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EXPONENTIALLY STABLE ADAPTIVE CONTROL. PART I. TIME-INVARIANT 

PLANTS1 

 
Abstract. In this research we consider linear time-invariant plants and assume that the 

regressor finite excitation requirement is met. In such case, a new law to adjust the controller 
parameters, which ensures the exponential stability of the classical dynamic model of the 
tracking error under the condition that its states are not included in such a law, is proposed in 
this study. In addition, it also relaxes a number of classical assumptions and requirements of 
the adaptive control theory, i.e. the necessity to know the sign/value of the plant high-
frequency gain, the need of experimentally based choice of the proposed law adaptive gain 
value, the requirement to the tracking error transfer function to be strictly positive real 
considering the output feedback control. The applicability of the proposed law to the 
problems of adaptive state and output feedback control is shown. The advantages of the 
proposed method over the well-known ones are demonstrated. 
 
 Keywords: adaptive control, output feedback control, state feedback control, relative 
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1. Introduction 
 

In the adaptive control literature, a common form of representation of a plant with 
parametric uncertainty is a dynamic error equation [1,2]: 

 

 T
0, 0 ,ref ref ref ref refe A e B e e    

 

(1.1) 

where q
refe R  is a vector of tracking errors calculated as the difference between a plant and 

a reference model states,  0 q
refe R  is the initial conditions vector, q q

refA R   is a Hurwitz 

reference model state matrix, qB R is a plant input vector (high frequency gain), 
mˆ R     

 
is a parametric error calculated as the difference between the adjustable and 

ideal (unknown but time-invariant 0  ) control law parameters, mR   is a measurable 
regressor. The matrix Aref  is known. The pair (Aref, B) is fully controllable. 

In case, when only the output tracking error is measurable, the equation (1.1) takes the 
form: 
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(1.2) 

qc R is the vector to form the measurable error ε. 
Usually, the error equation (1.1) is a result of the parametrization applied to the state 

feedback adaptive control problems, whereas the model (1.2) is obtained for the output 
feedback adaptive control problems (see [1-3] for details). 
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It is well known [1-3] that, if the all the components of the tracking error vector eref are 
measurable, to provide the asymptotic stability of the model (1.1) it is enough to choose the 
adaptive law of the controller parameters in the following form: 

 

,T
ref

ˆ e PB  

 

(1.3) 

where Г is an adaptive gain of an appropriate dimension, q qP R   is the Lyapunov equation 
solution: T

ref refA P PA Q   , in which q qQ R   is a positively definite matrix. 

It is also known that, if a transfer function   1T
refс pI A B


  is strictly positive real 

(SPR), then there exists the solution P of the following system of equations [1-3]: 

 

T

,T
ref refA P PA Q

PB c .

  


 

(1.4) 

In such case the asymptotic stability of the error model (1.2) is provided with the help 
of the following adaptive law: 

 

ˆ .  

 

(1.5) 
If, additionally, the regressor persistent excitation (PE) requirement PE   is met, 

then the adaptive laws (1.3) and (1.5) ensure [1,2] exponential stability of the augmented 

tracking error 
TT T

refe    
 . 

The main drawbacks of the adaptive laws (1.3) and (1.5) are: (a) that the exponential 
stability of the error ξ is provided only if the restrictive condition ω ∈ PE is met, and (b) the 
poor quality of the transients with respect to the tracking errors eref, ε and the adjustable 
parameters ̂ . To overcome these disadvantages, various modifications [4-12] of the adaptive 
laws (1.3) and (1.5) have been proposed in the literature to relax the PE condition and/or to 
improve the transient quality of the tracking errors eref, ε and the adjustable parameters ̂ . 

Moreover, as far as the output feedback control problem is concerned, the adaptive 

law (1.5) can be implemented if and only if the transfer function   1T
refс pI A B


  is SPR 

[1-3,13]. To avoid the SPR requirement, the following approaches have been developed 
[3,13,14]: augmented error method [15], high order tuners [16], shunt compensator [17], 
iterative synthesis procedures [18] and their various modifications [3]. However, most of 
them are noise-sensitive, tedious, and rather complex to be implemented in practice [14]. The 
higher the relative degree of the plant, the more evident the latter two problems become. 

In this research, as far as the problems of both state and output feedback adaptive 
control are concerned, in order to overcome the feasibility conditions of law (1.5) and 
improve the quality of the controller parameters adjustment process, a new adaptive law is 
proposed, which has the following properties. 

1) It does not include the states of the error equation (1.1). 
2) It is equally applicable to error models (1.1) and (1.2). 
3) If the regressor finite excitation requirement is met, it provides exponential stability 

of the error   and elementwise monotonicity of transients of the controller adjustable 

parameters ̂ . 
4) It solves several classical problems of the adaptive control theory: the requirement 

to know the elements or sign of the plant input vector B, the need to choose the adaptive gain 
matrix Г manually. 

