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On Raw Coding of Chaotic Dynamics
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Abstract

We study raw coding of trajectories of a chaotic dynamical system
by sequences of elements from a finite alphabet and show that there is
a fundamental constraint on differences between codes corresponding
to different trajectories of the dynamical system.

1 Introduction

By a raw coding of a chaotic discrete time dynamical system (T,X,B, µ)
(defined by a measurable map T of a measurable space (X,B, µ) into itself
with a σ-algebra of measurable sets B and a T -invariant probability mea-
sure µ), we mean a representation of trajectories {T tx}

t∈Z+
of this system

as sequences of elements from a finite alphabet A. In other words, one de-
fines a mapping Ξ : X → A, which takes points of the original phase space
X of the dynamical system to elements of the alphabet A. This mapping
defines a partition ξ := {X1,X2, . . . ,XM} of the phase space X into disjoint
measurable subsets Xi ∈ B, i ∈ {1, 2, . . . ,M}, with a subsequent encoding
of a trajectory by a sequence of numbers corresponding to elements of the
partition which the trajectory successively visits; i.e., Ξ(x) := i if x ∈ Xi. In
some cases (if there exists a finite Markov partition; see, e.g,. [1, 2]), informa-
tion about raw encoded trajectories allows one to completely reconstruct all
topological characteristics of the system under consideration. Note however
that, even if the existence of a finite Markov partition is proved rigorously,
its practicable application is rather questionable due to the high instabil-
ity of the chaotic map T . Moreover, it might happen that an approximate
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Markov partition has even worse statistical characteristics (i.e., more differ-
ing from the characteristics of the original system) than an “arbitrary” one
[3].

The aim of the present paper is to demonstrate that, under a rather weak
assumption about a deterministic dynamical system (weak mixing condi-
tion), there is a fundamental constraint on elementwise differences between
codes corresponding to different trajectories. Using standard definitions and
constructions of ergodic theory, the main of which will be described in Sec-
tion 2 and whose detailed analysis can be found, e.g., in [2, 4], this statement
can be formulated as follows.

Theorem. Let a dynamical system (T,X,B, µ) satisfy the weak mixing
property. Consider a finite measurable partition ξ := {X1,X2, . . . ,XM}

with
M
∏

i=1
µ(Xi) > 0. Then, for any positive integers N,L < ∞ and for

almost every (with respect to the direct product measure µN ) collection
x̄ := {x1, x2, . . . , xN} ∈ XN , there exists a time moment t0 ≥ 0 such that
Ξ(T t0+txi) = Ξ(T t0+txj) for all t ∈ {1, . . . , L}, i, j ∈ {1, . . . , N}.

In other words, all of these N codes of different trajectories simulta-
neously contain arbitrarily long subsequences coinciding both in space and
time. In Section 3, after the proof of this result, we discuss possible weak-
enings of the assumptions under which it holds.

From the point of view of numerous applications, let us mention con-
nections of this problem to the analysis of properties of random number
generators. Let {xti}t∈Z+

, i ∈ {1, . . . , N}, be N different sequences of pseu-

dorandom numbers obtained from the same random number generator. We
assume that those pseudorandom numbers belong to a finite alphabet A.
It is desirable that, despite a proximity (ideally, coincidence) of statistical
properties of these realizations, their pointwise differences should be as large
as possible. The theorem shows that the pointwise differences between dif-
ferent realizations are fundamentally constrained. Although this claim is
somewhat unexpected, it completely agrees with well-known properties of
Bernoulli or, more generally, Markov random sequences. Indeed, consider a
Bernoulli random sequence over an alphabet with two elements {0, 1}, taken
with probabilities p and q = 1− p, respectively. Consider an arbitrary finite
sequence ā over this alphabet, with K ≤ L elements 0 and L−K elements
1. For any given positive integer t0, the probability that a realization of this
Bernoulli random sequence coincides with ā on the time interval from t0 to
t0+L−1 is pKqL−K > 0; it does not depend on an initial moment t0. Thus,
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for an arbitrary finite number of realizations of this Bernoulli sequence, the
claim of the theorem holds true with probability one. One can similarly
prove this statement for a Markov random chain with a finite number of
states A = {1, . . . ,M} and a transition probability matrix π satisfying the
assumption πκ > 0 for some κ ∈ Z+ (this is a direct analog of the weak
mixing property for a Markov chain with a finite number of states).

