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Abstract

A new approach for upper bounding the channel reliability function using the

code spectrum is described. It allows to treat in a unified way both a low and a high

rate cases. In particular, the earlier known upper bounds are improved, and a new

derivation of the sphere-packing bound is presented.

I. Introduction and main results

We consider a binary symmetric channel (BSC) with crossover probability 0 < p < 1/2
and q = 1 − p. Let F n denote the set of all 2n binary n-tuples, and, d(x, y), x, y ∈ F n,
denote the Hamming distance between x and y. A subset C = {x1, . . . ,xM} ⊆ F n, M =
2Rn is called a (R, n)–code of the rate R. The minimum distance of the code C is d(C) =
min{d(xi,xj) : i 6= j}. Everywhere below log z = log2 z.

Cardinality of a set A is denoted by |A|. The distance distribution B(C) =
(B0, B1, . . . , Bn) of the code C is the (n+ 1)–tuple with components

Bi = |C|−1 |{(xj ,xk) : d(xj ,xk) = i}| , i = 0, 1, . . . , n . (1)

Let h2(x) = −x log2 x− (1−x) log2(1−x) be the binary entropy function, and h−1
2 (y), y ∈

[0, 1/2], be its inverse function.
The BSC reliability function E(R, p) is defined as follows [1, 2, 3]

E(R, p) = lim sup
n→∞

1

n
ln

1

Pe(R, n, p)
,

where Pe(R, n, p) is the minimal possible decoding error probability Pe for (R, n)–code.
After the fundamental results of the paper [1], a further improvements of a various bounds
for E(R, p) have been obtained in [2 – 8]. Generally, on the exact form of the function
E(R, p) it is known only that [1, 2, 3]

E(0, p) =
1

4
ln

1

4pq
, E(R, p) = Esp(R, p) , Rcrit(p) ≤ R ≤ C(p) ,
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where C(p) = 1 − h2(p) is the BSC capacity, and the functions Esp(R, p) and Rcrit(p) are
defined in (6) and (8) below. Moreover, if p is not too small then the formula holds

E(R, p) = Esp(Rcrit(p), p) +Rcrit(p)− R , R1(p) ≤ R ≤ Rcrit(p) , (2)

where R1(p) is defined in (6). Using the method of [9] the formula (2) has been obtained
in [6, 7] for p ≥ 0.046, and then in [8] for p ≥ 0.04468. A corollary of this paper main
result (theorem 1) establishes the formula (2) for p > p1 ≈ 0.0078176. Here the value p1 is
the minimal possible for validity of (2) (otherwise, R1(p) > Rcrit(p)).

For 0 < R < min {Rcrit(p), R1(p)} still only some lower and upper bounds for the
function E(R, p) are known [1 – 8], and in this paper the most accurate of the upper
bounds [8] is improved.

Let us explain what constituted the difficulty in upper bounding the function E(R, p)
in the earlier papers [5, 7, 8]. It was shown in [5] that for a (R, n)–code there exists ω
such that Bωn & 2µ(R,ω)n, where the function µ(R, ω) > 0 is described below, and ω does
not exceed the best upper bound (linear programming) for the minimal code distance d(C)
(that result improved the earlier known similar bound in [10]). Note that when testing
only two codewords xi,xj with large d (xi,xj) = d for the decoding error probability Pe

we have Pe ∼ (4pq)d/2. Therefore, if each codeword xi has approximately Bωn neighbors
on the distance ωn, then it is natural to expect that Pe & (4pq)ωn/2Bωn for large n (and
not very large ω) , i.e. some kind of an additive lower bound for the probability of the
union of events holds.

The first variant of such additive bound was obtained in [5] under rather severe con-
straints on R. Those results of [5] have been strengthened in [6, 7], using the method of [9]
(which, in turn, goes to [11 – 13]). There were still a certain constraints on R, p. Results
of [6, 7] were strengthened in [8] under a milder constraints on R, p. It should be noted
that in all those papers a various variants of the second order Bonferroni inequalities were
used.

The aim of this paper is to prove that additive bound without constraints on R, p. For
that purpose the earlier method of [8, 9] (see also [11 – 13]) is significantly strengthened
(and simplified). Moreover, Bonferroni inequalities are not used. That approach allows to
treat in a unified way both a low and a high rate R cases. As an example, in § 2 a new
derivation of the sphere-packing bound is presented. Proposition 4 plays an important
role in that method. It partially answers the natural question: how many Voronoi regions
(i.e. how many codewords xi) determine the output y ?) The answer: for the “essential
fraction” of all y’s the number of such xi does not exceed n2.