The remainder of the paper is organized as follows. In Section 2 the existence theorem 
of a new adaptive law to adjust the controller parameters ̂ , which ensures exponential 



stability of the error 
 

under the condition that the regressor is finitely exciting, is 
formulated, the simple algorithms of its implementation to solve the problems of the state and 
output feedback adaptive control are proposed. Section 3 presents the results of numerical 
experiments. 

The definition of the regressor finite excitation and the corollary of the Kalman-
Yakubovich-Popov Lemma will be used in the proofs of Theorem and Propositions. 

Definition 1: The regressor ω is finitely exciting (ω ∈ FE) over the time range 
; r et t  

 
 if there exist 0rt   , e rt t 

 
and α such that the following inequality holds: 
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(1.6) 

where α > 0 is the excitation level, I is a unity matrix. 
Corollary. A scalar transfer function  H s d , where 0d  , is strictly positive 

real if and only if there exist a Hurwitz matrix A, a matrix 0TP P  , a vector q , a vector 
B and a constant 0  , such that [1-3]: 
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(1.7) 

 
2. Main result 

 
Let it be assumed that there exists a linear-regression-based model of the following 

form for an unknown parameters vector   from (1.1) and (1.2): 

 

  ,    

 

(2.1) 

where R  , mR  , R   are the measurable regressor, function and regressor 
argument respectively, which do not depend from the state vector eref of the error equation 
(1.1). 

Then, on the basis of regression (2.1), the existence theorem of the adaptive law to 
adjust the parameters ̂ , which does not use the error equation state vector (1.1) and provides 
exponential stability of the error  , can be formulated and proved. 

Theorem. Considering that Δ ∈ FE, if the regressor Ω satisfies the following 
requirements: 

а)      0;rt t t L , t
       

б) et t   LB UB0 ,t     

then there is an adaptive law of the form:  
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 (2.2) 

which provides the following properties: 
 1)     ;a b i a i bt t t t       

2)   ;rt t t L
     



3) et t   the augmented error      
TTT

reft e t t   
 


 

converges to zero 

exponentially with the rate, which minimal value depends directly proportional from γ0 ≥ 1 
and γ1 ≥ 0. 

Proof of Theorem is presented in Appendix. 
 
According to the results of Theorem, the adaptive law (2.2) is equally applicable to the 

dynamic models based on both measurable state vector (1.1) and measurable output signal 
(1.2). Compared to the adaptive laws (1.3) and (1.5), the law (2.2): 

1) provides elementwise monotonicity of the adjustable controller parameters ̂ ; 
2) ensure the exponential convergence of the error ξ under the condition FE  , 

which is strictly weaker than PE  ; 
3) does not require to know the sign or value of elements of the vector B; 
4) is less sensitive to the manually chosen value of the parameter γ; 
5) as far as the problem of the output feedback adaptive control is concerned, unlike 

known solutions [15, 16], allows one to overcome the requirement to meet the SPR condition 
without the sufficient increase in complexity of the control system when the value of the plant 
relative degree improves. 

Remark 1. The adaptive law (2.2) is less sensitive to the manually chosen value of the 
parameter γ, because, first of all, it contains a dynamic term  T

0 m ax   , which does not 

require a manual selection. And, secondly, the minimum rate of ξ error convergence to zero 
can be set at a required level by means of γ1 value and independently from the value of LB . 

The fundamental practical difficulty to implement the adaptive law (2.2) is to obtain a 
linear regression model (2.1) with a regressor Ω, which satisfies the requirements of Theorem, 
for each particular adaptive control problem. 

In the following subsections we will show how such a regression model can be 
obtained for the most general classical state and output feedback adaptive control problems, 
which could be reduced to the error models (1.1) and (1.2) respectively. 

 
2.1. State feedback control case 

 
Let a classical problem of state feedback adaptive control of LTI SISO plants be 

considered [1-3]: 
   0, 0 ,x Ax Bu x x    (2.1.1) 

where nx R  is a measurable state vector, 0
nx R  is an unknown vector of initial 

conditions, u R  is a control signal, n nA R   is a plant state matrix, and nB R  is a 
plant input vector. The pair (A, B) is controllable, the values of the elements of A and B are 
time-invariant and unknown. The plant sate vector is directly measurable, as well as the 
control signal u. 

The reference model, which defines the required control quality for the closed-loop 
system with the control signal u and the plant (2.1.1), takes the form: 
   0, 0 ,ref ref ref ref ref refx A x B r x x    (2.1.2) 

where n
refx R  is the reference model state vector, 0

n
refx R  is the vector of the initial 

conditions, r R  is the reference signal, n n
refA R   is a Hurwitz state matrix of the 

reference model, n
refB R  is the reference model input vector. 

The control law for the plant (2.1.1) is chosen as: 



 ,x r
ˆ ˆu k x k r   (2.1.3) 

where T n
xk̂ R  and rk̂ R  are adjustable parameters, and  0 0rk̂  . 

The control law (2.1.3) is substituted into (2.1.1) to obtain the closed-loop description: 

   .x r
ˆ ˆx A Bk x Bk r  

 
(2.1.4) 

The Erzberger’s conditions [19] are assumed to be met for (2.1.4). 

