Skip to main content
Log in

Elements of Randomized Forecasting and Its Application to Daily Electrical Load Prediction in a Regional Power System

  • Intellectual Control Systems, Data Analysis
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2020

This article has been updated

Abstract

A randomized forecasting method based on the generation of ensembles of entropy-optimal forecasting trajectories is developed. The latter are generated by randomized dynamic regression models containing random parameters, measurement noises, and a random input. The probability density functions of random parameters and measurement noises are estimated using real data within the randomized machine learning procedure. The ensembles of forecasting trajectories are generated by the sampling of the entropy-optimal probability distributions. This procedure is used for the randomized prediction of the daily electrical load of a regional power system. A stochastic oscillatory dynamic regression model is designed. One-, two-, and three-day forecasts of the electrical load are constructed, and their errors are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Vapnik, V. N., Statistical Learning Theory, New York: Wiley, 1998.

    MATH  Google Scholar 

  2. Bishop, C. M., Pattern Recognition and Machine Learning, New York: Springer, 2006.

    MATH  Google Scholar 

  3. Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning, Springer, 2001. www-stat.stanford.edu/ ~ tibs/ElemStatLearn.

  4. Aivazyan, S. A., Enyukov, I. S., & Meshalkin, L. D., Prikladnaya statistika: issledovanie zavisimostei (Applied Statistics: Analysis of Dependencies). Moscow: Finansy i Statistika, 1985.

    Google Scholar 

  5. Tarasov, A., Forecasting US Money Growth Using Economic Uncertainty Measures and Regularization Techniques, Int. J. Forecast., 2019, vol. 35, pp. 443–457.

    Article  Google Scholar 

  6. Marcellino, M., Stock, J. H., Warson, M.A., & Comparison, of Direct and Iterated Multisteps AR Methods for Forecasting Macroeconomic Time Series. J. Econom 2006, vol. 135(1-2), pp. 499–526

    Article  MathSciNet  Google Scholar 

  7. Eitrheim, O. & Terasirta, T., Testing the Adequacy of Smooth Transition Autoregressive Models. J. Economet. 1996, vol. 74(1), pp. 59–75.

    Article  MathSciNet  Google Scholar 

  8. Molodtsova, T. & Papell, D., Out-of-simple Exchange Rate Predictability with TR Fundamentals. J. Int. Economy 2009, vol. 77, pp. 167–180.

    Article  Google Scholar 

  9. Granger, C. W. & Terasirta, T., Modelling Nonlinear Economic Relationship. Oxford: Oxford Univ. Press, 1993.

    Google Scholar 

  10. Wang, R., Motley, B., & Stamatogiannis, M., Forecasting the Exchange Rate Using Nonlinear Taylor Rule Based Model, Int. J. Forecast., 2019, vol. 35, pp. 429–442.

    Article  Google Scholar 

  11. Bessec, M. & Fuaguau, J., Short-Run Electricity Load Forecasting with Combinations of Stationary Wavelet Transforms, EJOR, 2018, vol. 264, pp. 149–163.

    Article  MathSciNet  Google Scholar 

  12. Clements, A. E., Hurn, A. S., & Li, Z., Forecasting Day-ahead Electricity Load Using a Multiple Eq. Time Series Approach, EJOR, 2016, vol. 251, pp. 522–530.

    Article  Google Scholar 

  13. Hong, T. & Fan, S., Probabilistic Electric Load Forecasting: A Tutoral Review, Int. J. Forecast., 2016, vol. 32, pp. 914–938.

    Article  Google Scholar 

  14. Wheatcroft, E., Interpreting the Skill Score from of Forecast Performance Metrics, Int. J. Forecast., 2019, vol. 35, pp. 573–579.

    Article  Google Scholar 

  15. Canale, A. & Ruggiero, M., Bayesian Nonparametric Forecasting of Nonmonotonic Functional Time Series, Electron. J. Statist., 2016, vol. 10(2), pp. 3265–3288.

    Article  Google Scholar 

  16. Dubnov, Yu. A., Bulychov, A.V., Bayesian Parameter Identification for a Mixture of Gaussian Distributions, Inform. Tekhn. Vychisl. Sist., 2017, no. 1, pp. 101–114.

  17. Frazier, D. T., Maneesoonthern, W., Martin, G. M., & McCabe, B. P. M., Approximate Bayesian Forecasting, Int. J. Forecast., 2019, vol. 35, pp. 521–539.

    Article  Google Scholar 

  18. Beaumont, M. A., Zhang, W. & Baldung, D. J. Approximate Bayesian Computation in Population Genetics, Genetics, 2001, vol. 162(4), pp. 2025–2035.

    Google Scholar 

  19. McAdam, P. & Warne, A., Euro-Area Real Time Density Forecasting with Financial or Labour Market Friction, Int. J. Forecast., 2019, vol. 35, pp. 580–600.

    Article  Google Scholar 

  20. Alkema, L., Gerland, P., Raftery, A., & Wilmoth, T., The UN Probabilistic Population Projection: An Introduction to Demographic Forecasting with Uncertainty, Forsight, 2015, vol. 37, pp. 19–24.

