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ASYMPTOTIC ACCURACY IN ESTIMATION OF A FRACTIONAL

SIGNAL IN A SMALL WHITE NOISE

M. KLEPTSYNA, D. MARUSHKEVYCH, AND P. CHIGANSKY

Dedicated to the memory of Professor Robert Liptser

ABSTRACT. This paper revisits the problem of estimating the fractional Orn-

stein - Uhlenbeck process observed in a linear channel with white noise of small

intensity. We drive the exact asymptotic formulas for the mean square errors of

the filtering and interpolation estimators. The asymptotic analysis is based on

approximations of the eigenvalues and eigenfunctions of the signal’s covariance

operator.

1. INTRODUCTION

Consider the system of stochastic linear equations

Xt =β
∫ t

0
Xsds+BH

t ,

Yt =µ

∫ t

0
Xsds+

√
εBt ,

(1.1)

where B = (Bt , t ∈R+) and BH = (BH
t , t ∈R+) are independent standard and frac-

tional Brownian motions, β and µ are constant coefficients, and ε is a small posi-

tive parameter.

Recall that the fractional Brownian motion (fBm) with the Hurst exponent H ∈
(0,1) is the Gaussian process with zero mean and covariance function

EBH
t BH

s =
1

2

(
t2H + s2H −|t − s|2H

)
, s, t ∈ R+.

For H = 1/2 the process BH coincides with the standard Brownian motion, but for

all other values of H ∈ (0,1) the fBm is neither a semimartingale nor a Markov

process. For H > 1/2 its increments are positively correlated and have the long

range dependence
∞

∑
n=1

BH
1 (B

H
n+1 −BH

n ) = ∞.
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Due to diversity of properties fBm plays an important role in the theory and ap-

plications of stochastic processes, see, e.g., [1], [2]. The fractional Ornstein-

Uhlenbeck (fOU) process defined by equation (1.1) inherits the long range de-

pendence from the fBm, see [3].

The optimal estimation problem of the signal X given the observed trajectory of

the process Y consists of computing the conditional expectation X̂t,T = E(Xt|FY
T )

at a time t ∈ [0,T ] where F
Y
T = σ{Yt , t ≤ T}. This estimator minimizes the mean

squared error over all functionals measurable with respect to F
Y
T . For t < T it

is called the interpolating (or smoothing) estimator and for t = T , the filtering

estimator.

Since the process (X ,Y ) is Gaussian, the optimal estimator is a linear functional

of the observations; more precisely, it is the stochastic integral, see [4],

X̂t,T =
1

µ

∫ t

0
hT (s, t)dYs,

where the weight function hT (s, t) is the unique solution to the integral equation

εhT (s, t)+

∫ T

0
µ2K(r,s)hT (r, t)dr = µ2K(s, t), 0 ≤ s ≤ t ≤ T, (1.2)

where the covariance kernel K(s, t) = EXsXt for the signal in (1.1) has the form

K(s, t) =

∫ t

0
eβ(t−v) d

dv

∫ s

0
H|v−u|2H−1 sign(v−u)eβ(s−u)dudv. (1.3)

The minimal mean squared error Pt,T (ε) = E(Xt − X̂t,T )
2 is given by the formula

Pt,T (ε) =
ε

µ2
hT (t, t).

A closed form solution to (1.2) is known only for H = 1/2, i.e., when the signal

is the classical OU process. This fact lies in the foundations of the Kalman-Bucy

theory of the optimal linear filtering, [5]. The optimal estimate in this case can

be computed recursively by solving a stochastic differential equation. The corre-

sponding minimal estimation error solves the Riccati ordinary differential equation

(see, e.g., [6, Theorem 12.10 ]), and a simple calculation reveals its exact asymp-

totics

Pt,T (ε)≍
√

ε/µ2

{
1/2, t ∈ (0,T ),

1, t = T,
as ε → 0.

Here and below f (ε) ≍ g(ε) means that f (ε)/g(ε) → 1 as ε → 0. This formula

shows that the interpolation and the filtering errors differ asymptotically only by a

constant factor and decrease as the square root of the noise intensity.

2. THE MAIN RESULTS

In this paper we will derive a more general mean square error asymptotics,

which remains valid for all values of the Hurst parameter.
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Theorem 2.1. The minimal mean squared estimation error of the signal in the

system (1.1) satisfies the following asymptotics as ε → 0:

Pt,T (ε)≍ (ε/µ2)
2H

1+2H

(
sin(πH)Γ(2H +1)

) 1
1+2H

sin π
2H+1

{
1

2H+1
, t ∈ (0,T ),

1, t = T.
(2.1)

Remark 2.2. The estimation rate ε2H/(1+2H) in (2.1) coincides with the optimal

minimax rate in the estimation problem of deterministic signals with Hölder expo-

nent H ∈ (0,1) in white noise, see. [7], [8].

Derivation of asymptotics (2.1) uses approximations to solutions of the spectral

problem

Kϕ = λϕ

for the covariance operator

(Kϕ)(t) =
∫ T

0
K(s, t)ϕsds

of the fOU process with kernel (1.3). It is well known, that this problem has count-

ably many nontrivial solutions (λn,ϕn), n∈N. The eigenvalues λn are real, positive

and can be ordered as a sequence decreasing to zero. The eigenfunctions ϕn form

an orthonormal basis in the space L2([0,T ]). Adding β to the notation for the

kernel (1.3), note that it satisfies the scaling property

Kβ (sT, tT ) = T 2HKβT (s, t), s, t ∈ [0,1], T > 0, (2.2)

by which the spectral problem can be considered on the unit interval [0,1] without

loss of generality.

For the classical OU process, i.e. for H = 1/2, the spectral problem can be

reduced to a boundary problem for a linear differential equation which has simple

closed form solutions

λn =
1

ν2
n +β 2

and ϕn(t) ∝
√

2sin(νnt), (2.3)

where νn = πn−π/2+O(n−1) is the increasing sequence of the roots of equation

ν/β = tanν .