Assumption 2. There exist ideal values of the control law parameters T n
xk R  and 

rk R  such that the following equalities hold: 

 ; x ref r refA Bk A Bk B .  
 

(2.1.5) 

Then the error equation, which is obtained by the subtraction of the reference model 
equation (2.1.2) from the plant one (2.1.4), is written as: 

 
 ref ref ref x r ref ref ref ref x r
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(2.1.6) 

Here   ref ref x x x r r r
ˆ ˆe x x , k k k , k k k       . Let the following notation be introduced 

into (2.1.6): 

 
TT T T T = ,x r
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(2.1.7) 

where 1nR    is the regressor, 1nR   is the error vector of the control law adjustable 
parameters. 

Considering (2.1.7) and the initial conditions, the equation (2.1.6) is rewritten in the 
same form as (1.1): 
   0 0,  0T

ref ref ref ref refe A e B e x x .     
 

(2.1.8) 

Considering the state feedback control problem, the derivation of the adaptive law 
(2.2) consists of two main steps: 1) to obtain the linear regression equation    Y t t    with 

the measurable regressor R  and function 1nY R  ; 2) to transform this equation in order 
to obtain the regression (2.1) with regressor Ω, which is functionally dependent from   and 
has the necessary properties according to Theorem. 

To obtain the regression equation    Y t t   , the equation of the plant (2.1.1) is 

written in the form of a linear regression equation: 
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 (2.1.9) 

where 1nR   is a measurable regressor,  1T n n
AB R     is the vector of the unknown 

parameters. 
Despite the fact that x  is not directly measurable, let the stable linear filters be 

introduced for all dynamic quantities from (2.1.9): 
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n

n
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      

 
  (2.1.10) 

where 0l 
 

is the filters constant. 
The regressor   is defined as a solution of the second differential equation from 

(2.1.10), whereas, according to [20], the function   can be calculated in the following way 
even in case we do not know the value of x : 



          0 0 0 ,lt lt lte x t e x lx t le x          (2.1.11) 

where x

 

is the element of the vector  . 
Taking into consideration the filtration (2.1.10) and the fact that the initial conditions 

for (2.1.11) are unknown, the equation (2.1.9) is rewritten as: 
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             

         
 (2.1.12) 

where z

 

is the measurable function, 2nR   is the measurable regressor,  2T n n
AB R     is 

the augmented vector of the unknown parameters. 
Having applied the DREM procedure [21, 22], the equation (2.1.12) with the vector 

regressor 
 

is transformed into the one with the scalar regressor. Following [21,22], the 
(n+2) minimal-phase dynamic filters are introduced: 
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(2.1.13) 

where 0f f
i i,  

 
and f f

i j    for all i j . 

The function z

 

and regressor   are passed through (2.1.13) to form the extended 
regression equation: 
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(2.1.14) 

where  3n n
fz R   ,    3 2n n

f R     . 

The equation (2.1.1) is left-multiplied by  T Tadj f f f   . Then the known equality 

   T T Tadj detf f f f f f I        is applied to the obtained result to form the equation with the 

scalar regressor: 

 
   

         T T Tadj , det ,
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f f f f f f

z t t

z t z t t

  

       
 (2.1.15) 

where  2n nz R   , R . 

Considering the definitions of AB  and R , we form the following regression 

equations from (2.1.15): 
 T T

1,  ,A B nz z H A z z e B       (2.1.16) 

where n n
Az R  , n

Bz R ,    T 2
20 ,n n

n n nH I R  
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 T 2

1 10 1 0 n
n ne R 
   . 

Now it is possible to transform the regressions (2.1.16) to the regression with respect 
to the parameters   of the control law (2.1.3). For this, let the Erzberger’s conditions (2.1.5) 
be multiplied by the regressor R  , and the functions (2.1.16) be substituted into the 
obtained result: 

 T TT T , ,B ref ref ref A ref

Y

B z Y A A B A z B

 

                  
(2.1.17) 

where  1n nY R   , 1 nR  . 
The equation (2.1.17) is multiplied by T  to obtain the scalar regressor   from the 



vector one  : 

 
   

     T T, ,

Y t t

Y Y t t t

  

    
 (2.1.18) 

where 1nY R  , R . 
Remark 2. According to the results of Lemma 6.8 [2], as the filters (2.1.10) are stable, 

if FE , then FE

 

as well. In [22] the implication FE FE    is proved for the 

extension scheme (2.1.13)-(2.1.15). Then, as the regressor   depends from only one dynamic 
quantity  , and, following Assumption 1, it does not become singular when const  , then it 

also holds that FE FE FE     . As a result, when the procedure (2.1.9)-(2.1.18) 
is applied, the initial regressor 

 

excitation does not vanish, and it holds that 
FE FE  . 

The next aim is to transform the equation (2.1.18) to obtain the regression (2.1) with 
the regressor Ω, which meets all the requirements of Theorem. 

Taking into consideration the results of [20, 23, 24], the filter with exponential 
forgetting is introduced: 

 

 
   

, 0 0
,

exp , 0 0f fv v v
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

  




  (2.1.19) 

where σ > 0 is the arbitrary parameter, v and vf are the input and output of the filter 
respectively. 