The approach used in the paper is applicable to other channels as well. In particular,
for the Gaussian channel it will be done in the next paper.

We describe the main paper results. Introduce the function [14]

G(α, τ) = 2
α(1− α)− τ(1− τ)

1 + 2
√

τ(1− τ)
=

1

2
−

√

τ(1 − τ)− (1− 2α)2

2
[

1 + 2
√

τ(1 − τ)
] . (3)
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If xαn
τn is the minimal root of the Hahn polynomial Q

(n,αn)
τn (x), then 2xαn

τn = G(α, τ)n[1 +
o(1)], n → ∞ [14, formula (B.21)], [15, Corollary 5.22]. It is known that [16, 5, 8]

min
0≤τ≤α≤1/2

h2(α)−h2(τ)=1−R

G(α, τ) = G
(

1/2, h−1
2 (R)

)

, (4)

if and only if
R ≤ R0 = h2(τ0) ≈ 0.30524 , (5)

where τ0 ≈ 0.054507 is the unique root of the equation

f(τ) = (1− 2τ)

[

1 +
1

2
√

τ(1− τ)

]

− ln
1− τ

τ
= 0 .

Throughout the paper we use the values and functions

τ1(p) =

(

1− (4pq)1/4
)2

2(1 +
√
4pq)

, R1(p) = h2(τ1(p)) ,

ω1(p) = G(1/2, τ1(p)) =

√
4pq

1 +
√
4pq

,

ω0(τ) = G(1/2, τ) =
1

2
−

√

τ(1 − τ) , ω0(τ0) ≈ 0.27298 ,

Rcrit(p) = h2 (τcrit(p)) = 1− h2

( √
p

√
p+

√
q

)

.

(6)

We have
R1(p) ≤ Rcrit(p), if and only if p ≥ p1 ≈ 0.0078176 ,

ω1(p1) ≈ 0.149762 , τ1(p1) ≈ 0.1431616 ,

Rcrit(p) ≤ R0 , p ≥ 0.05014,

(7)

where p1 is the unique root of the equation R1(p) = Rcrit(p).
Remind the sphere-packing upper bound

E(R, p) ≤ Esp(R, p) = D
(

h−1
2 (1−R)‖p

)

, 0 ≤ R ≤ C(p) ,

D(x‖y) = x log
x

y
+ (1− x) log

1− x

1− y
,

Esp(0, p) =
1

2
log

1

4pq
= 2E(0, p) .

(8)

Introduce also the functions

W (ω, α,R, p) =
ω

2
log

1

4pq
− µ(R, α, ω) , (9)
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where µ(R, α, ω) is defined in (14), and

F1(R, α, p) = max
0≤ω≤G(α,τ)

W (ω, α,R, p) , τ = h−1
2 (h2(α)− 1 +R) ≤ 1/2 ,

F (R, p) = min
α0(R)≤α≤1/2

F1(R, α, p) , α0(R) = h−1
2 (1− R) .

(10)

The following theorem represents the main paper result. It strengthens a similar The-
orem 1 from [8].

T h e o r e m 1. For any 0 ≤ R ≤ C(p) the upper bound holds

E(R, p) ≤ min{F (R, p), Esp(R, p)} . (11)

The best upper bound for E(R, p) is a combination of the inequality (11) with the
“straight-line bound” [2]. In particular, using also the random coding lower bound for
E(R, p) [1, 3] we get

C o r o l l a r y 1. If R1(p) < Rcrit(p) or, equivalently, if p > p1 ≈ 0.0078176, then

E(R, p) =

{

1− log2
(

1 + 2
√
pq
)

−R, R1(p) ≤ R ≤ Rcrit(p),
Esp(R, p), Rcrit(p) ≤ R ≤ C(p).

(12)

In the right-hand side of (12) the relation was used (see (2))

Esp (Rcrit, p) +Rcrit = E(R1, p) +R1 = 1− log2 (1 + 2
√
pq) .

Therefore for R ≥ min {Rcrit(p), R1(p)} (i.e. for τ ≥ min {τcrit(p), τ1(p)}) the function
E(R, p) is now known exactly without any additional constraints. Earlier that result was
obtained for p ≥ 0.046 [6, 7], and then for p ≥ 0.04468 [8]. Corollary 1 establishes that
result to the minimal possible p.