For all other values of the exponent H ∈ (0,1) asymptotically exact approximations

for the eigenvalues and eigenfunctions can be obtained using the approach from [9],

which was recently applied in [10] to the spectral analysis of the fBm.

The following result is of an independent interest and can be useful in other

applications.
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Theorem 2.3.

1. The eigenvalues of the covariance operator with kernel (1.3) on the unit interval

[0,1] satisfy the representation

λn = sin(πH)Γ(2H +1)
ν1−2H

n

ν2
n +β 2

, n = 1,2, ..., (2.4)

where the sequence νn has the same asymptotics as in the case of the fBm ([10,

Theorem 2.1]):

νn =
(

n− 1

2

)
π − (H − 1

2
)2

H + 1
2

π

2
+O(n−1), n → ∞.

2. The eigenfunctions with the unit norm admit the same asymptotic approximation

as in the case of the fBm ([10, Theorem 2.1 ]):

ϕn(x) =
√

2sin
(
νnx+ηH

)

−
∫ ∞

0

(
e−xνnu f0(u)+ (−1)ne−(1−x)νnu f1(u)

)
du+O(n−1),

(2.5)

where the residual is uniform in x ∈ [0,1], the functions f j(·) are given by explicit

formulas (see Lemma 4.9) and

ηH =
1

4

(H − 1
2
)(H − 3

2
)

H + 1
2

.

3. The eigenfunctions satisfy

ϕn(1) =−(−1)n
√

2H +1
(
1+O(n−1)

)
, n → ∞.

3. PROOF OF THEOREM 2.1

Using the property (2.2), we can rewrite the equation (1.2) as

εh(u,v)+

∫ 1

0
µ2T 2H+1KβT (r,u)h(r,v)dr = µ2T 2HKβT (u,v), 0 ≤ u ≤ v ≤ 1,

where h(u,v) := hT (uT,vT ). Clearly

PuT,T (ε) =
ε

µ2
h(u,u), u ∈ [0,1].

Expanding the solution into series of the eigenfunctions of the kernel KβT gives

h(u,v) =
∞

∑
n=1

µ2T 2H

ελ−1
n +µ2T 2H+1

ϕn(u)ϕn(v), 0 ≤ u ≤ v ≤ 1,

where λn are its eigenvalues. This series is absolutely convergent for any ε > 0,

and its value increases unboundedly as ε → 0. Its first order asymptotics will not
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change if the eigenvalues and the eigenfunctions are replaced with their approxi-

mations from Theorem 2.3. Denote C := sin(πH)Γ(2H +1), then

PT,T (ε) =
ε

µ2
h(1,1) =

∞

∑
n=1

εT 2H

ελ−1
n +µ2T 2H+1

ϕ2
n (1) ≍

∞

∑
n=1

εT 2H

ε

C

(πn)2 +(βT )2

(πn)1−2H
+µ2T 2H+1

(2H +1)≍

(2H +1)

∫ ∞

1

εT 2H

ε

C

(
(πx)2H+1 +(βT)2(πx)2H−1

)
+µ2T 2H+1

dx ≍

ε

µ2T

(
ε

C

1

T 2H+1µ2

)− 1
2H+1 2H +1

π

∫ ∞

0

1

y2H+1 +1
dy =

ε

µ2T

(
ε

C

1

T 2H+1µ2

)− 1
2H+1 1

sin π
2H+1

= (ε/µ2)
2H

2H+1
C

1
2H+1

sin π
2H+1

,

which is the asymptotic expression for the filtering error in (2.1) with t = T . To

compute PuT,T (ε) for u ∈ (0,1) we will use the approximation for the eigefunctions

(2.5) which, for any fixed u in the interior of the interval, takes the form

ϕn(u) =
√

2sin
(
νnu+ηH

)
+O(n−1) as n → ∞.

Then

PuT,T (ε) =
ε

µ2
h(u,u) =

∞

∑
n=1

εT 2H

ελ−1
n +µ2T 2H+1

ϕ2
n (u) =

∞

∑
n=1

εT 2H

ελ−1
n +µ2T 2H+1

−
∞

∑
n=1

εT 2H

ελ−1
n +µ2T 2H+1

cos
(
2νnu+2ηH

)
:=

I1(ε)+ I2(ε).

(3.1)

Here I1(ε) differs from the previous case only by the factor 2H + 1, and thus, to

derive the asymptotics of the interpolation error (2.1) for any t ∈ (0,T ), it remains

to show that I2(ε) vanishes as ε → 0 faster than ε2H/(2H+1). To this end, define the

sequence of partial sums (Sn)n≥0

Sn =
n

∑
k=1

cos
(
2νku+2ηH

)
, n ≥ 1, S0 = 0.

For any u ∈ (0,1) this sequence is bounded and

I2(ε) =
∞

∑
n=1

εT 2H

ελ−1
n +µ2T 2H+1

(
Sn −Sn−1

)
=

ε2T 2H
∞

∑
n=1

Sn

λ−1
n+1 −λ−1

n(
ελ−1

n+1 +µ2T 2H+1
)(

ελ−1
n +µ2T 2H+1

) .
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By formula (2.4), for all n large enough, we have

|λ−1
n+1 −λ−1

n | ≤C1n2H and λ−1
n ≥C2n2H+1

with some constants C1 and C2. Then, since (Sn) is bounded, there exists a constant

C3 such that

|I2(ε)| ≤C3ε2
∞

∑
n=1

n2H

(
εn2H+1 +1

)2
≍C3ε2

∫ ∞

1

x2H

(
εx2H+1 +1

)2
dx ≍

C3ε
∫ ∞

0

y2H

(
y2H+1 +1

)2
dy = O(ε), ε → 0.

Consequently, the second term in (3.1) is asymptotically negligible, which com-

pletes the proof.