The extended regressor Δ2 and function ΔY are passed through (2.1.19): 
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  (2.1.20) 

where 1nR  , R . 
 The following proposition with respect to the regressor Ω has been proved in [23]: 

Proposition 1. If Δ ∈ FE over the time range ; r et t    
and L , then 

  1)     , 0;rt t t L t
       
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
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where  
0

sup max
t

t .


    

 The proof of Proposition 1 could be found in [23, 24]. 
Proposition 1 is to consider the case when L , but, from the point of view of the 

adaptive control systems practical application, it is impossible to claim a priori that L , 

since   depends from the state vector x
 

(see (2.1.9)-(2.1.18)), Therefore, in the next 
proposition we consider the situation when L , but it does not grow faster than some 

known exponent. 
Proposition 2. If Δ ∈ FE over the time range ; r et t   , and rt t   2

1
c tc e  , and 

22с   , then: 

  1)     , 0;rt t t L t
       



  2)      3 3

2 2
1 1

3 3

 0, r ec t c t
e

c c
t t t e e t

c с

         . 

where с1 > 0, c2 > 0, 3 22с 0с    . 

The Proof of Proposition 2 is postponed to Appendix. 
According to Proposition 2, it is always possible to choose a parameter  value such 

that, even if L , the regressor L  and satisfies the requirements of Theorem. In 

practice, it is possible to set a majorant function in the form of the conservative exponent 
2

1
c tc e   with the known c1 and c2 for the regressor   of any unstable plant, and therefore 

the requirements of Proposition 2 are not restrictive. 
The results of the second clauses of Proposition 1 and 2 are summarized by the 

introduction of an inequality for Ω, which holds et t   and for any Δ ∈ FE such that L  

or 2
1

c tc e  : 
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   
            

    
  (2.1.21) 

According to the equation (2.1.21), if the condition Δ ∈ FE is met, the regressor Ω has 
the necessary properties from the point of view of Theorem. Hence, if the parameters of the 
control law (2.1.3) are adjusted according to (2.2), then the error ξ is exponentially stable, as 
far as the state feedback adaptive control problems are concerned. 

 Thus, the state feedback adaptive control system with the developed adaptive law (2.2) 
consists of the control law (2.1.3) as well as the procedures (2.1.9)-(2.1.18) to obtain the 

linear regression    Y t t    and transform it (2.1.19)-(2.1.20). 

Compared to the adaptive law (1.3), the proposed one (2.2) provides exponential 
convergence of the error ξ to zero under the weaker condition Δ ∈ FE. Compared to the 
various composite adaptive laws [5, 8-10], which have become widespread in recent years, 
the proposed law (2.2) provides elementwise monotonicity of the controller adjustable 

parameters ̂ . It does not require to know the sign or the values of the elements of the vector 
B. It is less sensitive to the value of the manually chosen adaptive gain γ. The obtained result 
can be directly generalized to the case of MIMO LTI plants. 

 
2.2. Output feedback control case 

 
Let a classical problem of output-feedback adaptive control of LTI SISO plants be 

considered [1-3]: 

 

   
    ,m

Z p
y t b u t

R p


 

(2.2.1) 

where p d dt
 
is the differentiation operator, y is the plant output, u is the control signal, 

mb  is the plant gain,
 
  

1
1

0

m
m i

i m
i

Z p p b b p





  

 
and  

1

0

n
n i

i
i

R p p a p



    are the characteristic 

polynomials with quasi-stationary  0  0i ib , a    unknown parameters. 



The required control quality for the plant (2.2.1) is defined as the following reference 
model: 

 

   
    ,ref

ref ref
ref

Z p
y t b r t

R p


 

(2.2.2) 

where yref is the output of the reference model, r is the reference signal, refb  is the reference 

model gain,  refZ p
 
and  refR p  are Hurwitz characteristic polynomials, which degrees are 

*m
 
and *n

 
respectively. The relative degree of the reference model * * *n m    is assumed 

to be equal to the relative degree of the plant n m   . 
The control aim for the plant (2.2.1) is to ensure that the plant output (2.2.1) tracks 

asymptotically the reference model output (2.2.2): 

 

      lim lim 0ref
t t

y t y t t .
 

   

 

(2.2.3) 

This problem is considered under the following classical assumptions [1-3, 13, 14]. 
Assumption 2. The numerator polynomial  Z p

 
 is a Hurwitz one. 

Assumption 3. The values of n and m are known. So, the plant relative degree 
1n m     is also known. 

Assumption 4. Only the signals y and u are directly measurable, but their derivatives 
are not. 

To parameterize the adaptive control problem and eventually obtain the error equation, 
the state filters are introduced for the plant (2.2.1) according to [1-3]: 

 

 
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   
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


 

(2.2.4) 

where 1
1

nv R  , 1
2

nv R  ,   10 0 0 1
T nh , ,..., , R   ,

 
  is the companion matrix of the Hurwitz 

polynomial      0 refp p Z p   . 