Note that max
p

{Rcrit(p)− R1(p)} ≈ 0.07131, and it is attained for p ≈ 0.0922. More-

over, Rcrit(p) ≈ 0.20219, C(p) ≈ 0.5562. We also have lim
p→0

Rcrit(p) = lim
p→0

R1(p) = 1.

C o r o l l a r y 2. For R ≤ min {Rcrit(p), R1(p)} optimal α, ω in (10) are α = 1/2 , ω =
G(1/2, τ) = 1/2

√

τ(1− τ), and then

F (R, p) = W (G(1/2, τ), 1/2, R, p) =

=
G(1/2, τ)

2
log

1

4pq
− h2(τ)− h2(G(1/2, τ)) + 1 .

(13)

The formula (13) follows from (17), (18) and (16).
Remark 1. Generally speaking, it is not possible to replace F (R, p) in the right-hand

side of (11) onW (G(1/2, τ), 1/2, R, p) for any R, p. In particular, it may be wrong when p is
small, and R is large. For example, for p = 0.001, τ = 0.4 we have R ≈ 0.971 < C ≈ 0.989,
but W (G(1/2, τ), 1/2, R, p) ≈ −0.0122.

In § 2 the known result on a code spectrum [5] and some analytic properties of the
related functions are described. In § 3 a new approach, in general, is presented, and, as an
example, a new derivation of the sphere-packing bound is presented. In § 4 this approach
is developed using the code spectrum, and theorem 1 is proved.
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II. Code spectrum and functions analytic properties

To describe the known result on a code spectrum [5] introduce the function

µ(R, α, ω) = −h2(α)− 2(1− ω) log(1− ω)− 2ω log e+

+(1− ω)h2

(

α− ω/2

1− ω

)

− 2

ω/2
∫

0

log
[

s(u) + 2u2 +
√

s2(u)− 4u2τ(1− τ)
]

du ,

s(u) = α(1− α)− τ(1− τ)− u ,

τ = h−1
2 (h2(α)− 1 +R) ≤ 1/2 .

(14)

The function µ(R, α, ω) is a more convenient representation of the same function from
[5]. The next result is a variant of [5, theorem 5]. In Appendix its proof is presented since
the proof in [5] causes some questions.

T h e o r e m 2. For any (R, n)–code and any α ∈ [h−1
2 (1 − R), 1/2] there exists the

value ω, 0 ≤ ω ≤ G(α, τ) such that n−1 logBωn ≥ µ(R, α, ω) + o(1) as n → ∞, where

τ = h−1
2 (h2(α)− 1 +R), and G(α, τ) and µ(R, α, ω) are defined in (3) and (14).

The value α = 1/2 is the best in Theorem 2 for 0 ≤ R ≤ R0, where R0 is defined in (5)
[8, Remark 4]. Since for α = 1/2 we have

s(u) + 2u2 +
√

s2(u)− 4u2τ(1− τ) =
1

8

[

1− 2τ +
√

(1− 2τ)2 − 8u+ 16u2
]2

,

then for the function µ(R, 1/2, ω), ω ≤ G(1/2, τ), with τ = h−1
2 (R) after integration in

(14) we have [8]

µ(R, 1/2, ω) = −2(1− ω) log(1− ω)− 1−
(

3

2
− 2τ

)

log(1− τ)− 1

2
log τ+

+(1− 2ω) log g + (1− 2τ) log[g + τ − ω)]− 1

2
log

(1− 2τ)g − ω

1− (1− 2τ)g − ω
,

g = g(τ, ω) =
1− 2τ +

√

(1− 2τ)2 − 4ω(1− ω)

2
.

(15)

In particular, for ω = G(1/2, τ) we get from (15)

µ (h2(τ), 1/2, G(1/2, τ)) = h2(τ) + h2(G(1/2, τ))− 1 . (16)

The next result which is a combination of Propositions 1 and 2 from [8], describes some
analytical properties of the functions W (ω, α,R, p), F1(R, α, p) and F (R, p) from (9)–(10).

P r o p o s i t i o n 1. 1) For any α0(R) ≤ α < 1/2 and ω > 0 we have

dµ(R, α, ω)

dα
> 0 , α0(R) = h−1

2 (1−R) .
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2) For any 0 ≤ τ ≤ α ≤ 1/2 and 0 < ω < G(α, τ) we have

µ′′
ω2(R, α, ω) > 0 .