4. PROOF OF THEOREM 2.3

The main idea of the proof is to reduce the spectral problem to solving a certain

auxiliary system of integral and algebraic equations, which turns out to be more

tractable for asymptotic analysis. A detailed description of the method appears in

[10, Section 4]; frequently used notations and results from the complex analysis

can be found in monograph [11].

4.1. The case H > 1
2
. In this case the expression (1.3) can be simplified by inter-

changing integration and derivative:

K(s, t) =

∫ t

0

∫ s

0
eβ(t−v)eβ(s−u)cα |u− v|−αdudv,

where we defined the new parameter α := 2− 2H ∈ (0,1) and the constant cα =
(1− α

2
)(1−α). In these notations the spectral problem takes the form

∫ 1

0

(∫ x

0

∫ y

0
eβ(x−u)eβ(y−v)cα |u− v|−αdvdu

)
ϕ(y)dy = λϕ(x), x ∈ [0,1]. (4.1)

4.1.1. The Laplace transform. Consider the Laplace transform of the solution to

equation (4.1)

ϕ̂(z) =

∫ 1

0
e−zxϕ(x)dx, z ∈ C. (4.2)

Since the integral is computed over a bounded interval, it defines an entire function.

In the following lemma, using the particular form of the kernel, we will derive an

expression for ϕ̂(z), central to our approach.

Lemma 4.1. Let (λ ,ϕ) solve the spectral problem (4.1), then the Laplace trans-

form (4.2) admits the representation

ϕ̂(z) = ϕ̂(−β )− z+β

Λ(z)

(
Φ0(z)+ e−zΦ1(−z)

)
, (4.3)

where

Λ(z) =
Γ(α)λ

cα
(z2 −β 2)+

∫ ∞

0

2tα

t2 − z2
dt, (4.4)
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and the functions Φ0(z) and Φ1(z), defined in (4.17), are sectionally holomorphic

on the cut plane C\R+.

Proof. Differentiating both sides of equation (4.1) we get
∫ 1

0

(∫ y

0
e−βvcα |x− v|−αdv

)
eβyϕ(y)dy+βλϕ(x) = λϕ ′(x), x ∈ [0,1]. (4.5)

Define the function

ψ(x) := e−βx

∫ 1

x
eβrϕ(r)dr. (4.6)

Integration by parts gives
∫ 1

0

(∫ y

0
e−βvcα |x− v|−αdv

)
eβyϕ(y)dy =

∫ 1

0
cα |x− y|−αψ(y)dy.

Equation (4.5) is equivalent to the generalized spectral problem
∫ 1

0
cα |x− y|−αψ(y)dy = λ

(
β 2ψ(x)−ψ ′′(x)

)
, x ∈ [0,1],

ψ(1) = 0, ψ ′(0)+βψ(0) = 0,

(4.7)

where the boundary conditions follow from definition (4.6) since

ψ ′(x)+βψ(x) =−ϕ(x). (4.8)

Plugging the identity

|x− y|−α =
1

Γ(α)

∫ ∞

0
tα−1e−t|x−y|dt, α ∈ (0,1),

into (4.7) gives
∫ ∞

0
tα−1u(x, t)dt =

Γ(α)λ

cα

(
β 2ψ(x)−ψ ′′(x)

)
, (4.9)

where we defined the function

u(x, t) :=
∫ 1

0
ψ(y)e−t|x−y|dy. (4.10)

On the other hand, integrating twice by parts and using the boundary conditions

of the problem (4.7), we get

ψ̂ ′′(z) =
∫ 1

0
ψ ′′(x)e−zxdx = ψ ′(1)e−z +(β − z)ψ(0)+ z2ψ̂(z). (4.11)

Applying the Laplace transform to (4.9) and substituting (4.11) gives
∫ ∞

0
tα−1û(z, t)dt =

Γ(α)λ

cα

(
(β 2 − z2)ψ̂(z)−ψ ′(1)e−z − (β − z)ψ(0)

)
. (4.12)

Another expression for û(z, t) can be derived from definition (4.10). Differenti-

ating it twice we obtain the equation

u′′(x, t) = t2u(x, t)−2tψ(x) (4.13)
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and the boundary conditions

u′(0, t) = tu(0, t),

u′(1, t) =−tu(1, t).
(4.14)

Now integrating by parts twice we get

û′′(z, t) =
∫ 1

0
u′′(x, t)e−zxdx = u′(1, t)e−z −u′(0, t)+ zû′(z, t) =

(z− t)e−zu(1, t)− (z+ t)u(0, t)+ z2û(z, t),

(4.15)

where (4.14) was used. Combine the Laplace transform of (4.13) with (4.15) to get

û(z, t) =
1

z− t
u(0, t)− 1

z+ t
u(1, t)e−z − 2t

z2 − t2
ψ̂(z). (4.16)

Plugging (4.16) into (4.12) and simplifying, we get

ψ̂(z) =
1

Λ(z)

(
Φ0(z)+ e−zΦ1(−z)

)
,

where the function Λ(z) is defined in (4.4) and

Φ0(z) := −Γ(α)λ

cα
(β − z)ψ(0)+

∫ ∞

0

tα−1

t − z
u(0, t)dt,

Φ1(z) := −Γ(α)λ

cα
ψ ′(1)+

∫ ∞

0

tα−1

t − z
u(1, t)dt.

(4.17)

Since ψ̂ ′(z) =−ψ(0)+ zψ̂(z) and ψ̂ ′(z)+βψ̂(z) =−ϕ̂(z) (see (4.8)), we get

ϕ̂(z) = ψ(0)− (z+β )ψ̂(z),

which gives (4.3). �

The next lemma elaborates the structure of the function Λ(z) and reveal some of

its useful properties.

