Skip to main content
Log in

Cyclic Stochastic Approximation with Disturbance on Input in the Parameter Tracking Problem Based on a Multiagent Algorithm

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the possibilities of using cyclic stochastic approximation for solving optimization problems of a nonstationary functional of the data produced by distributed observers (sensors) under constraints on the possibilities of simultaneous communication between the observers themselves. We achieve tracking the optimal value of parameters up to a certain level of quality with a multi-agent algorithm. The efficiency of the proposed approach is illustrated by an example of modeling the process of tracking the trajectories of a group of moving objects using a set of spatially distributed sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelina, N.O., Anan’evskii, M.S., Andrievskii, B.R., et al., Problemy setevogo upravleniya (Problems of Network Control), Fradkov, A.L., Ed., Izhevsk: IKI, 2015.

  2. Robbins, H. and Monro, S., A Stochastic Approximation Method, Ann. Math. Stat., 1951, vol. 22, pp. 400–407.

    Article  MathSciNet  MATH  Google Scholar 

  3. Kiefer, J. and Wolfowitz, J., Statistical Estimation on the Maximum of a Regression Function, Ann. Math. Stat., 1952, vol. 23, pp. 462–466.

    Article  MATH  Google Scholar 

  4. Blum, J.R., Multidimensional Stochastic Approximation, Ann. Math. Stat., 1954, vol. 9, pp. 737–744.

    Article  MathSciNet  MATH  Google Scholar 

  5. Derevitskii, D.P. and Fradkov, A.L., Two Models Analyzing the Dynamics of Adaptation Algorithms, Autom. Remote Control, 1974, vol. 35, no. 1, pp. 67–75.

    MathSciNet  MATH  Google Scholar 

  6. Derevitskii, D.P. and Fradkov, A.L., Prikladnaya teoriya diskretnykh adaptivnykh sistem upravleniya (Applied Theory of Discrete Adaptive Control Systems), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  7. Vakhitov, A.T., Granichin, O.N., and Gurevich, L.S., Algorithm for Stochastic Approximation with Trial Input Perturbation in the Nonstationary Problem of Optimization, Autom. Remote Control, 2009, vol. 70, no. 11, pp. 1827–1835.

    Article  MathSciNet  MATH  Google Scholar 

  8. Granichin, O.N., Stochastic Approximation Search Algorithms with Randomization at the Input, Autom. Remote Control, 2015, vol. 76, no. 5, pp. 762–775.

    Article  MathSciNet  MATH  Google Scholar 

  9. Granichin, O. and Amelina, N., Simultaneous Perturbation Stochastic Approximation for Tracking under Unknown but Bounded Disturbances, IEEE Trans. Autom. Control, 2015, vol. 60, no. 6, pp. 1653–1658.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, J. and Spall, J.C., Tracking Capability of Stochastic Gradient Algorithm with Constant Gain, Proc. 55th Conf. on Decision and Control, 2016, pp. 4522–4527.

    Google Scholar 

  11. Amelina, N.O. and Fradkov, A.L., Method of Averaged Models in the Task of Achieving Consensus, SOI, 2012, vol. 8, pp. 3–39.

    Google Scholar 

  12. Amelina, N.O. and Fradkov, A.L., Approximate Consensus in the Dynamic Stochastic Network with Incomplete Information and Measurement Delays, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1765–1783.

    Article  MathSciNet  MATH  Google Scholar 

  13. Amelina, N., Fradkov, A., Jiang, Y., and Vergados, D.J., Approximate Consensus in Stochastic Networks with Application to Load Balancing, IEEE Trans. Inf. Theory, 2015, vol. 61, no. 4, pp. 1739–1752.

    Article  MathSciNet  MATH  Google Scholar 

  14. DeGroot, M.H., Reaching a Consensus, J. Am. Stat. Assoc., 1974, vol. 69, no. 345, pp. 118–121.

    Article  MATH  Google Scholar 

  15. Borkar, V. and Varaiya, P., Asymptotic Agreement in Distributed Estimation, IEEE Trans. Autom. Control, 1982, vol. 27, no. 3, pp. 650–655.

    Article  MathSciNet  MATH  Google Scholar 

  16. Tsitsiklis, J., Bertsekas, D., and Athans, M., Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms, IEEE Trans. Autom. Control, 1986, vol. 31, no. 9, pp. 803–812.

    Article  MathSciNet  MATH  Google Scholar 

  17. Boyd, S. et al., Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Found. Trends Mach. Learn., 2011, vol. 3, no. 1, pp. 1–122.

    Article  MathSciNet  Google Scholar 

  18. Rabbat, M. and Nowak, R., Distributed Optimization in Sensor Networks, Proc. 3rd Int. Symp. Inf. Process. Sens. Netw., 2004, pp. 20–27.

    Google Scholar 

  19. Nedic, A. and Ozdaglar, A., Distributed Subgradient Methods for Multi-agent Optimization, IEEE Trans. Autom. Control, 2009, vol. 54, no. 1, pp. 48–61.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu, M. and Martinez, S., Discrete-time Dynamic Average Consensus, Automatica, 2010, vol. 46, no. 2, pp. 322–329.

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Lorenzo, P. and Scutari, G., Next: In-network Nonconvex Optimization, IEEE TSIPN, 2016, vol. 2, no. 2, pp. 120–136.

    MathSciNet  Google Scholar 

  22. Bianchi, P. and Jakubowicz, J., Convergence of a Multi-agent Projected Stochastic Gradient Algorithm for Non-convex Optimization, IEEE Trans. Autom. Control, 2013, vol. 58, no. 2, pp. 391–405.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Y. et al., A Parallel Decomposition Method for Nonconvex Stochastic Multi-agent Optimization Problems, IEEE Trans. Sig. Process., 2016, vol. 64, no. 11, pp. 2949–2964.

    Article  MathSciNet  Google Scholar 

  24. Yin, G., Wang, L.Y., and Zhang, H., Stochastic Approximation Methods-Powerful Tools for Simulation and Optimization: A Survey of Some Recent Work on Multi-agent Systems and Cyber-physical Systems, AIP Conf. Proc., 2014, vol. 1637, no. 1, pp. 1263–1272.

    Article  Google Scholar 

  25. Bhatti, S., Beck, C.L., and Nedich, A., Large Scale Data Clustering and Graph Partitioning via Simulated Mixing, Proc. 55th IEEE Conf. on Decision and Control, 2016, pp. 147–152.

    Google Scholar 

  26. Mhanna, S., Chapman, A.C., and Verbic, G., A Fast Distributed Algorithm for Large-scale Demand Response Aggregation, IEEE Trans. Smart Grids, 2016, vol. 7, pp. 2094–2107.

    Article  Google Scholar 

  27. Peng, C. and Hui, Q., Real-time Distributed Decomposition for Large-scale Distributed Fault Diagnosis over Dynamic Graphs, Proc. Am. Control Conf., 2016, pp. 2472–2477.

    Google Scholar 

  28. Spall, J.C., Cyclic Seesaw Process for Optimization and Identification, J. Optim. Theor. Appl., 2012, vol. 154, no. 1, pp. 187–208.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Granichin.

Additional information

Original Russian Text © O.N. Granichin, V.A. Erofeeva, 2018, published in Avtomatika i Telemekhanika, 2018, No. 6, pp. 69–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granichin, O.N., Erofeeva, V.A. Cyclic Stochastic Approximation with Disturbance on Input in the Parameter Tracking Problem Based on a Multiagent Algorithm. Autom Remote Control 79, 1013–1028 (2018). https://doi.org/10.1134/S0005117918060036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918060036

Keywords

Navigation