Moreover, W ′
ω(ω, α,R, p)

∣

∣

∣

ω=G(α,τ)
≥ 0, and then F1(R, α, p) = W (G(α, τ), α, R, p), if and

only if

G(α, τ) ≥ 2
√
pq

1 + 2
√
pq

= ω1(p) = G(1/2, τ1(p)) .

3) With R0 from (4) for any p we have

F (R, p) = min
α0(R)≤α≤1/2

F1(R, α, p) = F1(R, 1/2, p) , 0 ≤ R ≤ R0 . (17)

In particular, with τ1(p) from (6) for any p we have [8, Proposition 3]

F1(R, 1/2, p) = W (G(1/2, τ), 1/2, R, p), if and only if τ ≤ τ1(p) . (18)

III. New approach and sphere-packing exponent

In the approach used in [8, 9] we evaluated the individual decoding error probabilities
Pe(xj |xi), j 6= i. Instead, it turns out possible (and easier) to evaluate the total decoding
error probability Pe = M−1

∑

i

∑

j 6=i Pe(xj |xi). When doing so the following fact is very
important: for an “essential fraction” of all outputs y the number of the closest to y

codewords xi does not exceed n2 (see Lemma 3).
To describe our approach, for an integer t and an output y define the set:

Xt(y) = {xi ∈ C : d(y,xi) = t} , y ∈ Y. (19)

All codewords {xi} are assumed equiprobable. For a chosen decoding method denote
P (e|y,xi) the conditional decoding error probability provided that xi was transmitted
and y was received. Denote Pe(y) the probability to get the output y and to make a
decoding error. Then we have

Pe(y) =
1

M

M
∑

i=1

p(y|xi)P (e|y,xi) =
1

M

n
∑

t=0

∑

xi∈Xt(y)

p(y|xi)P (e|y,xi) =

=
qn

M

n
∑

t=0

(

p

q

)t
∑

xi∈Xt(y)

P (e|y,xi) ≥
qn

M

n
∑

t=0

(

p

q

)t

[|Xt(y)| − 1]+ ,

where [z]+ = max{0, z}. For the decoding error probability Pe we get

Pe =
∑

y∈Y

Pe(y) ≥
qn

M

n
∑

t=0

(

p

q

)t
∑

y:|Xt(y)|≥2

[|Xt(y)| − 1] .

6



Using the simple inequality (a− 1) ≥ a/2, a ≥ 2, we get

Pe ≥
qn

2M

n
∑

t=0

(

p

q

)t
∑

y:|Xt(y)|≥2

|Xt(y)| , (20)

where Xt(y) is defined in (19). To develop the right-hand side of (20) denote

Zt(i) = {y : d(y,xi) = t, |Xt(y)| ≥ 2} =

= {y : d(y,xi) = t and there exists xj 6= xi with d(xj,y) = t} .
Then we can represent the inequality (20) as follows

Pe ≥
qn

2M

n
∑

t=0

(

p

q

)t M
∑

i=1

|Zt(i)| . (21)

As a result, we get
P r o p o s i t i o n 2. For the decoding error probability Pe the lower bounds (20) and

(21) hold.
Remark 2. Although simple, the lower bounds (20) and (21)–(22) give the exact ex-

ponent order of the best Pe for any rate R. It is so because for the optimal (maximum
likelihood) decoding we have equalities (for exponents) in all their derivation steps.

Example - Sphere-packing upper bound. We show first how to get the sphere-
packing upper bound (8) from (21). Note that

Zt(i) = Z
(1)
t (i) \ Z(2)

t (i) ,

Z
(1)
t (i) = {y : d(y,xi) = t} ,

Z
(2)
t (i) = {y : d(y,xi) = t, |Xt(y)| = 1} .

Therefore we have
M
∑

i=1

|Zt(i)| = M
∣

∣

∣
Z

(1)
t (1)

∣

∣

∣
− |Yt| = M

(

n

t

)

− |Yt| ,

Yt = {y : |Xt(y)| = 1} =

= {y : there exists exactly one xi with d(y,xi) = t} .

(22)

Since |Yt| ≤ 2n, we get from (21) and (22)

Pe ≥
qn

2M
max
0≤t≤n

{

(

p

q

)t [

M

(

n

t

)

− 2n
]

}

. (23)

To maximize the right-hand-side of (23) for M = 2Rn, R > 0, it is sufficient to set
t = x0n + δ, where

R + h2(x0) = 1 , δ =
3 log(n + 1)

log((1− x0)/x0)
.

