Skip to main content
Log in

Organization of an Agents’ Formation through a Cellular Automaton

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The paper considers the algorithm of the distributed organization of an agents’ formation specified by a graph of agents and a numerical simulation of such an algorithm. We describe a cellular automaton simulating the motion of agents, and study its features in connection with the type of landscape along which agents move. The specified cellular automaton has two representations—one-dimensional one and two-dimensional one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuznetsov, A.V., A Model of the Joint Motion of Agents with a Three-Level Hierarchy Based on a Cellular Automaton, Zh. Vychisl. Mat. Mat. Fiz., 2017, vol. 57, no. 2, pp. 339–349. https://elibrary.ru/item.asp?id=28918677

    MathSciNet  Google Scholar 

  2. Kudryavtsev, V.B., Podkolzin, A.S., and Bolotov, A.A., Osnovy teorii odnorodnykh struktur (Fundamentals of the Theory of Homogeneous Structures), Moscow: Nauka, 1990.

    MATH  Google Scholar 

  3. Kuznetsov, A.V., Dissimilarity Measure on the Set of Graphs and Its Applications, Vestn. VGU, Sist. Anal. Inform. Tekhnol., 2017, no. 1, pp. 125–131. https://elibrary.ru/item.asp?id=29185115

    Google Scholar 

  4. Kuznetsov, A.V., A Simplified Combat Model Based on a Cellular Automaton, J. Comput. Syst. Sci. Int., 2017, vol. 56, no. 3, pp. 397–409.

    Article  MathSciNet  Google Scholar 

  5. Kuznetsov, A.V. and Leshchev, A.S., The Environment of Multi-Agent Modeling “Psychohod,” Computer Programm, reg. no. 2017619605, 28.08.2017, Progr. EVM. Bazy Dannykh. Topol. Integr. Mikroskhem, 2017, no. 9.

  6. Malinetskii, G.G. and Stepantsov, M.E., Application of Cellular Automata for Modeling the Motion of a Group of People, Zh. Vychisl. Mat. Mat. Fiz., 2004, vol. 44, no. 11, pp. 2094–2098.

    MathSciNet  MATH  Google Scholar 

  7. Beer, B., Mead, R., and Weinberg, J.B., A Distributed Method for Evaluating Properties of a Robot Formation, Proc. 24th Conf. on Artificial Intelligence (AAAI-2010), July 11–15, 2010, Atlanta, Georgia. http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1677

    Google Scholar 

  8. Cushman, S.A., Calculating the Configurational Entropy of a Landscape Mosaic, Landscape Ecology, 2016, vol. 31, no. 3, pp. 481–489. http://dx.doi.org/10.1007/s10980-015-0305-2

    Article  Google Scholar 

  9. Efraimidis, P. and Spirakis, P., Weighted Random Sampling, in Encyclopedia of Algorithms, Ming-Yang Kao, Ed., Boston: Springer, 2008, pp. 1–99. https://doi.org/10.1007/978-0-387-30162-4_478

    Google Scholar 

  10. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Documentation. http://www.umass.edu/landeco/research/fragstats/documents/fragstats_documents.html

  11. Geuvers, H., Inductive and Coinductive Types with Iteration and Recursion, Proc. 1992 Workshop on Types for Proofs and Programs, Bastad: Chalmers Univ. of Technology, 1992, pp. 183–207 http://www.cs.ru.nl/herman/PUBS/BRABasInfRecTyp.pdf

    Google Scholar 

  12. Ilachinski, A., Artificial War: Multiagent-Based Simulation of Combat, Singapore: World Scientific, 2004.

    Book  Google Scholar 

  13. Jones, M.P. and Dudenhoeffer, D.D., A Formation Behavior for Large-Scale Micro-Robot Force Deployment, Winter Simulation Conf., Los Alamitos: IEEE Computer Society, 2000, vol. 01, pp. 972–982. http://doi.ieeecomputersociety.org/10.1109/WSC.2000.899900

    Google Scholar 

  14. Kuznetsov, A.V., Cellular Automata-Based Model of Group Motion of Agents with Memory and Related Continuous Model, in Mathematical Modeling. Information Technology and Nanotechnology, CEUR Workshop Proc. no. 1904, Sazhin, S., Shchepakina, E., Sobolev, V., and Kudryashov, D., Eds., Aachen, 2017, pp. 223–231. http://ceur-ws.org/Vol-1904/paper38.pdf

    Google Scholar 

  15. Kuznetsov, A., Generation of a Random Landscape by given Configuration Entropy and Total Edge, Comput. Technol, 2017, vol. 22, no. 4, pp. 4–10. https://elibrary.ru/item.asp?id=30053459

    Google Scholar 

  16. Long, R.L., Mead, R., and Weinberg, J.B., Distributed Auction-Based Initialization of Mobile Robot Formations, Proc. 24th Conf. on Artificial Intelligence (AAAI-2010), July 11–15, 2010, Atlanta, Georgia, 2010. http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1673

    Google Scholar 

  17. Mead, R., Cellular Automata for Control and Interactions of Large Formations of Robots, 2008. http://robotics.usc.edu/rossmead/docs/2008/2008Mead_Thesis.pdf

    Google Scholar 

  18. Mead, R. and Weinberg, J.B., 2-Dimensional Cellular Automata Approach for Robot Grid Formations, Proc. 23rd Conf. on Artificial Intelligence (AAAI-2008), July 13–17, 2008, Chicago, Illinois, 2008, pp. 1818–1819. http://www.aaai.org/Library/AAAI/2008/aaai08-299.php

    Google Scholar 

  19. Mead, R. and Weinberg, J.B., A Single- and Multi-Dimensional Cellular Automata Approach to Robot Formation Control, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA-08), 2008. http://robotics.usc.edu/rossmead/docs/2008/~2008WeinbergMead_ICRA08.pdf

    Google Scholar 

  20. Rodráguez-Iturbe, I., D’Odorico, P., and Rinaldo, A., Configuration Entropy of Fractal Landscapes, Geophys. Res. Lett., 1998, vol. 25, no. 7, pp. 1015–1018. http://dx.doi.org/10.1029/98GL00654

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Additional information

The Author(s), 2017, published in Upravlenie Bol’shimi Sistemami, 2017, No. 70, pp. 136–167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.V. Organization of an Agents’ Formation through a Cellular Automaton. Autom Remote Control 81, 153–170 (2020). https://doi.org/10.1134/S0005117920010130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920010130

Keywords

Navigation