Lemma 4.2.

a. The function Λ(z) admits the closed form

Λ(z) =
Γ(α)λ

cα
(z2 −β 2)+ zα−1 π

cos π
2

α

{
e

1−α
2

πi, arg(z) ∈ (0,π),

e−
1−α

2
πi, arg(z) ∈ (−π,0)

(4.18)

and has zeros at ±z0 =±iν , where ν > 0 is the unique real root of the equation

λ =
cα

Γ(α)

π

cos π
2

α

να−1

β 2 +ν2
. (4.19)

b. The limits Λ±(t) = limz→t± Λ(z), where z tends to t ∈ R \{0} in the upper and

the lower half-planes, are given by the expressions

Λ±(t) =
Γ(α)λ

cα
(t2 −β 2)+ |t|α−1 π

cos π
2

α

{
e±

1−α
2

πi, t > 0

e∓
1−α

2
πi, t < 0
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and satisfy the identities

Λ+(t) = Λ−(t), (4.20)

Λ+(t)

Λ−(t)
=

Λ−(−t)

Λ+(−t)
, (4.21)

∣∣Λ+(t)
∣∣=

∣∣Λ+(−t)
∣∣. (4.22)

c. The argument θ(t) := arg{Λ+(t)} ∈ (−π,π] is an odd function, θ(−t) =−θ(t),
given by the formula

θ(t) = arctan
sin 1−α

2
π

(t/ν)2−(β/ν)2

1+(β/ν)2 (t/ν)1−α + cos 1−α
2

π
, t > 0. (4.23)

It is continuous on (0,∞) with the limits

θ(0+) :=
1−α

2
π > 0 and θ(∞) := lim

t→∞
θ(t) = 0.

For all sufficiently large ν the function θ(u;ν) := θ(uν) satisfies the bound
∣∣∣θ(u;ν)−θ0(u)

∣∣∣≤ g(u)(β/ν)2, (4.24)

where g(u) does not depend on ν , is continuous on [0,∞), and grows as g(u) ∼
u1−α for u → 0 and g(u) ∼ uα−3 for u → ∞, and

θ0(u) := lim
ν→∞

θ(u;ν) = arctan
sin 1−α

2
π

u3−α + cos 1−α
2

π
. (4.25)

For all β ∈ R

bα(β ,ν) :=
1

π

∫ ∞

0
θ(u;ν)du −−−→

ν→∞

1

π

∫ ∞

0
θ0(u)du =

sin( π
3−α

1−α
2

)

sin π
3−α

=: bα (4.26)

and ∣∣bα(β ,ν)−bα

∣∣≤C(β/ν)2 (4.27)

for some constant C > 0.

Proof.

a. Integration over a suitable contour shows that

∫ ∞

0

tα

t2 − z2
dt = zα−1 1

2

π

cos π
2

α

{
e

1−α
2

πi, arg(z) ∈ (0,π)

e−
1−α

2
πi, arg(z) ∈ (−π,0)

,

which gives the expression (4.18). To find all zeros of Λ(z) in the upper half-plane,

let z = νeiω where ν > 0 and ω ∈ (0,π). Then equation Λ(z) = 0 takes the form

κ(ν2e2iω −β 2)+να−1ei(ω− π
2 )(α−1) = 0,

where we defined the constant κ :=
λΓ(α)

cα

cos π
2

α

π
. The imaginary part of this

equation is

κν2 sin2ω +να−1 sin(ω − π
2
)(α −1) = 0.
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For all ω ∈ (0, π
2
) and ω ∈ (π

2
,π) both sines here have the same sign and hence the

equality is possible only for ω = π
2

. Thus Λ(z) vanishes in the upper half-plane

only at the point iν , where ν solves the equation (4.19). By definition (4.4), Λ(z)
has only conjugate zeros and hence the only zero in the lower half plane is −iν .

b. All the assertions follow directly from the explicit expression (4.18).

c. The function f (u) := (u2−(β/ν)2)u1−α , u ∈R+ vanishes at u = 0 and u = β/ν
and has the unique minimum

min
u≥0

f (u) =−(β/ν)3−α 2

3−α

(
1−α

3−α

) 1−α
2

.

Hence for a fixed β and all sufficiently large ν the denominator (4.23) is bounded

away from zero uniformly in u. In view of this property, all the claims are verified

by a direct calculation (the value of βα was found in [10]).

�

4.1.2. Removal of singularities. By (a) of Lemma 4.2 the expression in (4.3) has

a discontinuity on the real line and two purely imaginary poles. Since the Laplace

transform is an entire function, both of these singularities must be removable, i.e.,

the functions Φ0(z) and Φ1(z) must satisfy the conditions

Φ0(±z0)+ e∓z0Φ1(∓z0) = 0 (4.28)

and

lim
z→t+

1

Λ(z)

(
e−zΦ1(−z)+Φ0(z)

)
= lim

z→t−

1

Λ(z)

(
e−zΦ1(−z)+Φ0(z)

)
, t ∈ R.

The latter condition can be rewritten as

1

Λ+(t)

(
Φ+

0 (t)+ e−tΦ1(−t)
)
=

1

Λ−(t)

(
Φ−

0 (t)+ e−tΦ1(−t)
)
, t > 0,

1

Λ+(t)

(
Φ0(t)+ e−tΦ−

1 (−t)
)
=

1

Λ−(t)

(
Φ0(t)+ e−tΦ+

1 (−t)
)
, t < 0

or, in view of (4.21),

Φ+
0 (t)−

Λ+(t)

Λ−(t)
Φ−

0 (t) = e−tΦ1(−t)

(
Λ+(t)

Λ−(t)
−1

)
,

Φ+
1 (t)−

Λ+(t)

Λ−(t)
Φ−

1 (t) = e−tΦ0(−t)

(
Λ+(t)

Λ−(t)
−1

)
,

t > 0. (4.29)

Since Λ−(t) = Λ+(t) and θ(t) = arg{Λ+(t)}, we have

Λ+(t)

Λ−(t)
−1 = e2iθ (t)−1 = 2ieiθ (t) sinθ(t).