Then for large n we haveM
(

n
t

)

−2n ≥ 2n log(n+1), and from (23) we get the sphere-packing
upper bound (8).

7



IV. Lower bound (21) and code spectrum

To investigate the reliability function E(R) for R < Rcrit we use the simplified (but
exponentially equivalent) form of the lower bound (21)

Pe ≥
qn

2M
max
0≤t≤1

max
ω

(

p

q

)tn M
∑

i=1

|Zi(t, ω)| , (24)

where

Zi(t, ω) = {y : there exists xj with d(xi,xj) = ωn and d(xi,y) = d(xj ,y) = tn} .

We develop the lower bound (24), relating it to the code spectrum (1), i.e. to the
distribution of the pairwise distances d(xi,xj). Note that in (24) the sets {Zi(t, ω)} can
be replaced by any their subsets.

For a codewords xi,xj with d(xi,xj) = dij = ωn introduce the set

Zij(t, ω) = {y : d(xi,y) = d(xj ,y) = tn} .

Then for any i we have

Zi(t, ω) =
⋃

j:dij=ωn

Zij(t, ω) .

Denote
Xi(y, t, ω) = {xj : d(xi,xj) = ωn, d(xi,y) = d(xj ,y) = tn} ,

Xmax(t, ω) = max
i,y

|Xi(y, t, ω)| . (25)

Note that if A1, . . . , AN are finite sets, and any point a ∈
⋃

i Ai is covered by the sets
{Ai} not more than K times, then

∣

∣

∣

∣

∣

N
⋃

i=1

Ai

∣

∣

∣

∣

∣

≥ 1

K

N
∑

i=1

|Ai| .

Therefore we have

|Zi(t, ω)| ≥
1

Xmax(t, ω)

∑

j:dij=ωn

|Zij(t, ω)| . (26)

Since the cardinality |Zij(t, ω)| does not depend on indices (i, j), we denote it simply
Z(t, ω). As a result, we get from (24) and (26)

Pe ≥
qn

2
max
0≤t≤1

max
ω

{

(

p

q

)tn
BωnZ(t, ω)

Xmax(t, ω)

}

. (27)

8



For the value Z(t, ω), ω/2 ≤ t ≤ 1/2 we have (n → ∞)

1

n
log2 Z(t, ω) =

1

n
log2

[(

(1− ω)n

(t− ω/2)n

)(

ωn

ωn/2

)]

= u(t, ω) + o(1) ,

u(t, ω) = ω + (1− ω)h2

(

1

2
− 1− 2t

2(1− ω)

)

,

u′
ω(t, ω) =

1

2
log2

[

1− (1− 2t)2

(1− ω)2

]

≤ 0 .

(28)

We formulate the result obtained as follows.
P r o p o s i t i o n 3. For the decoding error probability Pe the lower bound (27) holds,

where Xmax(t, ω) and Z(t, ω) are defined in (25) and (28), respectively.
We set below

t(ω) = min

{

ω

2
+ (1− ω)p ,

1−
√
1− 2ω

2

}

=

=

{

ω/2 + (1− ω)p, ω ≥ ω1(p),
(

1−
√
1− 2ω

)

/2, ω ≤ ω1(p),

(29)

where ω1(p) is defined in (6). Such choice of the function t(ω) has a certain optimal
properties (see Remark 4 further). In particular, after a “cleaning” procedure [8] the value
Xmax(t(ω), ω) does not exceed n2, and then it will not influence the exponent of Pe.

To upper bound the value Xmax(t(ω), ω) we use the following known result. Let
A(n, d, w) be the maximal cardinality of a constant weight w code {xi} with d(xi,xj) ≥
d, i 6= j. Due to Johnson’s bound [17, Theorem 17.2.2] and [17, Theorem 17.2.4] we have

A(n, d, w) ≤ dn

(2w2 − 2wn+ dn)+
, (30)

A(n, d, w) ≤ n

w
A(n− 1, d, w − 1) . (31)

Consider first
The model case. It exhibits an important property of the function t(ω) from (29).
P r o p o s i t i o n 4. Let {x1, . . . ,xA} be a code of length n with w(xi) = t(ω)n and

d(xi,xj) ≥ ωn, i 6= j, and the function t(ω) be defined in (29). Then for any ω ≤ 1/2
and p the inequality holds

