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Abstract: We consider the problem of testing the hypothesis that the parameter of linear
regression model is 0 against an s-sparse alternative separated from 0 in the ℓ2-distance.
We show that, in Gaussian linear regression model with p < n, where p is the dimension
of the parameter and n is the sample size, the non-asymptotic minimax rate of testing has
the form

√

(s/n) log(1 +
√

p/s). We also show that this is the minimax rate of estimation
of the ℓ2-norm of the regression parameter.
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1. Introduction

This paper is deals with testing of hypotheses on the parameter of linear regression model under
sparse alternatives. This problem has various applications in genetics, signal transmission and de-
tection, and compressed sensing. A detailed description of these applications can be found, for ex-
ample, in Arias-Castro, Candes and Plan (2011). It is important to find optimal methods of test-
ing in such a framework, and a natural approach is to define the notion of optimality in a minimax
sense. The problem of testing under sparse alternatives in a minimax framework was first studied
by Ingster (1997) and Donoho and Jin (2004) who considered the Gaussian mean model. These
papers were dealing with an asymptotic setting under the assumption that the sparsity index
scales as a power of the dimension. Non-asymptotic setting for the Gaussian mean model was ana-
lyzed by Baraud (2002) who established bounds on the minimax rate of testing up to a logarithmic
factor. Finally, the exact non-asymptotic minimax testing rate for the Gaussian mean model is
derived in Collier, Comminges and Tsybakov (2017). In this paper, we present an extension of
the results of Collier, Comminges and Tsybakov (2017) to linear regression model with Gaussian
noise. Note that the problem of minimax testing for linear regression under sparse alternatives
was already studied in Ingster, Tsybakov and Verzelen (2010), Arias-Castro, Candes and Plan
(2011), Verzelen (2012). Namely, Ingster, Tsybakov and Verzelen (2010), Arias-Castro, Candes and Plan
(2011) deal with an asymptotic setting under additional assumptions on the parameters of the
problem while Verzelen (2012) obtains non-asymptotic bounds up to a logarithmic factor in the
spirit of Baraud (2002). Our aim here is to derive the non-asymptotic minimax rate of testing in
Gaussian linear regression model with no specific assumptions on the parameters of the problem.
We give a solution to this problem when p < n, where p is the dimension and n is the sample
size.

We consider the model
Y = Xθ + σξ, (1)

where σ > 0, ξ ∈ R
n is a vector of Gaussian white noise, i.e., ξ ∼ N (0, In), X is a n× p matrix

with random entries, In is the n × n identity matrix, and θ ∈ R
p is an unknown parameter. In

what follows, we assume everywhere that X is independent of ξ.
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The following notation will be used below. For u = (u1, . . . , up) ∈ R
p, we denote by ‖ · ‖2 be

the ℓ2-norm, i.e.,

‖u‖22 =
p
∑

i=1

|ui|2,

and let ‖ · ‖0 be the ℓ0 semi-norm, i.e.,

‖u‖0 =
p
∑

i=1

1ui 6=0,

where 1{·} is the indicator function. We denote by 〈u, v〉 = uT v the inner product of u ∈
R

p, v ∈ R
p. We denote by λmin(M) and by tr[M ] the minimal eigenvalue and the trace of matrix

M ∈ R
p×p. For an integer s ∈ {1, . . . , p}, we consider the set B0(s) of all s-sparse vectors in R

p:

B0(s) := {u ∈ R
p : ‖u‖0 ≤ s}.

Given the observations (X,Y ), we consider the problem of testing the hypothesis

H0 : θ = 0 against the alternative H1 : θ ∈ Θ(s, τ) (2)

where
Θ(s, τ) = {θ ∈ B0(s) : ‖θ‖2 ≥ τ}

for some s ∈ {1, . . . , p} and τ > 0. Let ∆ = ∆(X,Y ) be a statistic with values in {0, 1}. We
define the risk of test based on ∆ as the sum of the first type error and the maximum second
type error:

P0(∆ = 1) + sup
θ∈Θ(s,τ)

Pθ(∆ = 0),

where Pθ denotes the joint distribution of (X,Y ) satisfying (1). The smallest possible value of
this risk is equal to the minimax risk

Rs,τ := inf
∆

{

P0(∆ = 1) + sup
θ∈Θ(s,τ)

Pθ(∆ = 0)
}

where inf∆ is the infimum over all {0, 1}-valued statistics. We define the minimax rate of testing
on the class B0(s) with respect to the ℓ2-distance as a value λ > 0, for which the following two
properties hold:

(i) (upper bound) for any ε ∈ (0, 1) there exists Aε > 0 independent of p, n, s, σ such that, for
all A > Aε,

Rs,Aλ ≤ ε, (3)

(ii) (lower bound) for any ε ∈ (0, 1) there exists aε > 0 independent of p, n, s, σ such that, for
all 0 < A < aε,

Rs,Aλ ≥ 1− ε. (4)

Note that the rate λ defined in this way is a non-asymptotic minimax rate of testing as opposed to
the classical asymptotic definition that can be found, for example, in Ingster and Suslina (2003).
It is shown in Collier, Comminges and Tsybakov (2017) that when X is the identity matrix and
p = n (which corresponds to the Gaussian sequence model), the non-asymptotic minimax rate
of testing on the class B0(s) with respect to the ℓ2-distance has the following form:

λ =

{

σ
√

s log(1 + p/s2) if s <
√
p,

σp1/4 if s ≥ √
p.

(5)
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For the regression model with random X and satisfying some strong assumptions, the asymptotic
minimax rate of testing when n, p, and s tend to ∞ such that s = pa for some 0 < a < 1 is studied
in Ingster, Tsybakov and Verzelen (2010). In particular, it is shown in Ingster, Tsybakov and Verzelen
(2010) that for this configuration of parameters and if the matrix X has i.i.d. standard normal
entries, the asymptotic rate has the form

λ = σmin
(

√

s log(p)

n
, n−1/4,

p1/4√
n

)

. (6)

Similar result for a somewhat differently defined alternativeH1 is obtained in Arias-Castro, Candes and Plan
(2011).