Then (4.29) can be written as

Φ+
0 (t)− e2iθ (t)Φ−

0 (t) = 2ie−teiθ (t) sinθ(t)Φ1(−t),

Φ+
1 (t)− e2iθ (t)Φ−

1 (t) = 2ie−teiθ (t) sinθ(t)Φ0(−t),
t > 0. (4.30)
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It follows from definition (4.10) that tu(0, t) and tu(1, t) are bounded, and there-

fore, the functions defined in (4.17) satisfy the a priori estimates

Φ1(z) ∼ zα−1 and Φ0(z)∼ zα−1 as z → 0, (4.31)

and

Φ0(z) = 2c2(β − z)+O(z−1) and Φ1(z) = 2c1 +O(z−1) as z → ∞, (4.32)

where we defined the constants

c1 =−1

2

Γ(α)λ

cα
ψ ′(1) and c2 =−1

2

Γ(α)λ

cα
ψ(0). (4.33)

4.1.3. Reduction to an equivalent problem. The Laplace transform of any solution

to the spectral problem (4.1) is given by the formula (4.3), where the sectionally

holomorphic functions Φ0(z) and Φ1(z) satisfy the estimates (4.32) and (4.31), the

boundary conditions (4.30) and the algebraic constraints (4.28). Let us establish

the one-to-one correspondence between all such functions and solutions to a certain

system of integral equations on the positive real semiaxis. To this end, we will use

the common technique for solving the Hilbert boundary value problem.

Let us first consider the homogeneous Hilbert problem of finding a function

X(z), sectionally holomorphic on the cut plane C\R+ and satisfying the boundary

conditions

X+(t)− e2iθ (t)X−(t) = 0, t ∈R+. (4.34)

All such functions are given by the Sokhotski-Plemelj formula:

X(z) = zkXc(z) = zk exp

(
1

π

∫ ∞

0

θ(t)

t − z
dt

)
, z ∈C\R+, (4.35)

where k is an integer, to be chosen later. The canonical part Xc(z) of this expression

satisfies the estimates

Xc(z) = 1− z−1νbα(β ,ν)+O(z−2) as z → ∞, (4.36)

where bα(β ,ν) is defined in (4.26), and

Xc(z)∼ z
α−1

2 as z → 0. (4.37)

Define the functions

S(z) :=
Φ0(z)+Φ1(z)

2X(z)
,

D(z) :=
Φ0(z)−Φ1(z)

2X(z)
,

(4.38)

which, in view of (4.30) and (4.34), satisfy the decoupled boundary conditions

S+(t)−S−(t) = 2ih(t)e−t S(−t),

D+(t)−D−(t) =−2ih(t)e−t D(−t),
t > 0, (4.39)

where

h(t) := eiθ (t) sinθ(t)
X(−t)

X+(t)
.
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Calculations, similar to [10, eq. (5.37)], show that this function can be written as

h(t) = exp

(
− 1

π

∫ ∞

0
θ ′(s) log

∣∣∣∣
t + s

t − s

∣∣∣∣ds

)
sinθ(t), (4.40)

and therefore, satisfies the Hölder property on R+ and has the limit

h(0) := sinθ(0+) = sin
1−α

2
π.

Applying the Sokhotski-Plemelj formula to (4.39), we obtain the following rep-

resentation for the functions in (4.38):

S(z) =
1

π

∫ ∞

0

h(t)e−t

t − z
S(−t)dt +PS(z),

D(z) =− 1

π

∫ ∞

0

h(t)e−t

t − z
D(−t)dt +PD(z),

(4.41)

where the polynomials PS(z) and PD(z) are chosen to match the a priori growth

estimates for S(z) and D(z) as z → ∞. Note that the integrals in the right hand side

of (4.41) are well defined and finite, only if S(−t) and D(−t) are integrable at zero.

In view of the estimates (4.31) and (4.37), this limits the choice of the integer k in

the expression (4.35) to k < (α + 1)/2. In what follows we will need S(−t) and

D(−t) to be square integrable, which reduces the limitation further to k < α/2. A

convenient choice is k = 0, which corresponds to setting X(z) := Xc(z).
Since for any real numbers a, b and c

az+b+O(z−1)

1− cz−1 +O(z−2)
= a(z+ c)+b+O(z−1) as z → ∞,

the a priori estimates (4.32) and (4.36) give

S(z) = c2

(
− z+β −νbα(β ,ν)

)
+ c1 +O(z−1),

D(z) = c2

(
− z+β −νbα(β ,ν)

)
− c1 +O(z−1).

This asymptotics determines the choice of the polynomials in (4.41):

PS(z) := c2(−z+β −νbα(β ,ν))+ c1,

PD(z) := c2(−z+β −νbα(β ,ν))− c1,

where the constants c1 and c2 are defined by (4.33). Now, plugging z :=−t with t ∈
R+ into (4.41), we obtain integral equations for the restrictions S(−t) and D(−t):

S(−t) =
1

π

∫ ∞

0

h(s)e−s

s+ t
S(−s)ds+ c2

(
t +β −νbα(β ,ν)

)
+ c1,

D(−t) =− 1

π

∫ ∞

0

h(s)e−s

s+ t
D(−s)ds+ c2

(
t +β −νbα(β ,ν)

)
− c1.

Consider the auxiliary integral equations

p±j (t) =± 1

π

∫ ∞

0

hβ (s;ν)e−νs

s+ t
p±j (s)ds+ t j, j ∈ {0,1}, (4.42)

where hβ (u;ν) := h(uν), u > 0. Below we will show, that for all sufficiently large

ν these equations have the unique solutions in the class of functions such that
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p±j (t)− t j belong to the space L2(R+). We will extend their domain the cut plane

by replacing t in the right hand side of the equation (4.42) with z ∈ C\R+.

Since by construction S(−t) and D(−t) are square integrable at zero, by linearity

S(zν) = c2ν p+1 (−z)+
(

c2

(
β −νbα(β ,ν)

)
+ c1

)
p+0 (−z),

D(zν) = c2ν p−1 (−z)+
(

c2

(
β −νbα(β ,ν)

)
− c1

)
p−0 (−z).