Then, considering the filters (2.2.3), the plant transfer function (2.2.1) can be 
transformed [1-3] into: 
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T T
1 1 2 2 3

ref
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y b u k v k v k y
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       

 

(2.2.5) 

where 1
1

nk R  , 1
2

nk R  , 3k R , y   is an exponentially vanishing disturbance, which is 

caused by the fact that the initial conditions of the plant and filters do not coincide to each 
other. 

Using, (2.2.5), the following control law with the adjustable parameters is chosen to 
achieve the goal (2.2.3): 

 

T T
1 1 2 2 3 4 ,ˆ ˆ ˆ ˆu k v k v k y k r   

 

(2.2.6) 

where  4 0 0k̂  . 

Considering (2.2.6), the reference model equation (2.2.2) is subtracted from the plant 
one (2.2.5): 

 

 
   

 
 

1 T T
4 1 1 2 2 3

T T
4 1 1 2 2 3

=

= ,

ref
m m ref y

ref

ref
m y

ref

Z p ˆb k b b r k v k v k y
R p

Z p
b k r k v k v k y

R p

         

      

  

   
 

(2.2.7) 



where 1
4 m refk b b . 

The transfer function description of (2.2.7) is transformed into the state-space one to 
obtain the differential error equation with the measurable output (1.2): 
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, 0ref ref ref ref ref

ref

e A e B e e ,

c e ,
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(2.2.8) 

where n n
refA R

   is the companion matrix of the polynomial  refR p , nB R


  is the gain 

vector, nc R


  is the output vector,  T 2
1 2

nr v v y R  
 

is the regressor vector, 
T

T T 2
4 1 2 3

nk k k k R    
     is the vector of the parametric errors. 

Considering the problem of output feedback adaptive control, the derivation of the 
adaptive law (2.2) also includes two steps: 1) to obtain the linear regression equation 

   Y t t    with the measurable regressor R  and function 2nY R ; 2) to transform this 

equation in order to obtain the regression (2.1) with the regressor Ω, which is functionally 
dependent from   and has the required properties according to Theorem. 

To obtain a linear regression equation    Y t t   , a control law with ideal 

parameters is introduced: 
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(2.2.9) 

where  p
 
is the differentiation operator, which is defined as follows: 

 

 
T2 3 1 if 2,

0 if 1

n np , p ,..., p, n
p

n .
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(2.2.10) 

Substituting (2.2.9) into (2.2.1), the equation of the closed-loop is obtained: 
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(2.2.11) 

Considering      0 refp p Z p   , the equations (2.2.11) and (2.2.2) are set equal to 

obtain a kind of the Erzberger’s conditions (2.1.5): 
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(2.2.12) 

Remark 3. According to the results of [1-2, 25, 26], under the conditions of 
Assumption 3 the equation (2.2.12) is solvable with respect to the parameters 1 2 3 4, , ,k k k k , 

and such solution is unique. 
Then, to obtain the equation    Y t t    on the basis of (2.2.12), the plant (2.2.1) is 

transformed into the observability canonical form: 
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(2.2.13) 



where nx R   is directly unmeasurable state vector,  T1 0
n

na R a a   , 

 T1
0  m

mb R b b .    

Let a Hurwitz matrix of canonical form n n
с R    be introduced. Considering the 

equality   T
o сa С A   , the expression сx  is added to and subtracted ( ) from 

(2.2.13) to obtain: 

 

 с ox x a y B u.     

 

(2.2.14) 

where nR  is the coefficients vector of the characteristic polynomial of the matrix с . 
To form the regression with respect to the parameters a and b from (2.2.13), the 

Kreisselmeier’s parametrization [27] is applied. By analogy with (2.2.4), the set of the state 
linear filters is introduced: 
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(2.2.15) 

where 1 2, n
f f R   . 

Then, according to the results of [27], the regression equation is obtained: 
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(2.2.16) 

where 2n nR 
 
is the measurable regressor,  

T2 T T T

o

n
oa B R a B       

 
is the vector of 

the unknown parameters,
 

n n
iT R   is the transformation matrix, which is formed from the 

coefficients of the numerator polynomial of the vector function   1

c isI e
 , ie  is a vector, 

which is filled with zeros, but its ith element is equaled to one. 
The equation (2.2.16) is multiplied by TС  to obtain the measurable regression 

function: 
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(2.2.17) 

where 3nR , 3

o

n
aB R  . 

To obtain a regression with the scalar regressor   from (2.2.17), the procedure from 
[22, 28] is applied. In accordance with it, the following extension scheme is introduced: 
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(2.2.18) 

where 0l  . 
The function z  and regressor   are passed through (2.2.18) to obtain the extended 

regression equation: 
     ,

of f aBz t t   

 

(2.2.19) 

where 3n
fz R , 3 3n n

f R   . 