Below we show that non-asymptotically, and with no specific restriction on the parameters
n, p and s, the lower bound (ii) for the minimax rate of testing is valid with

λ = σmin
(

√

s log(2 + p/s2)

n
, n−1/4,

p1/4√
n

)

(7)

whenever X is a matrix with isotropic distribution and independent subgaussian rows (the def-
initions of subgaussian and isotropic distributions will be given in Section 3). Furthermore, we
show that the matching upper bound holds when X is a matrix with i.i.d. standard Gaussian
entries and p < n. Note that for p < n the expression (7) takes the form

λ = σmin
(

√

s log(2 + p/s2)

n
,
p1/4√
n

)

(8)

It will be also useful to note that, since for s ≤ √
p the function s 7→ s log(2 + p/s2) is increasing

and satisfies log(2+p/s2) ≤ 2 log(1+p/s2), the rate (8) can be equivalently (to within an absolute
constant factor) written as

λ =







σ
√

s log(1+p/s2)
n if s <

√
p,

σ p1/4

√
n

if s ≥ √
p.

(9)

This expression is analogous to (5). Finally, note that the rate can be written in the following
more compact form

σmin
(

√

s log(2 + p/s2)

n
,
p1/4√
n

)

≍ σ

√

s log(1 +
√
p/s)

n
, (10)

where ≍ denotes the equivalence up to an absolute constant factor.

2. Upper bounds on the minimax rates

In this section, we assume that X is a matrix with i.i.d. standard Gaussian entries and p < n
and we establish an upper bound on the minimax rate of testing in the form (9). This will be
done by using a connexion between testing and estimation of functionals. We first introduce an
estimator Q̂ of the quadratic functional ‖θ‖22 and establish an upper bound on its risk. Then, we
deduce from this result an upper bound for the risk of the estimator N̂ of the norm ‖θ‖2 defined
as follows:

N̂ =

√

max(Q̂, 0).
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Finally, using N̂ to define a test statistic we obtain an upper bound on the minimax rate of
testing.

Introduce the notation
αs = E(Z2|Z2 > 2 log(1 + p/s2))

where Z is a standard normal random variable, and set

yi = {(XTX)−1XTY }i
where {(XTX)−1XTY }i is the ith component of the least squares estimator (XTX)−1XTY .
Note that the inverse (XTX)−1 exists almost surely since we assume in this section that X is a
matrix with i.i.d. standard Gaussian entries and p < n, so that X is almost surely of full rank.
We consider the following estimator of the quadratic functional ‖θ‖22:

Q̂ :=























p
∑

i=1

y2i − σ2tr[(XTX)−1] if s ≥ √
p,

p
∑

i=1

[

y2i − σ2(XTX)−1
ii αs

]

1y2
i>2σ2(XTX)−1

ii log(1+p/s2) if s <
√
p.

Here and below (XTX)−1
ij denotes the (i, j)th entry of matrix (XTX)−1.

For any integers n, p, s such that s ≤ p, set

ψ(s, p) =

{

s log(1+p/s2)
n if s <

√
p,

p1/2

n if s ≥ √
p.

Theorem 1 Let n, p, s be integers such that s ≤ p, n ≥ 9, and p ≤ min(γn, n − 8) for some
constant 0 < γ < 1. Let r > 0, σ > 0. Assume that all entries of matrix X are i.i.d. standard
Gaussian random variables. Then there exists a constant c > 0 depending only on γ such that

sup
θ:‖θ‖0≤s,‖θ‖2≤r

Eθ[(Q̂ − ‖θ‖22)2] ≤ c
(

σ2 r
2

n
+ σ4ψ2(s, p)

)

.

The proof of Theorem 1 is given in Section 4.2.
Arguing exactly in the same way as in the proof of Theorem 8 in Collier, Comminges and Tsybakov

(2017), we deduce from Theorem 1 the following upper bound on the squared risk of the estimator
N̂ .

Theorem 2 Let the assumptions of Theorem 1 be satisfied. Then there exists a constant c′ > 0
depending only on γ such that

sup
θ∈B0(s)

Eθ[(N̂ − ‖θ‖2)2] ≤ c′σ2ψ(s, p).

Theorem 2 implies that the test ∆∗ = 1{N̂>Aλ/2} where λ = σ
√

ψ(s, p) (i.e., the same λ as

in (9)) satisfies

P0(∆
∗ = 1) + sup

θ∈Θ(s,Aλ)

Pθ(∆
∗ = 0)

≤ P0(N̂ > Aλ/2) + sup
θ∈B0(s)

Pθ(N̂ − ‖θ‖2 ≤ −Aλ/2)

≤ 2 sup
θ∈B0(s)

Eθ[(N̂ − ‖θ‖2)2]
(A/2)2λ2

≤ C∗A
−2
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for some constant C∗ > 0. Using this remark and choosing Aε = (C∗/ε)1/2 leads to the upper
bound (i) that we have defined in the previous section. We state this conclusion in the next
theorem.

Theorem 3 Let the assumptions of Theorem 1 be satisfied and let λ be defined by (9). Then,
for any ε ∈ (0, 1) there exists Aε > 0 depending only on ε and γ such that, for all A > Aε,

Rs,Aλ ≤ ε.

3. Lower bounds on the minimax rates

In this section, we assume that the distribution of matrix X is isotropic and has independent
σX -subgaussian rows for some σX > 0. The isotropy of X means that EX(XTX/n) = Ip where
EX denotes the expectation with respect to the distribution PX of X .

Definition 1 Let b > 0. A real-valued random variable ζ is called b-subgaussian if

E exp(tζ) ≤ exp(b2t2/2), ∀t ∈ R.

A random vector η with values in R
d is called b-subgaussian if all inner products 〈η, v〉 with

vectors v ∈ R
d such that ‖v‖2 = 1 are b-subgaussian random variables.

The following theorem on the lower bound is non-asymptotic and holds with no restriction on
the parameters n, p, s except for the inevitable condition s ≤ p.

