Skip to main content
Log in

Parametric Optimization of Nonlinear Systems Represented by Models Using the Extended Linearization Method

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We state an optimal control problem for a class of dynamical systems whose nonlinear objects can be represented as objects with linear structure and state-dependent parameters. The linearity of the structure of the transformed nonlinear system and the quadratic performance functional allow one to move from the need to search for solutions of the Hamilton–Jacobi equation to an equation of the Riccati type with state-dependent parameters when synthesizing the optimal control, i.e., the controller parameters. The main problem of implementing the optimal control is related to the problem of being capable of finding solutions of such an equation online, at the object operation rate. An algorithmic method for the parametric optimization of the controller is proposed. The method is based on using the necessary optimality conditions for the control system in question. Our algorithms can be used both to optimize the time-varying objects themselves given an appropriate choice of the parameters for this purpose and to optimize the entire control system using an appropriate parametric adjustment of the controllers. The efficiency of the algorithms is demonstrated by the example of drug treatment of patients with HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Malkin, I.G., Teoriya ustoichivosti dvizheniya (Motion Stability Theory), Moscow: URSS, 2004.

    Google Scholar 

  2. Krasovskii, N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya (Some Problems of Motion Stability Theory), Moscow: Izd. Fiz.-Mat. Lit., 1959.

    Google Scholar 

  3. Isidori, A., Nonlinear Control Systems, London: Springer, 1995.

    Book  Google Scholar 

  4. Khalil, H.K., Nonlinear Systems, New York: Prentice Hall, 2002.

    MATH  Google Scholar 

  5. Mehra, R., Chinde, V., Kazi, K., and Singh, N.M., Feedback linearization of single-input and multi-input control system, Proc. 19th World Congr. IFAC. (Cape Town, 2014), pp. 5479–5484.

  6. Afanas’ev, V.N. and Orlov, P.V., Suboptimal control of feedback-linearizable nonlinear plant, J. Comput. Syst. Sci. Int., 2011, vol. 50, no. 3, pp. 365–374.

    Article  MathSciNet  Google Scholar 

  7. Pearson, J.D., Approximation methods in optimal control, J. Electron. Control, 1962, no. 12, pp. 453–469.

  8. Cimen, T.D., State-dependent Riccati equation (SDRE) control: a survey, Proc. 17th World Conf. IFAC (Seoul, 2008), pp. 3771–3775.

  9. Mracek, C.P. and Cloutier, J.R., Missile longitudinal autopilot design using the state-dependent Riccati equation method, Proc. Int. Conf. Nonlinear Probl. Aviat. Aerosp. (Daytona Beach, 1996), pp. 387–396.

  10. Afanas’ev, V.N., Upravlenie nelineinymi neopredelennymi dinamicheskimi ob”ektami (Control of Nonlinear Uncertain Dynamic Plants), Moscow: URSS, 2015.

    Google Scholar 

  11. Afanas’ev, V.N., Dinamicheskie sistemy s nepolnoi informatsiei: Algoritmicheskoe konstruirovanie (Dynamical Systems with Incomplete Information: Algorithmic Construction), Moscow: Fizmatlit, 2008.

    Google Scholar 

  12. Angel, E. and Bellman, R., Dynamic Programming and Partial Differential Equations, New York: Academic Press, 1972.

    MATH  Google Scholar 

  13. Vasil’ev, F.P., Metody optimizatsii. Kn. 1 (Optimization Methods. Book 1), Moscow: MTsNMO, 2011.

    Google Scholar 

  14. Galeev, E.M., Zelikin, M.Yu., and Konyagin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: MTsNMO, 2008.

    Google Scholar 

  15. Gamkrelidze, R.V., Sliding modes in optimal control theory, Proc. Steklov Inst. Math., 1986, vol. 169, pp. 185–198.

    Google Scholar 

  16. Athans, M. and Falb, P.L., Optimal Control, New York: McGraw-Hill, 1966. Translated under the title: Optimal’noe upravlenie, Moscow: Mashinostroenie, 1968.

    MATH  Google Scholar 

  17. Perelson, A.S and Kirschner, D.E., Dynamics of HIV infection of CD4+T cells, Math. Biosci., 1993, vol. 114, pp. 81–125.

    Article  Google Scholar 

  18. Wodarz, D. and Nowak, M.A., Specific therapy regimes could lead to long-term immunological control of HIV, Proc. Natl. Acad. Sci., 1999, vol. 96, pp. 14464–14469.

    Article  Google Scholar 

  19. Zurakowski, R. and Teel, A., A model predictive control based scheduling method for HIV therapy, J. Theor. Biol., 2006, vol. 238, pp. 368–382.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-08-00535.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Afanas’ev or A. P. Presnova.