The equation (2.2.19) is left-multiplied by  adj f

 

and, using the equality 

   adj detf f f I    , it is obtained: 
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where  , 3nz R  are the measurable regressor and function. 
Remark 4. It is also possible to use the scheme (2.1.13)-(2.1.14) to obtain the 

extended regression (2.2.19), which adds a degree of freedom to the algorithm (2.2.20). The 
advantage of the scheme (2.2.18)-(2.2.19) as compared to (2.1.13)-(2.1.14) is that lower 
number of parameters need to be chosen. The extension scheme (2.2.18)-(2.2.19) can also be 
used instead of (2.1.13)-(2.1.14) for the state feedback control problem. 

Given the definition 
0aB  and R  from (2.2.20), it is easy to obtain the regression 

equations: 
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where n
az R ,

1m
bz R   are measurable functions,  1 33

1 2, m nn nH R H R     are 

transformation matrices. 
Then, the condition (2.2.12) are multiplied by φ. The coefficients in the left and right 

hand sides of the resulting equation with the corresponding degrees of the differentiation 
operator p are considered to be equal. The corresponding scalar equations from (2.2.21) with 
respect to 1 0na a   and 0mb b  are substituted into the obtained result. Then a matrix 

regression equation with respect to the unknown parameters θ of the ideal control law (2.2.9) 
is written: 

 

,N M 

 

(2.2.22) 

where 2 2n nM R  , 2nN R  are the measurable regressor and function. 
Then, the matrix regressor M is to be transformed into the scalar one  . For that the 

equation (2.2.22) is multiplied by the matrix  adj M . After that the equality 

   adj detM M M I  is applied to obtain: 
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where 2nY R , R  is the scalar regressor. 
Remark 5. According to the results of [28], when the extension scheme (2.2.18)-

(2.2.20) is applied, the implication FE FE  

 

holds. The regressor M  is defined by a 
single dynamic quantity  . In accordance with Remark 3, when const  , M does not 
become singular. So, 

 

FE FE FEM    

 

holds. Thus, considering the 
parameterization (2.2.13)-(2.2.23), the excitation of the original regressor   does not vanish 
and FE FE    holds. 

The regression (2.2.23) is to be transformed into (2.2.1) with the regressor  , which 
has the required properties defined by Theorem. Using the results of [20, 23, 24], the filter 
with the exponential forgetting (2.1.19) is introduced. 

The extended regressor Δ2 and function ΔY are passed through the filter (2.1.19) to 
obtain: 
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where 2nR , R . 
Using the proved clauses of Proposition 1 and 2, when Δ ∈ FE, the regressor Ω has all 

properties required by Theorem as it can be seen from the following proposition. 
Proposition 3. If Δ ∈ FE over the time interval ; r et t    

and L  or 2
1

c tc e   and 

22с  , then 

  1)     , 0;rt t t L t
       

  2)     0, 0e LB UBt t t t        . 

where  
0

sup max ,
t

t


   3 22с 0с    . 

The correctness of Proposition 3 follows from the proofs of Propositions 1 and 2, and 
the estimates of LB  and UB , which coincide with the ones given in (2.1.21). 

Then, if the parameters of the control law (2.2.6) are adjusted according to (2.2), the 
error ξ is exponentially stable, as far as the output feedback control problem is concerned. 

Thus, the output feedback adaptive control system with the developed adaptive law 
(2.2) consists of the control law (2.2.6) and the procedures to obtain (2.2.13)-(2.2.23) the 
linear regression    Y t t    and transform it (2.2.24). 

Compared to the law (1.5), the proposed one (2.2) does not require the transfer 

function   1T
refс pI A B


  to be SPR. It also provides exponential convergence of the error ξ 

to zero under the weaker condition Δ ∈ FE. Compared to other approaches [3, 13, 14], in 
addition to overcoming the SPR requirement, the proposed law (2.2): 1) provides elementwise 
monotonicity of the adjustable parameters ̂  of the control law, 2) is substantially easier to be 
implemented in practice, 3) does not require to know the sign or value of the elements of the 
plant gain bm, and 4) is less sensitive to the manually chosen adaptive gain γ value. 

 
3. Numerical Experiments 

 
The numerical experiments with the state and output feedback adaptive control 

systems proposed in the second section of the paper have been conducted in Matlab/Simulink. 
The numerical integration by the Euler method with a constant step size of 410s

  

seconds was used. 
 

3.1 State feedback adaptive control system 
 
An unstable aperiodic link of second order was chosen as a plant to conduct 

experiments to validate effectiveness of the proposed state feedback adaptive control system: 
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(3.1.1) 

The required control quality was defined as the following reference model: 
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(3.1.2) 



The reference r value, the filters (2.1.10), (2.1.13), (2.1.18) parameters, the values of 
γ0 and γ1, the initial values of the control law (2.1.3) parameters were chosen as: 
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(3.1.3) 

Figure 1 presents the transients of: (a) the elements of the plant (3.1.1) and the 
reference model (3.1.2) state vectors, (b) the adjustable parameters of the control law, (c) the 
regressor  , and (d) the value of  T

m ax  . 
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Figure 1. Transients of: (a) elements of plant (3.1.1) and reference model (3.1.2) state vectors, 
(b) adjustable parameters of control law, (c) regressor  , and (d) value of  T

m ax   

 
The simulation results confirmed the theoretical conclusions and verified the 

exponential stability of the augmented tracking error ξ when the proposed tuning law (2.2) 
was applied. 