A < n2 . (32)

P r o o f. If ω 6= ω1(p), then with t(ω) from (29) we have 2w2 − 2wn + dn > 0, and
hence 2w2 − 2wn+ dn ≥ 1 (since the last value is an integer). Therefore from (30) we get
(32). If ω = ω1(p), then 2w2 − 2wn + dn = 0. Now we use first the inequality (31), and
then to the value A(n − 1, d, w − 1) apply the upper bound (30). Then with w = t(ω1)n
and d = ω1n we have

2(w − 1)2 − 2(w − 1)(n− 1) + d(n− 1) = 2n− 2w − d =

= n[2 − 2t(ω1)− ω1] = 2n(1− ω1)q .

9



Therefore from (30) and (31) we get

A(n, d, w) ≤ n

w
A(n− 1, d, w − 1) ≤ d(n− 1)

2(1− ω1)qw
=

=
ω1(n− 1)

2q(1− ω1)t(ω1)
=

(n− 1)√
q

≤ n
√
2 ,

from which we again get (32). N

For a code {x1, . . . ,xM} consider, say, the codeword x1 and its neighbors {xi} with
d(x1,xi) = ωn. Suppose that all those neighbors {xi} satisfy also the condition d(xi,xj) ≥
ωn, i 6= j. Due to (32) for any y ∈

⋃

i Z1i(t(ω), ω) there exist less than n2 neighbors {xi},
satisfying the inequality

d(x1,y) = d(xi,y) = t(ω)n ,

i.e. in that model case we have |X1(y, t(ω), ω)| < n2 for any y.
Assume now that for the whole code {x1, . . . ,xM} we have d(xi,xj) ≥ ωn, i 6= j. Then

|Xi(y, t(ω), ω)| < n2 for any i and y, i.e. Xmax(t(ω), ω) < n2. Therefore in such a model
case Xmax(t(ω), ω) does not influence the exponent of the value Pe.

Remark 3. In essence, proposition 4 asserts that for an “essential fraction” of all y the
number of Voronoi regions determining y, does not exceed n2.

General case. In the general case for some ω we are interested in a pairs (xi,xj)
with dij = ωn. But there may exist a pairs (xk,xl) with dkl < ωn. Using the “cleaning”
procedure [8] we show that the influence of such pairs (xk,xl) on the value Pe is not large.
It will allow us to reduce the general case to the model case,

Remind that MBvn is the total number of pairs (xi,xj) with dij = vn , and Z(t(v), v)
for such pair (xi,xj) is the number of points y such that

d(xi,y) = d(xj,y) = t(v)n .

Consider the function

(

p

q

)t(v)n

BvnZ(t(v), v) , v ≤ G(α, τ), (33)

and assume that it attains its maximum for some for v = s ≤ G(α, τ) (if there are several
such s, we choose the smallest one). We show that for large n the inequality holds

1

n
log

1

Pe
≤ −1

n
log

[

qn
(

p

q

)t(s)n

BsnZ(t(s), s)

]

≤

≤ max
s≤G(α,τ)

{

s

2
log

1

4pq
− µ(R, α, s)

}

= F1(R, α, p) .

(34)

Then from (34) and (10) the upper bound (11) and theorem 1 will follow.
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To make the cleaning procedure we estimate the value BλnZ(t(s), λ), λ < s. By defini-
tion of the value s for any λ 6= s we have

Bλn <

(

p

q

)t(s)n−t(λ)n

Bsn
Z(t(s), s)

Z(t(λ), λ)
.

Multiplying both sides of that formula by Z(t(s), λ), due to (28) we get that it is equivalent
to the inequality

1

n
log

BλnZ(t(s), λ)

BsnZ(t(s), s)
< g(λ, s) ,

g(λ, s) = u(t(s), λ)− u(t(λ), λ)− [t(s)− t(λ)] log
q

p
=

= (1− λ)

[

h2

(

1

2
− 1− 2t(s)

2(1− λ)

)

− h2

(

1

2
− 1− 2t(λ)

2(1− λ)

)]

− [t(s)− t(λ)] log
q

p
.

(35)

Depending on ω the function t(ω) has one of two forms (see the formula (29)). Therefore
there are possible three location cases of the values λ < s and ω1(p): 1) λ < s ≤ ω1(p), 2)
ω1(p) ≤ λ < s, and 3) λ < ω1(p) < s. We consider them separately.