Additional information

Translated by V. Potapchouck

APPENDIX

Proof of Theorem 1. Let us substitute the expression \( d\left [x^{\mathrm {T}} (t) S(x(t))x(t)\right ]/dt \) into the integrand of the functional

$$ J\big (x(\cdot ),u(\cdot )\big )=\frac {1}{2} x^{\mathrm {T}} (t_{f} ) Fx(t_{f} )+\frac {1}{2} \int \limits _{t_{0} }^{t_{f} }\big \{x^{\mathrm {\; T}} (t) Qx(t)+u^{\mathrm {\; T}} (t)R u(t)\big \} dt,$$
having compensating this outside the integral by the relation
$$ 0.5\Big [x^{\mathrm {T}}(t)S\big (x(t)\big )x(t)-x^{\mathrm {T}}(t_{f}) S\big (x(t_{f})\big )x(t_{f})\Big ]. $$
We obtain
$$ \begin {aligned} J\big (x(\cdot ),u(\cdot )\big )&=\frac {1}{2} x^{\mathrm {T}} (t_{f} ) Fx(t_{f} )+\frac {1}{2} \Big [x^{\mathrm {T}} (t) S\big (x(t)\big )x(t)-x^{\mathrm {T}} (t_{f} ) S(x(t_{f} ))x(t_{f} )\Big ] \\ &\qquad {}+\frac {1}{2} \int \limits _{t}^{t_{f} }\bigg \{x^{\mathrm {\; T}} (t) Qx(t)+u^{\mathrm {\; T}} (t)R u(t)+ d\Big [x^{\mathrm {T}} (t) S\big (x(t)\big )x(t)\Big ]/dt\bigg \} dt. \end {aligned}$$

Since

$$\frac {d}{dt} x(t)=\Big [\big (x(t)\big )-g\big (x(t)\big )R^{-1} g^{\mathrm {T}} \big (x(t)\big )S\big (x(t)\big )\Big ]x(t), \quad x(t_{0} )=x_{0},$$
(A.1)
and \(S(x(t_{f} ))=F \), we have
$$ J^{0 } \big (t,x(t)\big )= \frac {1}{2} x^{\mathrm {T}} (t)S\big (x(t)\big )x(t), \quad t_{0} \le t\le t_{f} .\quad \blacksquare$$

Proof of 2. To prove the theorem on the asymptotic stability of the model (A.1), we introduce a Lyapunov function \(V_{L} (x(t))\) such that

$$ \omega _{1} \big \{|x|\big \}\le V_{L} \big (x(t)\big )\le \omega _{2} \big \{|x|\big \},\quad dV_{L} \big (x(t)\big )/dt\le -\omega _{3} \big \{|x|\big \} \quad \forall x,$$
(A.2)
where \(\omega _{i} \left \{\left |x\right |\right \}\), \(i=1,2,3 \), are scalar nondecreasing functions such that \(\omega _{i} (0)=0\), \( \omega _{i} \left \{\left |x\right |\right \}>0\). Using the second Lyapunov theorem, we conclude that the system is stable under the condition
$$ \frac {dV_{L} \big (x(t)\big )}{dt} =\frac {\partial V_{L} \big (x(t)\big )}{\partial x} \frac {dx(t)}{dt} \le -\omega _{3} \big \{|x|\big \}.$$
(A.3)
Define \(V_{L} (x(t)) \) in the form
$$ {V_{L} \big (x(t)\big )=x^{\mathrm {T}} (t)S\big (x(t)\big )x(t)},$$
where \(S(x(t)) \) is a positive definite symmetric matrix that is a solution of the Riccati equation with state-dependent parameters,
$$ \begin {gathered} \eqalign { \frac {dS\big (x(t)\big )}{dt} &+S\big (x(t)\big )A\big (x(t)\big )+A^{\mathrm {T}} \big (x(t)\big )S\big (x(t)\big )\cr &{}-S\big (x(t)\big )g\big (x(t)\big )R^{-1} g^{\mathrm {T}} \big (x(t)\big )S\big (x(t)\big )+Q=0,} \\ {S\big (x(t_{f})\big )=F.} \end {gathered} $$
(A.4)
Define \(\omega _{3} \left \{\left |x\right |\right \}\) in the form \(\omega _{3} \left \{\left |x\right |\right \}=x^{\mathrm {T}} (t)Qx(t) \), \(\forall x\ne 0 \). Then, in view of (A.1), condition (A.3) must be satisfied,
$$ \begin {aligned} \frac {dV_{L} \big (x(t)\big )}{dt}&=x^{\mathrm {T}} (t)\bigg [\frac {dS\big (x(t)\big )}{dt} +S\big (x(t)\big )A\big (x(t)\big )+A^{\mathrm {T}} \big (x(t)\big )S\big (x(t)\big ) \\ &\qquad \qquad {}-S\big (x(t)\big )g\big (x(t)\big )R^{\mathrm {-1}} g^{\mathrm {T}} \big (x(t)\big )S\big (x(t)\big ) +Q\bigg ]x(t)\\ &\qquad \qquad \qquad {}-x^{\mathrm {T}} (t)S\big (x(t)\big )g\big (x(t)\big )R^{\mathrm {-1}} g^{\mathrm {T}} \big (x(t)\big )S\big (x(t)\big )x(t)\le 0. \end {aligned} $$
Taking into account (A.4), we have
$$ x^{\mathrm {T}} (t)S\big (x(t)\big )g\big (x(t)\big )R^{\mathrm {-1}} g^{\mathrm {T}} \big (x(t)\big )S\big (x(t)\big )x(t)\ge 0. $$
This condition is satisfied for all \(x(t)\ne 0 \). Consequently, the model (A.1) of the nonlinear system (2.1) is asymptotically stable. \(\quad \blacksquare \)