Then, it was demonstrated that the adaptive law (2.2) was invariant to the sign of the 
vector B. For this purpose, the initial values of the control law parameters were set as follows: 

   T0 = 0 0 1̂  . Figure 2 shows (a) the transients of the plant (3.1.1) and the reference 

model (3.1.2) state vector elements, and (b) the adjustable parameters ̂  of the control law. 
 



a) b) 
Figure 2. Transients of (a) plant (3.1.1) and reference model (3.1.2) state vector elements, and 

(b) adjustable parameters of control law 
 
The transients shown in Fig. 2 confirmed the correctness and efficiency of the adaptive 

law (2.2) under the condition that the sign of the gain vector B was unknown. 
Then the developed system was simulated in the practically important stabilization 

mode (Figure 3). For this purpose, the plant initial conditions were set as    T0 1 0x   and 

the reference signal was selected as 1tr e . The initial conditions of the reference model and 
other loop parameters were set according to (3.1.2) and (3.1.3). 

a) b) 
Figure 3. Transients of (a) plant (3.1.1) and reference model (3.1.2) state vector elements, and 

(b) adjustable parameters of control law 
 
The results of the experiments, which are presented in Figure 3, demonstrated the 

effectiveness of the proposed adaptive law (2.2) to solve the problem of state feedback 
adaptive stabilization. 

The next experiment was to compare the performance of the proposed system for 
different values of γ0. Fig. 4 shows the error norms  , which were obtained for different 

values of the parameter γ0. 



 
Figure 4. The dependence of 

 
from value of parameter γ0 

 
The transients shown in Fig. 4 confirmed the conclusions made in the proof of 

Theorem. They also demonstrated that the rate of the error  convergence to zero could be 
improved if the value of γ0 was made higher. 

Finally, it was checked whether the developed adaptive control system allowed one to 
set the value of the minimal rate of the error   convergence to zero with the help of choice of 
γ1 value, as it was noted in Remark 1. For this purpose, the developed system was modelled 
using the values γ1 = 0, γ1 = 10 and different reference signals r. Figure 5 presents (a) 
transients of the error norm   when γ1 = 0 and different r were used, (b) γ1 = 10 and the 

same set of r were used. 
 

 

 
Figure 5. Dependence of   from r and γ1 



The results of the experiment shown in Fig. 5 confirmed that the value of the minimal 
rate of the error   convergence to zero could be adjusted by change of the γ1 value. 

 

3.2 Output feedback adaptive control system 
 

The plant and reference model to solve the output feedback adaptive control problem 
were chosen as (3.1.1) и (3.2.2), but they were written as transfer functions: 
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(3.2.1) 

The only directly measurable signals were the output 1y x
 
and the control signal u .  

The reference value r, the filters (2.2.4), (2.2.15), (2.2.16), (2.2.18), (2.2.24) 
parameters, the values of γ0 and γ1, the initial conditions for the outputs of the plant and 
reference model, and the initial values of control law (2.1.3) parameters were chosen as: 
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(3.2.2) 

Figure 6 depicts the transients of (a) the plant y and the reference model yref outputs, 
(b) the adjustable parameters ̂ , (c) the regressor  , and (d) the value of  T

max  . 
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Figure 6. Transients of (a) plant y and the reference model yref outputs, (b) adjustable 
parameters ̂  of control law, (c) regressor  , and (d) value of  T

m ax   



The simulation results validated the theoretical conclusions and confirmed the 
exponential stability of the augmented tracking error ξ when the proposed adaptive law (2.2) 
was applied to solve the output feedback adaptive control problem. 

Then, it was demonstrated that the adaptive law (2.2) was invariant to the sign of the 
gain bm. For this purpose, the initial values of the control law parameters were set as follows: 

   T0 = 1 0 0 0̂  . Figure 7 shows (a) the transients of y and yref, and (b) the adjustable 

parameters ̂  of the control law. 

 
a) b) 

Figure 7. Transients of (a) y and yref, (b) adjustable parameters ̂  of control law 
 
The transients shown in Figure 7 confirmed the correctness and efficiency of the 

adaptive law (2.2) under the condition that the sign of the gain bm was unknown. 
Then the developed system was simulated in the practically important stabilization 

mode. For this purpose, the plant initial condition was set as  0 1y   and the reference signal 

was selected as 1tr e . The initial conditions of the reference model and other loop 
parameters were set according to (3.2.1) and (3.2.2). 

 

a) b) 

Figure 8. Transients of (a) y and yref, (b) adjustable parameters ̂  of control law 
 
The simulation results, shown in Figure 8, demonstrated the effectiveness of the 

developed output feedback adaptive control system to solve the plant stabilization problem. 
The next experiment was to compare the performance of the proposed output feedback 

system for different values of γ0. Figure 9 shows the error norms  , which were obtained for 

different values of the parameter γ0. 