Theorem 4 Let ε ∈ (0, 1), σ > 0, and let the integers n, p, s be such that s ≤ p. Assume that
the distribution of matrix X is isotropic and X has independent σX -subgaussian rows for some
σX > 0. Then, there exists aε > 0 depending only on ε and σX such that, for

τ = Aσmin
(

√

s log(2 + p/s2)

n
, n−1/4,

p1/4√
n

)

(11)

with any A satisfying 0 < A < aε, we have

Rs,τ ≥ 1− ε.

The proof of Theorem 4 is given in Section 4.4. The next corollary is an immediate consequence
of Theorems 3 and 4.

Corollary 1 Let the assumptions of Theorem 1 be satisfied. Then the minimax rate of testing
on the class B0(s) with respect to the ℓ2-distance is given by (8).

In addition, from Theorem 4, we get the following lower bound on the minimax risk of esti-
mation of the ℓ2-norm ‖θ‖2.
Theorem 5 Let the assumptions of Theorem 4 be satisfied, and let λ be defined in (7). Then
there exists an a constant c∗ > 0 depending only on σX such that

inf
T̂

sup
θ∈B0(s)

Eθ[(T̂ − ‖θ‖2)2] ≥ c∗λ
2,

where inf T̂ denotes the infimum over all estimators.
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The result of Theorem 5 follows from Theorem 4 by noticing that, for τ in (11) and λ in (7) we
have τ = Aλ, and for any estimator T̂ ,

sup
θ∈B0(s)

Eθ[(T̂ − ‖θ‖2)2] ≥
1

2

[

E0[T̂
2] + sup

θ∈Θ(s,τ)

Eθ[(T̂ − ‖θ‖2)2]
]

≥ τ2

8

[

P0(T̂ > τ/2) + sup
θ∈Θ(s,τ)

Pθ(T̂ ≤ τ/2)
]

≥ (Aλ)2

8
Rs,τ .

Corollary 2 Let the assumptions of Theorem 1 be satisfied and let λ be defined in (8). Then the
minimax rate of estimation of the norm ‖θ‖2 under the mean squared risk on the class B0(s) is
equal to λ2, that is

c∗λ
2 ≤ inf

T̂
sup

θ∈B0(s)

Eθ[(T̂ − ‖θ‖2)2] ≤ c′λ2,

where c∗ > 0 is an absolute constant and c′ > 0 is a constant depending only on γ.

This corollary is an immediate consequence of Theorems 2 and 5.

Remark 1 Inspection of the proofs in the Appendix reveals that the results of this section remain
valid if we replace the ℓ0-ball B0(s) by the ℓ0-sphere B̄0(s) = {u ∈ R

p : ‖u‖0 = s}.

4. APPENDIX

4.1. Preliminary lemmas for the proof of Theorem 1

This section treats two main technical issues for the proof of Theorem 1. The first one is to control
the expectation of a power of the smallest eigenvalue of the inverse empirical covariance matrix.
The second issue is to control the errors for identifying non-zero entries in the sparse setting. For
this, we need accurate bounds on the correlations between centred thresholded transformations
of two correlated χ2

1 random variables. We first recall two general facts that we will use to solve
the first issue.

In what follows, we will denote by C positive constants that can vary from line to line.

Lemma 1 [Davidson and Szarek (2001), see also Vershynin (2012).] Let X satisfy the assump-
tions of Theorem 1. Let λmin(Σ̂) denote the smallest eigenvalue of the sample covariance matrix
Σ̂ = 1

nX
TX. Then for any t > 0 with probability at least 1− 2 exp(−t2/2) we have

1−
√

p

n
− t√

n
≤
√

λmin(Σ̂) ≤ 1 +

√

p

n
+

t√
n
.

Lemma 2 [(Tao and Vu, 2010, Lemma A4), see also (Bordenave and Chafäı, 2012, Lemma
4.14).] Let 1 ≤ p ≤ n, let Ri be the i-th column of matrix X ∈ R

n×p and R−i = span{Rj : j 6= i}.
If X has full rank, then

(XTX)−1
ii = dist(Ri, R−i)

−2,

where dist(Ri, R−i) is the Euclidean distance of vector Ri to the space R−i.
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Lemma 3 Let n ≥ 9 and p ≤ min(γn, n− 8) for some constant γ such that 0 < γ < 1. Assume
that all entries of matrix X ∈ R

n×p are i.i.d. standard Gaussian random variables. Then there
exists a constant c > 0 depending only on γ, such that

E[λ−2
min(Σ̂)] ≤ c. (12)

Proof. Set β =
√
γ. From the inequality p ≤ γn and Lemma 1 we have

P
(

√

λmin(Σ̂) < 1− β − t√
n

)

≤ P
(

√

λmin(Σ̂) < 1−
√

p

n
− t√

n

)

≤ 2 exp(−t2/2).

Taking here t =
√
n(1− β)/2 we arrive at the inequality

P
(

λmin(Σ̂) <
(1− β

2

)2)

≤ 2 exp
(

− n(1− β)2

8

)

.

Using this inequality we obtain

E[λ−2
min(Σ̂)] ≤

(1− β

2

)−4

+

√

E[λ−4
min(Σ̂)]

√
2 exp

(

− n(1− β)2

16

)

. (13)

We now bound the expectation E[λ−4
min(Σ̂)]. Clearly,

λ−1
min(Σ̂) ≤ tr[Σ̂−1]. (14)

Lemma 2 implies that, almost surely,

(

tr[Σ̂−1]
)4

= n4
[

p
∑

i=1

dist(Ri, R−i)
−2
]4 ≤ n4p3

p
∑

i=1

dist(Ri, R−i)
−8.