Proof of Theorem 5. To construct a parametric optimization algorithm for the system

$$ \frac {d}{dt} x(t)=\widetilde {f}\big (x(t),u(t),\eta (t),a(t)\big ),\quad x(t_{0} )=x_{0},$$
(A.5)
we introduce the Lyapunov function
$$ \eqalign { &V_{L} (\eta (t),a(t))\cr &\qquad {}=\frac {1}{2} \left \{\mathfrak {R} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )-\mathfrak {R} \left (x^{0} (t),u^{0} (t),\frac {\partial V\big (x(t)\big )}{\partial x}\right ) \right \}^{2} \cr &\qquad {}=\frac {1}{2} \mathfrak {R} ^{2} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right ).}$$
(A.6)
Then for the asymptotic parametric optimization the derivative of this function must be negative for the case of \( a(t)-\eta (t)\ne 0\),
$$ \begin {aligned} \frac {d}{dt} V_{L} (\eta (t),a(t))&=\mathfrak {R} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )\\ &\qquad {}\times \left [\frac {\partial H\left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )}{\partial \eta } \frac {d}{dt} \eta (t)\right .\\ &\qquad \qquad {}+\left .{}\frac {\partial H\left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )}{\partial a} \frac {d}{dt} a(t) \right ]<0, \end {aligned}$$
(A.7)
because \(\displaystyle \frac {\partial H}{\partial t} =\frac {\partial H^{0} }{\partial t} =0 \), \(\displaystyle \frac {\partial \varphi (t)}{\partial \eta } =0\) and \(\displaystyle \frac {\partial \varphi (t)}{\partial a} =0\).

Define a parametric optimization algorithm in the form

$$ \begin {gathered} \frac {d}{dt} a(t)=-\left \{\frac {\partial H\left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )}{\partial a} \right \}^{\mathrm {T}}\mathfrak {R} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right ), \\ a(t_{0} )=a_{0} . \end {gathered} $$

With this assignment of the parametric optimization algorithm, from condition (A.7) we obtain

$$ \eqalign { &\mathfrak {R} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )\frac {\partial H\left (x(t),u(t),{\partial V\big (x(t)\big )}\big /{\partial x} ,\eta (t),a(t)\right )}{\partial \eta } \frac {d}{dt} \eta (t)\cr &\qquad {}-\mathfrak {R} ^{2} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )\frac {\partial H\left (x(t),u(t),{\partial V\big (x(t)\big )}\big /{\partial x} ,\eta (t),a(t)\right )}{\partial a} \cr &\qquad \qquad {}\times \left \{\frac {\partial H\left (x(t),u(t),{\partial V\big (x(t)\big )}\big /{\partial x} ,\eta (t),a(t)\right )}{\partial a} \right \}<0.} $$

Since the rate of change of disturbances is subject to a constraint, i.e.,

$$ {\left |d\eta (t)\big / dt \right |\le \max \nolimits _{\eta \in \Delta } \left |d\eta (t)\big / dt\right |=\sigma },\quad {\sigma _{i}>0},\quad {i=1,\ldots ,k}, $$
we can write the condition for the success of the optimization process as
$$ \eqalign { &\mathfrak {R}^{2} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )\left \| \frac {\partial H\left (x(t),u(t),{\partial V\big (x(t)\big )}\big /{\partial x} ,\eta (t),a(t)\right )}{\partial a} \right \| ^{2}\cr &\qquad {}>\left |\,\mathfrak {R} \left (x(t),u(t),\frac {\partial V\big (x(t)\big )}{\partial x} ,\eta (t),a(t)\right )\frac {\partial H\left (x(t),u(t),{\partial V\big (x(t)\big )}\big /{\partial x} ,\eta (t),a(t)\right )}{\partial \eta } \sigma \, \right |.\quad \blacksquare }$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, V.N., Presnova, A.P. Parametric Optimization of Nonlinear Systems Represented by Models Using the Extended Linearization Method. Autom Remote Control 82, 245–263 (2021). https://doi.org/10.1134/S0005117921020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921020053

Keywords

Navigation