Thus letting

a±(z) := p+0 (z)± p−0 (z),

b±(z) := p+1 (z)± p−1 (z)

and using definition (4.38) we get

Φ0(zν) = c2νX(zν)
(

b+(−z)+
(
β/ν −bα(β ,ν)

)
a+(−z)

)
+ c1X(zν)a−(−z),

Φ1(zν) = c2νX(zν)
(

b−(−z)+
(
β/ν −bα(β ,ν)

)
a−(−z)

)
+ c1X(zν)a+(−z).

(4.43)

Plugging this expression into condition (4.28) to get

c2νξ + c1η = 0, (4.44)

where Xβ (z;ν) := X(zν) and

ξ :=eiν/2Xβ (i;ν)
(

b+(−i)+
(
β/ν −bα(β ,ν)

)
a+(−i)

)
+ (4.45)

e−iν/2Xβ (−i;ν)
(

b−(i)+
(
β/ν −bα(β ,ν)

)
a−(i)

)
,

η :=eiν/2Xβ (i;ν)a−(−i)+ e−iν/2Xβ (−i;ν)a+(i).

Since the constants c1 and c2 are real, the linear algebraic system (4.44) has non-

trivial solutions if and only if

Im{ξ η}= 0, (4.46)

in which case c1 =−c2νξ/η . Plugging this equality into (4.43) we get

Φ0(z)/c2ν =X(z)
(

b+(−z/ν)+
(
β/ν −bα(β ,ν)

)
a+(−z/ν)

)

− ξ

η
X(z)a−(−z/ν),

Φ1(z)/c2ν =X(z)
(

b−(−z/ν)+
(
β/ν −bα(β ,ν)

)
a−(−z/ν)

)

− ξ

η
X(z)a+(−z/ν).

(4.47)

To recap, we arrive at a problem equivalent to solving the equation (4.1).

Lemma 4.3. Let (p±0 , p±1 ,ν) be a solution to the system which consists of the inte-

gral equations (4.42) and the algebraic conditions (4.46). Define ϕ by the Laplace

transform, given by the expression (4.3), where Φ0(z) and Φ1(z) are defined by

the formulas (4.47), and the number λ ∈ R+ by the formula (4.19). Then the
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pair (λ ,ϕ) solves the spectral problem (4.1). Conversely, starting with a solution

(λ ,ϕ) to the problem (4.1), a solution to the above integro-algebraic system can

be constructed.

The following lemma derives the exact asymptotics for Xβ (i;ν) as ν → ∞. This

limit will be used in calculations to follow.

Lemma 4.4.

arg
{

Xβ (i;ν)
}
=

1−α

8
π +O(ν−2),

∣∣Xβ (i;ν)
∣∣ =

√
3−α

2
+O(ν−2),

ν → ∞.

Proof. The constants in the right hand side are the argument and the absolute value

of the limit, cf. (4.25),

X0(i) := lim
ν→∞

Xβ (i;ν) = exp

(
1

π

∫ ∞

0

θ0(u)

u− i
du

)
,

calculated in [10, Lemma 5.5]. The estimates for the residuals follow from inequal-

ity (4.24). �

4.1.4. Properties of the integro-algebraic system. Solvability of the system, intro-

duced in Lemma 4.3, is guaranteed by contractivity of the operator

(A f )(t) :=
1

π

∫ ∞

0

hβ (s;ν)e−νs

s+ t
f (s)ds,

where hβ (u;ν) := h(uν) (see (4.40)):

hβ (u;ν) = exp

(
− 1

π

∫ ∞

0
θ ′(v;ν) log

∣∣∣∣
u+ v

u− v

∣∣∣∣dv

)
sinθ(u;ν). (4.48)

Lemma 4.5. The operator A is a contraction on the space L2(R+) for all suffi-

ciently large ν , i.e., for any α0 ∈ (0,1] there exist constants ε > 0 and ν ′ > 0, such

that ‖A‖ ≤ 1− ε for all ν ≥ ν ′ and α ∈ [α0,1].

Proof. A direct calculation shows that for all sufficiently large ν and all α ∈ [α0,1]
the exponent in (4.48) is bounded by a continuous function f (u), which does not

depend on α and ν , and whose limits as u → 0 and u → ∞ equal 1. Thus

hβ (u,ν)≤ f (u)sin θ(u;ν) ≤ ‖ f‖∞.

Also, since θ0(0+)= 1−α
2

π , in view of estimate (4.24), there exists a neighborhood

of the origin, where for all sufficiently large ν

sin θ(u;ν) ≤ 1

2
+

1

2
sin

1−α0

2
π =: 1−3ε .

Since f (0) = 1, this also guarantees that hβ (u,ν) < 1−2ε in some neighborhood

of the origin. Thus, as supν>0‖hβ‖∞ ≤ ‖ f‖∞, a constant ν ′ can be chosen so that

hβ (u,ν)e
−νu < 1− ε for all u > 0 and all ν ≥ ν ′. The rest of the proof can be

repeated as in [10, Lemma 5.6].

�
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The following estimates play the key role in the asymptotic analysis of the

integro-algebraic system from Lemma 4.3.

Lemma 4.6. For any α0 ∈ (0,1] there exist constants ν ′ and C, such that for all

ν ≥ ν ′ and α ∈ [α0,1]∣∣a−(±i)
∣∣≤Cν−1,

∣∣a+(±i)−2
∣∣≤Cν−1,

∣∣b−(±i)
∣∣≤Cν−2,

∣∣b+(±i)∓2i
∣∣≤Cν−2,

and, for all τ > 0,
∣∣a−(τ)

∣∣≤Cν−1τ−1,
∣∣a+(τ)−2

∣∣≤Cν−1τ−1,
∣∣b−(τ)

∣∣≤Cν−2τ−1,
∣∣b+(τ)∓2τ

∣∣≤Cν−2τ−1.