Since the random variables dist(Ri, R−i) are identically distributed and p ≤ n we have

E
[(

tr[Σ̂−1]
)4] ≤ n8E[dist(R1, R−1)

−8]. (15)

Finally we only need to bound E[dist(R1, R−1)
−8]. If S is a p − 1 dimensional subspace of Rn

then the random variable dist(R1,S)2 has the chi-square distribution χ2
n−p+1 with n − p + 1

degrees of freedom. Hence, as R−1 is a span of random vectors independent of R1 and R−1 is
almost surely p− 1 dimensional, we have

E[dist(R1, R−1)
−8] = E

[

1

(χ2
n−p+1)

4

]

=
1

(n− p− 1)(n− p− 3)(n− p− 5)(n− p− 7)
≤ 1

105
. (16)

Combining (13), (14), (15) and (16) we get

E[λ−2
min(Σ̂)] ≤

(1− β

2

)−4

+
n8

105

√
2 exp

(

− n(1− β)2

16

)

,

which implies the lemma.
We now turn to the second issue of this section, that is bounds on the correlations. We will

use the following lemma about the tails of the standard normal distribution.
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Lemma 4 For η ∼ N (0, 1) and any x > 0 we have

4√
2π(x+

√
x2 + 4)

exp(−x2/2) ≤ P(|η| > x) ≤ 4√
2π(x+

√
x2 + 2)

exp(−x2/2), (17)

E[η21|η|>x] ≤
√

2

π

(

x+
2

x

)

exp(−x2/2), (18)

E[η41|η|>x] ≤
√

2

π

(

x3 + 3x+
1

x

)

exp(−x2/2). (19)

Moreover, if x ≥ 1, then

x2 < E[η2 | |η| > x] ≤ 5x2. (20)

Inequalities (17) - (19) are given, e.g., in (Collier, Comminges and Tsybakov, 2017, Lemma 4)
and (20) follows easily from (17) and (18).

Lemma 5 Let (η, ζ) be a Gaussian vector with mean 0 and covariance matrix Γ =

(

1 ρ
ρ 1

)

,

0 < ρ < 1. Set α = E[η2 | |η| > x]. Then there exists an absolute constant C > 0 such that, for
any x ≥ 1,

E[(η2 − α)(ζ2 − α)1|η|>x1|ζ|>x] ≤ Cρ2x4 exp(−x2/2).

Proof. From (20) we get that α ≤ 5x2. Thus, using (19) and the fact that x ≥ 1 we find

E[(ζ2 − α)21|ζ|>x] ≤ E
[

(ζ4 + α2)1|ζ|>x

]

≤ 26E[ζ41|ζ|>x] ≤ Cx3 exp
(

−x2/2
)

. (21)

Therefore,

E[(η2 − α)(ζ2 − α)1|η|>x1|ζ|>x] ≤ E[(η2 − α)21|η|>x] +E[(ζ2 − α)21|ζ|>x] ≤ Cx3 exp
(

−x2/2
)

.

This proves the lemma for ρ ≥ 1/
√
5.

Consider now the case 0 < ρ < 1/
√
5. Note that, since α ≤ 5x2, for 0 < ρ < 1/

√
5 we also

have

ρ <
x√
α
.

The symmetry of the distribution of (η, ζ) implies

E[(η2 − α)(ζ2 − α)1|η|>x1|ζ|>x] = 2E[(η2 − α)(ζ2 − α)1|η|>x1ζ>x]. (22)

Now, we use the fact that (η, ζ)
d
= (ρζ +

√

1− ρ2Z, ζ) where
d
= means equality in distribution

and Z is a standard Gaussian random variable independent of ζ. Thus,

E[(η2 − α)(ζ2 − α)1|η|>x1ζ>x] = ρ2E[(ζ2 − α)21|ρζ+
√

1−ρ2Z|>x
1ζ>x]

+ 2ρ
√

1− ρ2E[ζZ(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x
1ζ>x]

+ (1− ρ2)E[(Z2 − α)(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x
1ζ>x].

(23)
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We now bound separately the three summands on the right hand side of (23). For the first
summand, using (21) we get the bound

ρ2E[(ζ2 − α)21|ρζ+
√

1−ρ2Z|>x
1ζ>x] ≤ 26ρ2E[ζ41ζ>x] ≤ Cρ2x3 exp

(

−x
2

2

)

. (24)

To bound the second summand, we first write

E[ζZ(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x
1ζ>x] = E[ζ(ζ2 − α)g(ζ)1ζ>x] (25)

where g(ζ) := E[Z1|ρζ+
√

1−ρ2Z|>x
| ζ]. It is straightforward to check that

g(ζ) = exp

(

− (x− ρζ)2

2(1− ρ2)

)

− exp

(

− (x+ ρζ)2

2(1− ρ2)

)

.

Thus g(ζ) is positive when ζ > x. Therefore we have

E[ζ(ζ2 − α)g(ζ)1ζ>x] ≤ E[ζ3g(ζ)1ζ>x]. (26)

In addition,

g(ζ) = exp

(

− (x− ρζ)2

2(1− ρ2)

)(

1− exp

(

− 2xρζ

1− ρ2

))

≤ 1− exp

(

− 2xρζ

1− ρ2

)

≤ 2xρζ

1− ρ2
. (27)

Combining (25) - (27) with (19) and the fact that ρ ≤ 1
2 , we get

2ρ
√

1− ρ2E[ζZ(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x
1ζ>x] ≤ Cρ2x4 exp

(

−x
2

2

)

. (28)

We now consider the third summand on the right hand side of (23). We will prove that

E[(Z2 − α)(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x
1ζ>x] ≤ 0. (29)

We have

E[(Z2 − α)(ζ2 − α)1|ρζ+
√

1−ρ2Z|>x
1ζ>x] = E[(ζ2 − α)f(ζ)1ζ>x]

where

f(ζ) := E[(Z2 − α)1|ρζ+
√

1−ρ2Z|>x
| ζ]

=

∫ ∞

x−ρζ√
1−ρ2

(z2 − α) exp

(

−z
2

2

)

dz +

∫ − x+ρζ√
1−ρ2

−∞
(z2 − α) exp

(

−z
2

2

)

dz.