It is worth to note connections of this problem to the Ulam finite Markov
chain approximation scheme and to the so-called Bowen specification prop-
erty (see, e.g. [4, 1]) for chaotic dynamical systems.

2 Necessary definitions and constructions

Here we give a short description of standard definitions and constructions
from ergodic theory which we need to prove the theorem.

Recall that a measure µ is T -invariant if and only if
∫

ϕ ◦ T dµ =

∫

ϕdµ

for any µ-integrable function ϕ : X → R
1.

A measurable function ϕ : X → R
1 is called invariant with respect to a

dynamical system (T,X,B, µ) (or simply T -invariant) if ϕ = ϕ ◦ T almost
everywhere with respect to the measure µ.

A dynamical system (T,X,B, µ) is ergodic if each T -invariant function
is a constant µ-a.e.

A dynamical system (T,X,B, µ) is weakly mixing if

1

n

n−1
∑

k=0

∣

∣µ(T−kA ∩B)− µ(A)µ(B)
∣

∣

n→∞
−−−−→ 0, ∀A,B ∈ B.

A direct product of two dynamical systems (T ′,X ′,B′, µ′) and (T ′′,X ′′,B′′, µ′′)
is a new dynamical system (T ′ ⊗ T ′′,X ′ ⊗X ′′,B′ ⊗ B′′, µ′ ⊗ µ′′), where the
map T ′ ⊗ T ′′ : X ′ ⊗X ′′ → X ′ ⊗X ′′ is defined by the relation

T ′ ⊗ T ′′(x′, x′′) := (T ′x′, T ′′x′′),

while all other objects are standard direct product of spaces, σ-algebras,
and measures, respectively.

By AN we denote the Nth power of the set A, i.e., the direct product of
N identical sets A ∈ B, and by (T⊗N ,XN ,BN , µN ) the direct product of N
identical dynamical systems (T,X,B, µ).
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A collection ξ := {X1,X2, . . . ,XM} is called a measurable partition of a
measurable space (X,B, µ) if Xi ∈ B ∀i, Xi∩Xj = ∅ ∀i 6= j, and

⋃

i

Xi = X.

3 Proof of the theorem

The proof of this result consists of two steps. First we show that a sufficient
condition for the claim of the theorem is the ergodicity of the direct product
of N copies of the original dynamical system. Then we demonstrate that
the latter property follows from the conditions of the theorem.

Denote ξ(0) := ξ and inductively define a sequence of measurable parti-
tions ξ(n) with n ∈ Z+ by the following relation:

ξ(n+1) := ξ(n) ∩ T−1ξ(n).

It is immediate to check that the constructed collections of sets ξ(n) are
measurable partitions of the space (X,B, µ) for any positive integer n. The
partition ξ(n) is called the nth refinement of the partition ξ.

By means of these partitions, for each n ∈ Z+ we define a collection of
sets

(ξ(n))N :=
⋃

η∈ξ(n)

ηN ,

which are “toothed neighborhoods of the diagonal” in the direct product
XN (see Fig. 1).

Observe that the inclusion x̄ := {x1, . . . , xN} ∈ ηN with η ∈ ξ(n) implies
the inclusion

(T⊗N )tx̄ ∈ (T⊗N )tηN ∈ (ξn−t)N

for all t ∈ {0, 1, . . . , n}; hence,

Ξ(T txi) = Ξ(T txj), ∀i, j ∈ {1, 2, . . . , N}, t ∈ {0, 1, . . . , n}.

Therefore, if we prove that, for µN -a.a. collection of points x̄ := {x1, . . . , xN} ∈
XN , there exists a time moment t0 ≥ 0 such that

(T⊗N )t0 x̄ ∈ ηN ∈ (ξ(L))N ,

then the claim of the theorem will follow.
Let a dynamical system (τ, Y,BY , ν) be ergodic. Then, for any pair

of measurable sets A,B ∈ BY with ν(A)ν(B) > 0, there exists a positive
integer κ = κ(A,B) < ∞ such that τκA ∩ B 6= ∅. Indeed, assume that
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Figure 1: “Toothed neighborhoods of the diagonal” [0, 1]2 created by col-
lections of the sets (ξ(n))2 (the boundary is indicated by solid lines) and
(ξ(n+1))2 (the boundary is indicated by dashed lines).

this is not true, i.e., τnA ∩ B = ∅ for any positive integer n. Consider a
measurable set

A∞ :=
⋃

n∈Z+

τnA.