Proof. As shown in the proof of the previous lemma, the function hβ (u;ν) is

bounded by a constant, which depends only on α0, for all ν large enough. In view

of this estimate, the proof in [10, Lemma 5.7] applies without any changes. �

4.1.5. Laplace transform inversion. The next lemma expresses the eigenfunctions

in terms of the solutions to integro-algebraic system from Lemma 4.3.

Lemma 4.7. Let (Φ0,Φ1,ν) be the solutions to integro-algebraic system from

Lemma 4.3. Then the function ϕ , defined by the Laplace transform (4.3) satisfies

ϕ(x) =−ν3−α cos π
2

α

π
2Re

{
eiνxΦ0(iν)

1− i(β/ν)
2

(β/ν)2+1
−α +1

}
+

ν3−α cos π
2

α

π

1

π

∫ ∞

0

sinθβ (u;ν)

γβ (u;ν)
· (4.49)

·
(

e−(1−x)uν
(
u+ β

ν

)
Φ1(−uν)− e−uνx

(
u− β

ν

)
Φ0(−uν)

)
du,

where γβ (u;ν) is defined by formula (4.51) below. Moreover, the following equali-

ties hold ∫ 1

0
eβxϕ(x)dx =−ν3−α cos π

2
α

π
2c2

(
1+(β/ν)2

)
,

ϕ(1) =−ν3−α cos π
2

α

π
2c2ν

ξ

η

(
1+(β/ν)2

)
.

(4.50)

Proof. Since ϕ̂(z) is holomorphic, the Laplace transform (4.3) inversion can be

done by means of integration along the imaginary axis:

ϕ(x) =− 1

2πi
lim

R→∞

∫ iR

−iR

(
z+β

Λ(z)
Φ0(z)+

z+β

Λ(z)
e−zΦ1(−z)−ψ(0)

)
ezxdz

=− 1

2πi
lim

R→∞

∫ iR

−iR

(
f0(z)+ f1(z)

)
dz,

where we defined the functions

f0(z) = ezx

(
(z+β )

Φ0(z)

Λ(z)
−ψ(0)

)
and f1(z) = e(x−1)z(z+β )

Φ1(−z)

Λ(z)
.
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Integrating on suitable contours as in the proof of [10, Lemma 5.8], we get

∫ i∞

−i∞

(
f1(z)+ f0(z)

)
dz = 2πi

(
Res( f0,z0)+Res( f0,−z0)

)
+

∫ ∞

0

(
f+1 (t)− f−1 (t)

)
dt +

∫ ∞

0

(
f−0 (−t)− f+0 (−t)

)
dt.

Due to symmetries (4.20) and (4.22) and the definition of θ(t),

f+1 (t)− f−1 (t) =−e(x−1)t(t +β )Φ1(−t)
2isin θ(t)

γ(t)
,

f−0 (−t)− f+0 (−t) =−e−tx(−t +β )Φ0(−t)
2isin θ(t)

γ(t)
,

with γ(t) = |Λ+(t)|, and therefore,

ϕ(x) =−Res
(

f0,z0

)
−Res

(
f0,−z0

)
+

1

π

∫ ∞

0

sinθ(t)

γ(t)

(
e−(1−x)t(t +β )Φ1(−t)− e−tx(t −β )Φ0(−t)

)
dt.

The usual calculations produce the following expressions for the residues

Res
(

f0,z0

)
=eiνx(iν +β )

Φ0(iν)

Λ′(iν)
=

eiνxΦ0(iν)
cos π

2
α

π
ν3−α 1− i(β/ν)

2
(β/ν)2+1

−α +1
,

Res
(

f0,−z0

)
=e−iνx(−iν +β )

Φ0(−iν)

Λ′(−iν)
=

e−iνxΦ0(−iν)
cos π

2
α

π
ν3−α 1+ i(β/ν)

2
(β/ν)2+1

−α +1
,

and consequently

Res
(

f0,z0

)
+Res

(
f0,−z0

)
=

2ν3−α cos π
2

α

π
Re

{
eiνxΦ0(iν)

1− i(β/ν)
2

(β/ν)2+1
−α +1

}
.

By plugging this expression, we get (4.49) where

γβ (u;ν) = ν1−α cos π
2

α

π

∣∣Λ+(uν)
∣∣=

∣∣∣∣
u2 − (β/ν)2

(β/ν)2 +1
+uα−1e

1−α
2

πi

∣∣∣∣ . (4.51)

The formulas (4.50) follow from (4.33), (4.19) and (4.44). �

4.1.6. Asymptotic analysis. By Lemma 4.3 the spectral problem (4.1) reduces to

solving the integro-algebraic system of equations. The following lemma gives the

exact asymptotics of its algebraic part.
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Lemma 4.8. The integro-algebraic system of Lemma 4.3 has countably many so-

lutions, which can be enumerated so that

νn = π
(

n+
1

2

)
− 1−α

4
π + arcsin

bα√
1+b2

α

+n−1rn(α), n → ∞, (4.52)

where the residual rn(α) is uniformly bounded in n ∈ N and α ∈ [α0,1] for all

α0 ∈ (0,1].

Proof. The proof is similar to [10, Lemma 5.9]. Plugging the estimates from Lem-

mas 4.6 and 4.4 and the bound (4.27) into definition (4.45), we can write

ξ η = 4
3−α

2

√
1+b2

α exp

{
i
(

ν +
1−α

4
π −π + arg

{
i+bα

})}(
1+R(ν)

)
,

where the function R(ν) satisfies the inequality |R(ν)| ≤C1ν−1 with some constant

C1 which depends only on α0. Hence equation (4.46) takes the form

ν +
1−α

4
π −π + arg

{
i+bα

}
−πn+ arctan

Im{R(ν}
1+Re{R(ν)} = 0, (4.53)

for all n ∈ Z. This fixes a certain enumeration of all the solutions to the integro-

algebraic system of Lemma 4.3. Clearly, ν is positive for all n large enough. How-

ever at this point solvability of this equation for any such n is not obvious. This

can be argued as follows.