Note that x <
√
α by (20). In order to prove (29), it is enough to show that

∀ ζ ∈ [x,
√
α], f(ζ) ≥ f(

√
α). (30)

and

∀ ζ ∈ [
√
α,∞), f(ζ) ≤ f(

√
α). (31)
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Indeed, assume that (30) and (31) hold. Then we have

E[(ζ2 − α)f(ζ)1x<ζ≤√
α] ≤ E[(ζ2 − α)f(

√
α)1x<ζ≤√

α]

= −E[(ζ2 − α)f(
√
α)1ζ>

√
α] ≤ −E[(ζ2 − α)f(ζ)1ζ>

√
α],

where the equality is due the fact that, by the symmetry of the normal distribution and the
definition of α,

E[(ζ2 − α)1ζ>x] =
1

2
E[(ζ2 − α)1|ζ|>x] = 0.

Thus, to finish the proof of the lemma, it remains to prove (30) and (31). We first establish (30),
for which it is sufficient to show that f ′(ζ) < 0 for ζ ∈ [x,

√
α]. Since 0 < ρ < x/

√
α and x <

√
α,

we have
(x− ρy)2

1− ρ2
< α for all y ∈ [x,

√
α]. (32)

Using (32) we obtain, for all ζ ∈ [x,
√
α],

f ′(ζ) =
ρ

√

1− ρ2
exp

(

−1

2

( x+ ρζ
√

1− ρ2

)2
)

((

(x − ρζ)2

1− ρ2
− α

)

exp

(

2ρxζ

1− ρ2

)

−
(

(x+ ρζ)2

1− ρ2
− α

))

≤ ρ
√

1− ρ2
exp

(

−1

2

( x+ ρζ
√

1− ρ2

)2
)

((

(x − ρζ)2

1− ρ2
− α

)

−
(

(x+ ρζ)2

1− ρ2
− α

))

= − ρ
√

1− ρ2
exp

(

−1

2

( x+ ρζ
√

1− ρ2

)2
)

4xρζ

1− ρ2
< 0.

This implies (30). Finally, we prove (31). To do this, it is enough to establish the following three
facts:

(i) f ′ is continuous and f ′(
√
α) < 0;

(ii) the equation f ′(y) = 0 has at most one solution on [
√
α,+∞);

(iii) f(∞) = limy→∞ f(y) ≤ f(
√
α).

Property (i) is already proved above. To prove (ii), we first observe that the solution of the
equation d

dy f(y) = 0 is also solution of the equation h(y) = 0 where

h(y) :=

(

(x− ρy)2

1− ρ2
− α

)(

exp

(

2ρxy

1− ρ2

)

− 1

)

− 4ρxy

1− ρ2
.

Next, let y1 and y2 be the solutions of the quadratic equation (x−ρy)2

1−ρ2 = α :

y1 =
x−

√

α(1− ρ2)

ρ
and y2 =

x+
√

α(1− ρ2)

ρ
.

Due to (32) we have y1 <
√
α < y2. Thus, h(y) < 0 on the interval [

√
α, y2]. Next, on the interval

(y2,+∞) the function h is strictly convex and h(y2) < 0. It follows that h vanishes only once on
(y2,+∞). Thus, (ii) is proved.

It remains to show that f(
√
α) ≥ f(∞) =

∫∞
−∞(z2 − α) exp(−z2/2)dz. Rewriting f(√α) as

f(
√
α) = f(∞)−

∫
x−ρ

√
α√

1−ρ2

− x+ρ
√

α√
1−ρ2

(z2 − α) exp

(

−z
2

2

)

dz

we see that inequality f(∞) ≤ f(
√
α) follows from (32). This proves item (iii) and thus (31).

Therefore, the proof of (29) is complete. Combining (22), (23), (24), (28) and (29) yields the
lemma.
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4.2. Proof of Theorem 1

We consider separately the cases s ≥ √
p and s <

√
p.

Case s ≥ √
p. From (1) we get that, almost surely,

(XTX)−1XTY = θ + ǫ̃

where
ǫ̃ = σ(XTX)−1XT ξ.

Thus, we have

Eθ

[(

Q̂− ‖θ‖22
)2]

= Eθ

(

2θT ǫ̃+ ‖ǫ̃‖22 − σ2tr
[

(XTX)−1
])2

≤ 8Eθ

(

θT ǫ̃
)2

+ 2Eθ

(

‖ǫ̃‖22 − σ2tr
[

(XTX)−1
]

)2

.
(33)

Note that, conditionally on X , the random vector ǫ̃ is normal with mean 0 and covariance
matrix σ2(XTX)−1. Thus, conditionally on X , the random variable θT ǫ̃ is normal with mean 0

and variance σ2θT (XTX)−1θ. It follows that Eθ

(

θT ǫ̃
)2 ≤ σ2r2E

[

λ−1
min(X

TX)
]

. Hence, applying
Lemma 3 we have, for some constant C depending only on γ,

Eθ

(

θT ǫ̃)2 ≤ Cσ2 r
2

n
. (34)

Consider now the second term on the right hand side of (33). Denote by (λi, ui), i = 1, . . . , p,
the eigenvalues and the corresponding orthonormal eigenvectors of (XTX)−1, respectively. Set
vi =

√
λiu

T
i X

T ξ. We have

Eθ

(

‖ǫ̃‖22 − σ2tr
[

(XTX)−1
]

)2

= σ4E
(

p
∑

i=1

λi[v
2
i − 1]

)2

.

Conditionnally on X , the random variables v1, . . . , vp are i.i.d. standard Gaussian. Using this
fact and Lemma 3 we get that, for some constant C depending only on γ,

Eθ

(

‖ǫ̃‖22 − σ2tr
[

(XTX)−1
]

)2

= 2σ4E
(

p
∑

i=1

λ2i

)

≤ 2pσ4E
[

λ−2
min

(

XTX
)]

≤ C
σ4p

n2
. (35)

Combining (33), (34) and (35) we obtain the result of the theorem for s ≥ √
p.