Then ν(A∞) ≥ ν(A) > 0 and A∞ ∩ B = ∅. Therefore, the indicator
function of a measurable set A∞ of positive ν-measure is τ -invariant but is
not a constant a.e., which contradicts the ergodicity.

Thus, it suffices to show that the dynamical system (T⊗N ,XN ,BN , µN )
is ergodic. For that, we use the fact that the weak mixing property is
preserved under the direct product of weakly mixing dynamical systems
(see e.g. [2]). To complete the proof, its remains to note that weak mixing
implies ergodicity. ⊔⊓

It is interesting that one cannot weaken the conditions of the theorem by
changing the weak mixing of the original dynamical system to the ergodicity.
The problem is that the direct product of ergodic dynamical systems need
not also be ergodic: consider a direct product of two identical irrational unit
circle rotations.

On the other hand, the weak mixing condition is not necessary either.
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Figure 2: Counterexample to the necessity of the weak mixing property.

We shall show that, for some nonergodic dynamical systems, there exist
partitions for which the claim of the theorem holds true. Indeed, let T be a
mapping from the unit interval X = [0, 1] into itself defined by the relation

Tx :=











2x if 0 ≤ x < 1/4,

2x− 1/2 if 1/4 ≤ x < 3/4,

2x− 1 otherwise.

(1)

The graph of this mapping is shown in Fig. 2. It is immediate to check that
the restriction of the map T to each of the half-intervals XL := [0, 1/2] (left)
and XR := [1/2, 1] (right) with the normalized Lebesgue measure m is a
weakly (and even strongly) mixing dynamical system. Thus, the Lebesgue
invariant measure of the map T considered on the entire unit interval is not

ergodic. Consider a partition ξ with
M
∏

i=1
µ(Xi) > 0 satisfying the assumption

that X1 := [1/2 − 2−k, 1/2 + 2−k) for some k ∈ Z+. Denote by ξL and
ξR the restrictions of the partition ξ to the left and right half-intervals,
respectively. The claim of the theorem is satisfied for each of the dynamical
systems (T,XL,B,m) and (T,XR,B,m) equipped with the partitions ξL and
ξR, respectively. Moreover, it turns out that, for the nonergodic dynamical
system (T,X,B,m) with the partition ξ, the claim of the theorem holds as
well.
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To check this, it is sufficient to show that, for any measurable set A ⊆
[0, 1]N of positive Lebesgue measure, there exists an integer t0 such that
the set (T⊗N )t0A has an intersection of positive Lebesgue measure with the
“toothed neighborhood of the diagonal” in [0, 1]N generated by the Nth
power of the Lth refinement of the partition ξ. Observe that, by the con-
struction, each of these refinements has an element containing an open neigh-
borhood of the point 1/2. Denote by B ∈ [0, 1]N the Nth power of this open
neighborhood contained in an element of the partition ξ(L). We need to show
that

(T⊗N )t0A ∩B 6= ∅ (2)

for some positive integer t0.
By a quadrant, we shall call a direct product of n ∈ {0, 1, . . . , N} copies

of the interval XL and N −n copies of the interval XR taken in an arbitrary
order. Clearly, the union of all possible quadrants coincides with [0, 1]N .
On the other hand, each of the quadrants is invariant under the map T⊗N .
Moreover, the restriction of the dynamical system (T⊗N ,XN ,BN , µN ) to
each of the quadrants is again a direct product of mixing dynamical systems.
Now there exists a quadrant whose intersection with the set A is of positive
Lebesgue measure. Denote this quadrant by ∆ and set A∆ := A ∩ ∆ and
B∆ := B∩∆. Observe that, by the construction, we havem(A∆)m(B∆) > 0.
Therefore, using the same argument as in the proof of the theorem, we get

(T⊗N )t0A∆ ∩B∆ 6= ∅

for some t0 > 0, which implies (2).
Therefore, the claim of the theorem about the existence of arbitrarily

long coinciding code segments takes place for this nonergodic dynamical
system. In a sense, the element X1 of the partition ξ plays a role of a
“bridge” between ergodic components of the nonergodic dynamical system
(T, [0, 1],B,m).

The author thanks D. Buzzi for useful discussions.
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