By Lemma 4.5 the integral operator in the right hand side of equations (4.42) is

contracting in L2(R+) for all sufficiently large ν . A direct calculation shows that

|R′(ν)| ≤C2ν−1 with some constant C2. Hence for all n large enough the system

which consists of the integral and algebraic equations, (4.42) and (4.53), has the

unique solution obtained by fixed point iterations of the integro-algebraic operator.

Asymptotics (4.52) follows from (4.53), since

arg{i+bα}=
π

2
− arcsin

bα√
1+b2

α

.

�

The next lemma derives the corresponding asymptotic approximation of the

eigenfunctions.

Lemma 4.9. The eigenfunctions, enumerated as in Lemma 4.8, admits the approx-

imation

ϕn(x) =
√

2cos
(

νnx+
1−α

8
π +

π

2
− arcsin

bα√
1+b2

α

)
(4.54)

+

√
3−α

π

∫ ∞

0
ρ0(u)

(
− e−uνnx u−bα√

1+b2
α

− (−1)ne−(1−x)uνn

)
du+n−1rn(x),

where the residual rn(x) is uniformly bounded in n ∈N and x ∈ [0,1], and

ρ0(u) =
sin θ0(u)

γ0(u)
X0(−u).
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Moreover,

ϕn(1) =− (−1)n
√

3−α
(
1+O(n−1)

)
,

∫ 1

0
eβxϕn(x)dx =−

√
3−α

1+b2
α

ν−1
n

(4.55)

and
∫ 1

0
ϕn(x)dx =−

√
3−α

1+b2
α

ν−1
n . (4.56)

Proof. Let γ0(u) :=
∣∣u+uα−2e

1−α
2

πi
∣∣, then, due to (4.51),

∣∣γβ (u;ν)−uγ0(u)
∣∣ ≤ 2(β/ν)2(u2 +1).

Along with (4.24) expression (4.49) gives

ϕn(x) ∝ − 2

3−α
Re

{
eiνnxΦ0(iνn)

}

+
1

π

∫ ∞

0

sinθ0(u)

γ0(u)

(
e−(1−x)uνnΦ1(−uνn)− e−uνnxΦ0(−uνn)

)
du+n−1rn(x)

where the residual rn(x) is uniformly bounded in n ∈ N and x ∈ [0,1]. Approxi-

mation (4.54) is obtained by plugging the estimates from Lemmas 4.6 and 4.4, and

the bound (4.27) into expression (4.47) and normalizing to unit L2([0,1]) norm, as

in [10, eq. (5.52)]. Formulas (4.50) give the asymptotics in (4.55) under the same

normalization.

Asymptotics (4.56) is obtained by integrating (4.49), which gives
∫ 1

0
ϕn(x)dx =Cν−1

n

(
1+O(ν−1

n )
)
, n → ∞,

where Cν−1
n is the integral of expression (4.54) without the residual. Since this

expression does not depend on β , the constant factor C must coincide with the

value, which is obtained for β = 0. In other words, the sequence of integrals∫ 1
0 ϕn(x)dx for the fOU process and the fBm have the same first order asymptotics.

Hence the constant in (4.56) coincides with [10, eq. (5.53)].

�

4.1.7. Passing to the natural enumeration. The enumeration introduced in Lemma

4.8 may not coincide with the natural enumeration, which puts the eigenvalues

into the decreasing order. Note that substitution of expression (4.52) into formula

(4.19) gives the sequence λn, which decreases in the already chosen enumeration.

Hence, starting from some index, these two enumerations may differ only by a

constant shift. To determine this shift we can use the calibration procedure, based

on the continuity of the spectrum with respect to the parameter α and the already

known asymptotics (2.3) for the standard OU process, corresponding to α = 1.

This calibration is carried out exactly as for the fBm in [10, Section 5.1.7], which

shows that the formulas (4.52) and (4.54)-(4.55) must be shifted by 1: replacing n

by n−1, and α by 2−2H , the equality (2.5) is obtained by Theorem 2.3.
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4.2. The case H < 1
2
. In this case the covariance function is given by the formula

(1.3) and the spectral problem has the form
∫ 1

0

(∫ x

0
eβ(x−u) d

du

∫ y

0
eβ(y−v)Cα |u− v|1−α sign(u− v)dvdu

)
ϕ(y)dy = λϕ(x),

where Cα := 1− α
2

. Differentiating twice we get

∫ 1

0

(
d

dx

∫ y

0
eβ(y−v)Cα |x− v|1−α sign(x− v)dv

)
ϕ(y)dy+βλϕ(x) = λϕ ′(x),

which can be written as

− d

dx

∫ 1

0

(∫ y

0
e−βvCα |x− v|1−α sign(x− v)dv

)
d

dy

∫ 1

y
eβrϕ(r)drdy

+βλϕ(x) = λϕ ′(x).

Integrating by parts gives

d

dx

∫ 1

0
Cα |x− y|1−α sign(x− y)ψ(y)dy+βλϕ(x) = λϕ ′(x),

where ψ(x) is defined as in (4.6). Using the identity (4.8) we get the generalized

spectral problem, cf. (4.7),

d

dx

∫ 1

0
Cα |x− y|1−α sign(x− y)ψ(y)dy = λ

(
β 2ψ(x)−ψ ′′(x)

)
, x ∈ [0,1],

ψ(1) = 0, ψ ′(0)+βψ(0) = 0.

The rest of the proof is carried out as in the case H > 1
2
.

5. CONCLUDING REMARKS

We obtained the exact asymptotics of the mean squared error in the estimation

problem of the fractional OU process observed in the white noise of vanishing

intensity ε → 0. Due to the scaling property (2.2) the results remain valid on the

arbitrary finite time interval [0,T ], and the leading asymptotic term does not depend

on the interval length T . Another interesting problem would be to find the limit of

the estimation error as T → ∞ with the noise intensity ε > 0 being fixed. This

large time asymptotic analysis requires the spectral estimates of Theorem 2.3 to be

uniform in T . Such uniformity does not follow from the proof and the large time

problem would need a different approach.
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