Case s <
√
p. Set S = {i : θi 6= 0}. We have

Eθ

(

Q̂− ‖θ‖22
)2 ≤ 3Eθ

(

∑

i∈S

(y2i − σ2(XTX)−1
ii αs − θ2i )

)2

+ 3Eθ

(

∑

i∈S

[

y2i − σ2(XTX)−1
ii αs

]

1y2
i≤2σ2(XTX)−1

ii log(1+p/s2)

)2

+ 3Eθ

(

∑

i6∈S

[

ǫ̃2i − σ2(XTX)−1
ii αs

]

1y2
i>2σ2(XTX)−1

ii log(1+p/s2)

)2

,

(36)
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where ǫ̃i denotes the ith component of ǫ̃. We now establish upper bounds for the three terms on
the right hand side of (36). For the first term, observe that

Eθ

(

∑

i∈S

(y2i − σ2(XTX)−1
ii αs − θ2i )

)2

≤ 8Eθ

(

∑

i∈S

θiǫ̃i

)2

+ 2Eθ

(

∑

i∈S

(ǫ̃2i − σ2(XTX)−1
ii αs)

)2

. (37)

The second summand on the right hand side of (37) satisfies

Eθ

(

∑

i∈S

(ǫ̃2i − σ2(XTX)−1
ii αs)

)2

≤ 2σ4(α2
s + 3)E

∑

i∈S

∑

j∈S

(XTX)−1
ii (XTX)−1

jj

≤ 2σ4(α2
s + 3)s2E

[

λ−2
min(X

TX)
]

.

(38)

From (20) we obtain
αs ≤ 10 log(1 + p/s2). (39)

Thus, using (37), (38) and (39) together with Lemma 3 and (34) we find

Eθ

(

∑

i∈S

(y2i − σ2(XTX)−1
ii αs − θ2i )

)2

≤ Cσ4s2 log2(1 + p/s2)/n2, (40)

where the constant C depends only on γ. For the second term on the right hand side of (36), we
have immediately that it is smaller, up to an absolute constant factor, than

Eσ4
∑

i∈S

∑

j∈S

(XTX)−1
ii (XTX)−1

jj (α
2
s + 4 log2(1 + p/s2)).

Arguing as in (38) and applying Lemma 3 and (39) we get that, for some constant C depending
only on γ,

Eθ

(

∑

i∈S

[

y2i − σ2(XTX)−1
ii αs

]

1y2
i≤2σ2(XTX)−1

ii log(1+p/s2)

)2

≤ Cσ4s2 log2(1 + p/s2)/n2. (41)

For the third term on the right hand side of (36), we have

Eθ

(

∑

i6∈S

[

ǫ̃2i − σ2(XTX)−1
ii αs

]

1y2
i>2σ2(XTX)−1

ii log(1+p/s2)

)2

= σ4
∑

i6∈S

∑

j 6∈S

E
(

(XTX)−1
ii (XTX)−1

jj (ξ̃
2
i − αs)(ξ̃

2
j − αs)1|ξ̃i|>x1|ξ̃j |>x

)

,
(42)

where

x =
√

2 log(1 + p/s2), ξ̃i =
ǫ̃i

√

σ2(XTX)−1
ii

.

Note that E(ξ̃2i |X) = E(ξ̃2j |X) = 1 and, conditionally on X , (ξ̃i, ξ̃j) ∈ R
2 is a centered Gaussian

vector with covariance

ρij =
(XTX)−1

ij
√

(XTX)−1
ii

√

(XTX)−1
jj

.
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Using Lemma 5 we obtain that, for some absolute positive constants C,

∑

i6∈S

∑

j 6∈S

E
(

(XTX)−1
ii (XTX)−1

jj (ξ̃
2
i − αs)(ξ̃

2
j − αs)1|ξ̃i|>x1|ξ̃j |>x

)

=
∑

i6∈S

∑

j 6∈S

E
(

(XTX)−1
ii (XTX)−1

jj E
[

(ξ̃2i − αs)(ξ̃
2
j − αs)1|ξ̃i|>x1|ξ̃j |>x | X

])

≤ C

p
∑

i,j=1

E
[

(XTX)−1
ii (XTX)−1

jj ρ
2
ij

]

x4 exp(−x2/2)

= CE
[

‖(XTX)−1‖2F
]

x4 exp(−x2/2)

≤ CE
[

‖(XTX)−1‖2F
] s2

p
log2(1 + p/s2)

≤ CE
[

λ−2
min(X

TX)
]

s2 log2(1 + p/s2),

where ‖(XTX)−1‖F is the Frobenius norm of matrix (XTX)−1. Finally, Lemma 3, (42) and the
last display imply that, for some constant C depending only on γ,

Eθ

(

∑

i6∈S

[

ǫ̃2i − σ2(XTX)−1
ii αs

]

1y2
i>2σ2(XTX)−1

ii log(1+p/s2)

)2

≤ C
σ4s2 log2(1 + p/s2)

n2
. (43)

The proof is completed by combining (36), (40), (41) and (43).

4.3. Preliminary lemmas for the proof of Theorem 4

We first recall some general facts about lower bounds for the risks of tests. Let Θ be a measurable
set, not necessarily the set Θ(s, τ), and let µ be a probability measure on Θ. Consider any family
of probability measures Pθ indexed by θ ∈ Θ. Denote by Pµ the mixture probability measure

Pµ =

∫

Θ

Pθ µ(dθ).

Let

χ2(P ′, P ) =

∫

(dP ′/dP )2dP − 1

be the chi-square divergence between two probability measures P ′ and P if P ′ ≪ P , and set
χ2(P ′, P ) = +∞ otherwise. The following lemma is a key tool in Le Cam’s method of proving
lower bounds (see, e.g., (Collier, Comminges and Tsybakov, 2017, Lemma 3)).

Lemma 6 Let µ be a probability measure on Θ, and let {Pθ : θ ∈ Θ} be a family of probability
measures indexed by θ ∈ Θ on X . Then, for any probability measure Q on X ,

inf
∆

{

Q(∆ = 1) + sup
θ∈Θ

Pθ(∆ = 0)
}

≥ 1−
√

χ2(Pµ, Q)

where inf∆ is the infimum over all {0, 1}-valued statistics.

Applying Lemma 6 with Q = P0, we see that it suffices to choose a suitable measure µ and
to bound χ2(Pµ,P0) from above by a small enough value in order to obtain the desired lower
bound on Rs,τ . The following lemma is useful to evaluate χ2(Pµ,P0).
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Lemma 7 Let µ be a probability measure on Θ, and let {Pθ : θ ∈ Θ} be a family of probability
measures indexed by θ ∈ Θ on X . Let Q be a probability measure on X such that Pθ ≪ Q for all
θ ∈ Θ. Then,

χ2(Pµ, Q) = E(θ,θ′)∼µ2

(

∫

dPθdPθ′

dQ

)

− 1.