 
Figure 9. Dependence of 

 
from value of γ0 

 
The transients shown in Figure 9 confirmed the conclusions made in the proof of 

Theorem. They also demonstrated that the rate of the error  convergence to zero could be 
improved if the value of γ0 was made higher. 

Finally, it was checked whether the developed output feedback adaptive control 
system allowed one to set the value of the minimal rate of the error   convergence to zero 
with the help of γ1 value choice, as it was noted in Remark 1. For this purpose, the developed 
system was modelled using the values γ1 = 0, γ1 = 10 and different reference signals r.  
Figure 10 presents (a) transients of the error norm   when γ1 = 0 and different r were used,  

(b) γ1 = 10 and the same set of r were used. 

 

 
Figure 10. Dependence of   from reference signal r and value of γ1 

 



The results of the experiment shown in Figure 10 confirmed that the value of the 
minimal rate of the error   convergence to zero could be adjusted by change of the γ1 

value. 
 

4. Conclusion 
 
The new adaptive law to adjust the controller parameters was proposed, which equally 

applicable to the linear error models with a measurable state (1.1) and output (1.2). Under the 
conditions that the regressor was finitely exciting FE 

 
and the unknown controller ideal 

parameters 
 

were time-invariant, it provided exponential stability of the error   and 

elementwise monotonicity of the controller adjustable parameters ̂ . In addition, it solved a 
number of problems of the adaptive control theory. In particular, the need to know the sign or 
values of the elements of the plant input gain vector B, the need for manual selection of the 
adaptive gain matrix Г. 

The scope of further research is to analyze the robustness of the developed adaptive 
control system to disturbances and formulate conditions, under which the requirement (1.6) is 
satisfied for the initial regressors of the parameterizations (2.1.9) and (2.2.16). Another aim is 
to extend these results to control plants with time-varying parameters. The second part of the 
paper will be devoted to the problem of state and output feedback adaptive control of linear 
plants with piecewise-constant unknown parameters, and the third part – linear plants with 
time-varying parameters of a certain type. 

 
 

Appendix 
 

Proof of theorem. As R , the elementwise solution of (2.2) could be obtained:
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(A1) 

As  2sign 0const   , then it follows from (А1) that      i a i b a bt t t t      , as was to 

be proved in the first part of the theorem. Let the second and third parts of the theorem be 
proved. 

As the matrix Aref is a Hurwitz one in (1.1), then, according to the corollary of the 
Klaman-Yakubovich-Popov lemma, there always exist some scalar d > 0 and corresponding 
virtual directly unmeasurable output: 
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(A2) 

such that the transfer function  H s d  is strictly positive real, and the following equalities 

hold: 
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(A3) 

Then the following quadratic function is chosen to analyze the stability of the error 
equation (1.1) in case the adaptive law (2.2) is applied: 
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(A4) 

where the matrix P corresponds to one of the solutions of (A3). 
The derivative of (A4) with respect to the equations (1.1) and (2.2) is written as: 
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(A5) 

Following (A2), as d > 0, then it is acceptable to consider d = 0.5 for certainty. In this 
case it is obtained from (A5): 
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(A6) 

Let two different cases be considered: et t  and et t . As for the first one, according to 

(2.1) and (2.2), it holds that 0   and  0    . Then et t   the equation (А6) is rewritten 

as: 
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(A7) 

Let the notion of the maximum eigenvalue of the matrix T  over the time interval 
 0; et  be introduced: 
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(A8) 

Considering (А8), (А7) for et t  is rewritten as: 
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(A9) 

where 
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. 

Having solved (A9), it is obtained: 
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Considering 
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m V    and     2
0 0MV    , the estimate of ξ for et t   is 

obtained from (А10): 
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It follows from this that ξ is bounded et t  . 

Let the second case be studied. Considering the definition of γ and the fact that et t   

the inequality LB UB0        holds, it is obtained from (A6) et t  : 
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(A12) 

The following inequality holds for  : 
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(A13) 

So (A12) is rewritten as: 
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(A14) 

where 
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The inequality (А14) is solved, and it is obtained for et t : 
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Therefore, together with (A1), it follows that L  and   converges to zero 

exponentially for all et t  at a rate, which is directly proportional to the parameters γ0, γ1, 

which were to be proved in the second and third parts of Theorem. 
 
Proof of Proposition 2. To prove the first part of the proposition, let 2

1
c tc e 

 

be 

considered, and 222 2
1

c tc e   be substituted into the definition of the regressor Ω: 
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Considering 22с  , it is obtained from (A17) that: 
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Therefore,    rt L t t     , which was to be proved in the first part of the 

proposition. 
Let the second part of the proposition be proved. Following (1.6), the finite excitation 

condition is written for the regressor Δ over ; r et t   : 
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Then et t   the following inequality holds: 
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As 0t
et t e    and (A20) holds, then the following also holds: 
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For further proof, let the following notation be introduced on the basis of the definition 
of Ω: 
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Considering 222 2
1

c tc e  , the first integral of (A22) is bounded: 
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Then, considering (A18), (A22) and (A23), et t   it holds that: 
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which completes the proof of Proposition 2. 
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