    Google Scholar 

  21. Brier, C. W., Verification of Forecast Expressed in Terms of Probability, Monthly Weather Rev., 1950, vol. 78, pp. 1–3.

    Article  Google Scholar 

  22. Brocker, J. & Smith, L. A., From Ensembles Forecasts to Predictive Distribution Functions, Tellus A, 2008, vol. 60(4), pp. 663–678.

    Article  Google Scholar 

  23. Christensen, H. M., Moroz, I. M., & Palmer, T. N., Evaluation of Ensemble Forecast Uncertainty Using a New Proper Score: Application to Medium-Range and Seasonial Forecast, Quart. J. Royal Meteorog. Sci., 2015, vol. 141(687), pp. 538–549.

    Article  Google Scholar 

  24. Gneiting, T. & Katzfuss, M., Probabilistic Forecasting, Ann. Rev. Statist. Appl., 2014, vol. 1, pp. 125–151.

    Article  Google Scholar 

  25. Lahiri, K. & Wang, J. C., Evaluating Probability Forecasts for GDP Declines Using Alternative Methodologies, Int. J. Forecast., 2013, vol. 29(1), pp. 175–190.

    Article  Google Scholar 

  26. Vidyasagar, M., Statistical Learning Theory and Randomized Algorithms for Control, IEEE Control Syst. Mag., 1998, vol. 1/17, pp. 69–88.

    Google Scholar 

  27. Granichin, O. N. & Polyak, B. T., Randomizirovannye algoritmy otsenivaniya i optimizatsii pri pochti proizvolanykh pomekhakh (Randomized Algorithms of Estimation and Optimization under Almost Arbitrary Disturbances), Moscow: Nauka, 2002.

    Google Scholar 

  28. Nazin, A. V., Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization, Autom. Remote Control, 2018, vol. 79(no. 1), 78–88.

    Article  MathSciNet  Google Scholar 

  29. Biondo, A. E., Pluchino, A., Rapisarda, A., & Helbing, D., Are Random Trading Strategies More Successful Than Technical Ones? PLoS ONE 2013, vol. 6(7), pp. 68344.

    Article  Google Scholar 

  30. Lutz, W., Sandersen, S., & Scherbov, S., The End of World Population Growth, Nature, 2001, vol. 412(6846), pp. 543–545.

    Article  Google Scholar 

  31. Tsirlin, A. M., Metody usrednennoi optimizatsii i ikh primenenie (Average Optimization Methods and Their Application),. Moscow: Fizmatlit, 1997.

    Google Scholar 

  32. Shannon, C., Communication Theory of Secrecy Systems, Bell Syst. Technic. J, 1949, vol. 28(4), pp. 656–715.

    Article  MathSciNet  Google Scholar 

  33. Jaynes, E. T., Information Theory and Statistical Mechanics, Phys. Rev., 1957, vol. 106, pp. 620–630.

    Article  MathSciNet  Google Scholar 

  34. Jaynes, E. T., Papers on Probability, Statistics and Statistical Psysics, Dordrecht: Kluwer, 1989.

    MATH  Google Scholar 

  35. Popkov, Yu. S., Popkov, A., Yu & Dubnov, Yu. A., Randomizirovannoe mashinnoe obuchenie (Randomized Machine Learning), Moscow: LENAND, 2018.

    MATH  Google Scholar 

  36. Hong, T., Prinson, P., Fan, S., Zareipour, H., Triccoli, A., & Hyndman, R. J., Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond, Int. J. Forecast., 2016, vol. 32, pp. 896–913.

    Article  Google Scholar 

  37. Ioffe, A. D. & Tikhomirov, V. M., Teoriya ekstremalanykh zadach (Theory of Extremum Problems), Moscow: Nauka, 1974.

    Google Scholar 

  38. Alekseev, V. M., Tikhomirov, V. M., & Fomin, S. V., Optimalanoe upravlenie (Optimal Control), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  39. Fiedner, G., Hierarchical Forecasting: Issues and Use Guidelines, Indust. Manage. Data Syst., 2001, vol. 101(1), pp. 5–12.

    Article  Google Scholar 

  40. Amaral, L. F., Castro, S. R., & Stevenson, M., A Smooth Transition Periodic Autoregressive (STAR) Model for Short-Term Load Forecasting, Int. J. Forecast., 2008, vol. 24, pp. 603–615.

    Article  Google Scholar 

  41. von Neumann, J., Various Techniques in Connection with Random Digits, in Monte Carlo Methods, Householder, A.S., Forsythe, G.E., and Germond, H.H., Eds., Washington: National Bureau of Standards, U.S. Government Printing Office, 1951, pp. 36–38.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, Y., Popkov, A. & Dubnov, Y. Elements of Randomized Forecasting and Its Application to Daily Electrical Load Prediction in a Regional Power System. Autom Remote Control 81, 1286–1306 (2020). https://doi.org/10.1134/S0005117920070103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920070103

Keywords

Navigation