Here, E(θ,θ′)∼µ2 denotes the expectation with respect to the distribution of the pair (θ, θ′) where
θ and θ′ are independent and each of them is distributed according to µ.

Proof. It suffices to note that

χ2(Pµ, Q) =

∫

(dPµ)
2

dQ
− 1

whereas
∫

(dPµ)
2

dQ
=

∫

∫

Θ
dPθµ(dθ)

∫

Θ
dPθ′µ(dθ′)

dQ
=

∫

Θ

∫

Θ

µ(dθ)µ(dθ′)

∫

dPθdPθ′

dQ
.

We now specify the expression for the χ2 divergence in Lemma 7 when Pθ is the probability
distribution generated by model (1) and Q = P0.

Lemma 8 Let Pθ be the distribution of (X,Y ) satisfying (1). Then,

χ2(Pµ,P0) = E(θ,θ′)∼µ2EX exp(〈Xθ,Xθ′〉/σ2)− 1.

Proof. We apply Lemma 7 and notice that, for any (θ, θ′) ∈ Θ×Θ,
∫

dPθdPθ′

dP0
=

1

(2πσ)n/2
EX

∫

Rn

exp
(

− 1

2σ2
(‖y −Xθ‖22 + ‖y −Xθ′‖22 − ‖y‖22)

)

dy

=
1

(2πσ)n/2
EX

∫

Rn

exp
(

− 1

2σ2
(‖y‖22 − 2〈y,X(θ + θ′)〉+ ‖X(θ + θ′)‖22 − 2〈Xθ,Xθ′〉)

)

dy

= EX

(

exp(〈Xθ,Xθ′〉/σ2)

(2πσ)n/2

∫

Rn

exp
(

− 1

2σ2
‖y −X(θ + θ′)‖22

)

dy

)

= EX exp(〈Xθ,Xθ′〉/σ2).

Lemma 9 Let a ∈ R be a constant and let W be a random variable. Then,

E exp(W ) ≤ exp(a)
(

1 +

∫ ∞

0

etp(t)dt
)

where p(t) = P
(

|W − a| ≥ t
)

.

Proof. We have

E exp(W ) ≤ exp(a)E exp(|W − a|)

= exp(a)

∫ ∞

0

P
(

exp(|W − a|) ≥ x
)

dx

= exp(a)
[

1 +

∫ ∞

1

P
(

exp(|W − a|) ≥ x
)

dx
]

= exp(a)
[

1 +

∫ ∞

0

etp(t)dt
]

.
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Lemma 10 Assume that matrix X has an isotropic distribution with independent σX -subgaussian
rows for some σX > 0. Then, for all x > 0 and all θ, θ′ ∈ R

p we have

PX

(

|〈Xθ,Xθ′〉 − n〈θ, θ′〉| ≥ ‖θ‖2‖θ′‖2x
)

≤ 6 exp(−C1 min(x, x2/n))

where the constant C1 > 0 depends only on σX .

Proof. By homogeneity, it is enough to consider the case ‖θ‖2 = ‖θ′‖2 = 1, which will be
assumed in the rest of the proof. Then we have

〈Xθ,Xθ′〉 = ‖Xθ‖22 + ‖Xθ′‖22 − ‖X(θ − θ′)‖22
2

, 〈θ, θ′〉 = 2− ‖θ − θ′‖22
2

,

which implies

∣

∣

1

n
〈Xθ,Xθ′〉 − 〈θ, θ′〉

∣

∣ ≤ 1

2

(
∣

∣

∣

1

n
‖Xθ‖22 − 1

∣

∣

∣
+
∣

∣

∣

1

n
‖Xθ′‖22 − 1

∣

∣

∣

+
∣

∣

∣

1

n
‖X(θ − θ′)‖22 − ‖θ − θ′‖22

∣

∣

∣

)

. (44)

By renormalizing, the third summand on the right hand side of (44) is reduced to the same form
as the first two summands. Thus, to prove the lemma it suffices to show that

PX

(
∣

∣

∣

1

n
‖Xθ‖22 − 1

∣

∣

∣
≥ v
)

≤ 2 exp(−C′
1 min(v, v2)n), ∀ v > 0, ‖θ‖2 = 1, (45)

where the constant C′
1 > 0 depends only on σX .

Denote by xi the ith row of matrix X . Then

1

n
‖Xθ‖22 − 1 =

1

n

n
∑

i=1

(Z2
i − 1),

where Zi = xT
i θ are independent σX -subgaussian random variables, such that E(Z2

i ) = 1 for
i = 1, . . . , n. Therefore, Z2

i − 1, i = 1, . . . , n, are independent centered sub-exponential random
variables and (45) immediately follows from Bernstein’s inequality for sub-exponential random
variables (cf., e.g.,Vershynin (2012), Corollary 5.17).

Lemma 11 Assume that matrix X has an isotropic distribution with independent σX -subgaussian
rows for some σX > 0. Then, there exists u0 > 0 depending only on σX such that, for all θ, θ′

with ‖θ‖2, ‖θ′‖2 ≤ un−1/4 and u ∈ (0, u0) we have

EX exp(〈Xθ,Xθ′〉) ≤ exp(n〈θ, θ′〉)(1 + C0u
2)

where the constant C0 > 0 depends only on σX .

Proof. By Lemma 10, for any x > 0 with PX -probability at least 1− 6e−C1 min(x,x2/n) we have

∣

∣

∣
〈Xθ,Xθ′〉 − n〈θ, θ′〉

∣

∣

∣
≤ ‖θ‖2‖θ′‖2x ≤ u2n−1/2x.

