.9386 47%

VI. Conclusion

This paper considers the suboptimal filtering problem for a class of time-varying systems with parameter

uncertainty, measurements degradation and stochastic nonlinearity subject to probability constraint. The

stochastic nonlinearity considered in this paper is quite general and could cover several classes of nonlinear

stochastic systems as special cases. With the designed filtering algorithm, the upper-bound on the estimation

error variance is guaranteed firstly and then is minimized in the sense of matrix norm at each time point.

A minimax problem is considered to search for the worst-case criterion subject to the probability constraint

on system measured output. The suboptimal filter parameters can be determined at each time point by

solving the corresponding minimax problem. A numerical example is presented to show the effectiveness of

the proposed filtering algorithm.
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