Therefore, for any t > 0 with PX -probability at least 1− 6e−C1 min(
√
nt/u2,t2/u4) we have

∣

∣

∣
〈Xθ,Xθ′〉 − n〈θ, θ′〉

∣

∣

∣
≤ t.
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This and Lemma 9 imply that, for all u ≤ u0 := (C1/2)
1/2,

EX exp(〈Xθ,Xθ′〉) ≤ exp(n〈θ, θ′〉)
(

1 + 6

∫ ∞

0

et−C1 min
(√

nt/u2,t2/u4)
)

dt
)

≤ exp(n〈θ, θ′〉)
(

1 + 6

∫ ∞

0

et(1−C1

√
n/u2)dt+ 6

∫ ∞

0

et−C1t
2/u4

dt
)

≤ exp(n〈θ, θ′〉)
(

1 + 6

∫ ∞

0

e−C1

√
nt/(2u2)dt+ 6

∫ ∞

0

e−t(C1t/u
4−1)dt

)

(as C1
√
n/u2 > 2)

≤ exp(n〈θ, θ′〉)
(

1 +
12u2

C1
√
n
+

12u4

C1
e2u

4/C1 + 6

∫ ∞

2u4/C1

e−t2C1/(2u
4)dt

)

≤ exp(n〈θ, θ′〉)
(

1 + C0u
2
)

, (46)

where the constant C0 > 0 depends only on C1, and thus only on σX .

4.4. Proof of Theorem 4

For an integer s such that 1 ≤ s ≤ p and τ > 0, we denote by µτ the uniform distribution on
the set of vectors in R

p having exactly s nonzero coefficients, all equal to τ/
√
s. Note that the

support of measure µτ is contained in Θ(s, τ).
We now take τ = τ(s, n, p) defined by (11) and set µ = µτ . In view of Lemmas 6 - 8, to prove

Theorem 4 it is enough to show that

E(θ,θ′)∼µ2
τ
EX exp(〈Xθ,Xθ′〉/σ2) ≤ 1 + oA(1) (47)

where oA(1) tends to 0 as A→ 0.
Before proving (47) we proceed to some simplifications. First, note that for τ defined by (11)

the left hand side of (47) does not depend on σ. Thus, in what follows we set σ = 1 without loss
of generality. Next, notice that it is enough to prove the theorem for the case s ≤ √

p. Indeed,
for s >

√
p we can use the inclusions Θ(s, τ(s, n, p)) ⊇ Θ(s′, τ(s, n, p)) ⊇ Θ(s′, τ(s′, n, p)) where

s′ is the greatest integer smaller than or equal to
√
p. Since

τ(s′, n, p) ≍ min
(p1/4√

n
, n−1/4

)

and the rate (11) is also of this order for s >
√
p, it suffices to prove the lower bound for s ≤ s′,

and thus for s ≤ √
p. Taking onto account these simplifications, we assume in what follows

without loss of generality that s ≤ √
p, σ = 1, and

τ := Amin
(

√

s log(1 + p/s2)

n
, n−1/4

)

. (48)

We now prove (47) under these assumptions. By Lemma 11, for any 0 < A < u0 we have

E(θ,θ′)∼µ2
τ
EX exp(〈Xθ,Xθ′〉) ≤ E(θ,θ′)∼µ2

τ
exp(n〈θ, θ′〉)(1 + C0A

2). (49)

Assume thatA < 1. Arguing exactly as in the proof of Lemma 1 in Collier, Comminges and Tsybakov
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(2017), we find

E(θ,θ′)∼µ2
τ
exp(n〈θ, θ′〉) = E(θ,θ′)∼µ2

τ
exp

(

nτ2s−1

p
∑

j=1

1θj 6=01θ′
j 6=0

)

(50)

≤
(

1− s

p
+
s

p
exp(nτ2s−1)

)s

≤
(

1− s

p
+
s

p

(

1 +
p

s2

)A2
)s

≤
(

1 +
A2

s

)s

≤ exp(A2)

where we have used the inequality (1+x)A
2 −1 ≤ A2x valid for 0 < A < 1 and x > 0. Combining

(49) and (50) we obtain that, for all 0 < A < min(1, u0),

E(θ,θ′)∼µ2
τ
EX exp(〈Xθ,Xθ′〉) ≤ exp(A2)(1 + C0A

2)

with some u0 > 0 and C0 > 0 depending only on σX . This completes the proof of the theorem.
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Bordenave, C. and Chafäı, D. (2012). Around the circular law. Probability Surveys. 9 1-89.
Collier, O., Comminges, L., and Tsybakov, A.B. (2017). Minimax estimation of linear
and quadratic functionals under sparsity constraints. Ann. Statist. 45 923–958.

Donoho, D.L. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mix-
tures. Ann. Statist. 32 962–994.

Ingster, Y.I. (1997). Some problems of hypothesis testing leading to infinitely divisible dis-
tributions. Math. Methods Statist. 6 47–49.

Ingster, Y.I. and Suslina, I.A. (2003). Nonparametric Goodness-of-Fit Testing under Gaus-
sian Models. Springer, New York.

Ingster, Y.I., Tsybakov, A.B. and Verzelen, N. (2010). Detection boundary in sparse
regression. Electron. J. Stat. 4 1476–1526.

imsart-ejs ver. 2014/10/16 file: CCCTW_AiT.tex date: October 11, 2018



Carpentier et al./Minimax rate of testing in sparse linear regression 18

Davidson, K.R. and Szarek, S.J. (2001) Local operator theory, randommatrices and Banach
spaces. Handbook of the geometry of Banach spaces 1 317–366

Tao, T. and Vu, V. (2012) Random matrices: Universality of ESDs and the circular law. The
Annals of Probability, 2023–2065.

Vershynin, R. (2012) Introduction to the non-asymptotic analysis of random matrices. In:
Compressed sensing, 210–268, Cambridge Univ. Press, Cambridge.

Verzelen N. (2012). Minimax risks for sparse regressions: Ultra-high dimensional phe-
nomenons. Electron. J. Stat. 6 38–90.

imsart-ejs ver. 2014/10/16 file: CCCTW_AiT.tex date: October 11, 2018


	1 Introduction
	2 Upper bounds on the minimax rates
	3 Lower bounds on the minimax rates
	4 APPENDIX
	4.1 Preliminary lemmas for the proof of Theorem ??
	4.2 Proof of Theorem ??
	4.3 Preliminary lemmas for the proof of Theorem ??
	4.4 Proof of Theorem ??

	Acknowledgements
	References