1) Case λ < s ≤ ω1(p). Essentially, it corresponds to the case R ≥ R1(p). Since
R1(p) < Rcrit(p), if p > p1 ≈ 0.0078176, we may assume that p > p1. It is sufficient to
consider the case R = R1(p), and after that for R1(p) < R < Rcrit(p) to use the “straight-
line bound”. For that purpose we prove the following result.

P r o p o s i t i o n 5. If p > p1 ≈ 0.0078176 (see (7)), then

E(R1(p), p) ≤ min
α

max
ω≤G(α,τ1)

{

ω

2
log

1

4pq
− µ(R1, α, ω)

}

= F (R1(p), p) =

=
ω1

2
log

1

4pq
− µ(R1, 1/2, ω1) = 1− log2 (1 + 2

√
pq)−R1(p) ,

(36)

where ω1 = G(1/2, τ1(p)), R1 = h2(τ1(p)).
P r o o f. Note that for p ≥ 0.04468 validity of the relation (36) was proved in [8,

corollary 2]. Let dmin = ωminn be the minimal code distance. Then we should have

ωmin

2
log

1

4pq
≥ ω1

2
log

1

4pq
− µ(R1, 1/2, ω1) ,

(otherwise the desired bound (36) is valid), or, equivalently,

ωmin ≥ ω1 −
2µ(R1, 1/2, ω1)

log(1/(4pq))
=

=
2

log(1/(4pq))
[1− log2 (1 + 2

√
pq)− h2(τ1(p))] = ωm ,

(37)

where the formula (16) was used.
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For the function g(λ, s) from (35) we have

g(λ, s) = (1− λ)

[

h2

(

1

2
−

√
1− 2s

2(1− s)

)

− h2

(

1

2
−

√
1− 2λ

2(1− λ)

)]

+

+
1

2

[√
1− 2s−

√
1− 2λ

]

log
q

p
,

g′λ = h2

(

1

2
−

√
1− 2λ

2(1− λ)

)

− h2

(

1

2
−

√
1− 2s

2(1− s)

)

+

+
1

2
√
1− 2λ

[

log
q

p
− λ

(1− λ)
log

1− λ+
√
1− 2λ

1− λ−
√
1− 2λ

]

≥

≥ g′λ

∣

∣

∣

s=ω1

= h2

(

1

2
−

√
1− 2λ

2(1− λ)

)

− h2(p)+

+
1

2
√
1− 2λ

[

log
q

p
− λ

(1− λ)
log

1− λ+
√
1− 2λ

1− λ−
√
1− 2λ

]

.

(38)

Due to (37) we may assume that

ωm ≤ λ < s ≤ ω1 .

Combining analytical and numerical methods we can check that

min
ωm≤λ≤s≤ω1

g′′λ2(λ, s) > B(p) > 0 , p ≥ 0.003 ,

g(ωm, ω1) < −0.0008 , p ≤ 0.22 ,

max
p

{ω1(p)− ωm(p)} ≈ 0.1076 ,

(39)

where the function B(p) monotone decreases with p, and, for example, B(0.003) ≈ 0.009.
Since g(s, s) = 0, we get from (35) and (38)–(39) for 0.003 ≤ p ≤ 0.22 and ωm ≤ λ < s ≤ ω1

1

n
log

BλnZ(t(s), λ)

BsnZ(t(s), s)
< g(λ, s) < −(s− λ)D , D ≈ 0.013 (40)

Using (40) we get for any δ > 0 and ωm < s ≤ ω1

∑

ωm≤λ≤s−δ

BλnZ(t(s), λ)

BsnZ(t(s), s)
<

∑

ωm≤λ≤s−δ

2−n(s−λ)D < n2−δnD .

We set

δ = δ1 =
2 logn

Dn
,

and then get

∑

ωm≤λ≤s−δ1

BλnZ(t(s), λ) < n−1BsnZ(t(s), s) , ωm ≤ s ≤ ω1(p) . (41)
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Now we perform a cleaning procedure. Consider a pair (xi,xj) with dij = sn. We
say that such pair (t, s) –covers a point y if d(xi,y) = d(xj,y) = tn. Then MBun pairs
(xi,xj) with dij = sn (t(s), s)–cover MBsnZ(t(s), s) points y (counting also the covering
multiplicities). We disregard all points y that are (t(s), λ)–covered for λ ≤ s − δ1. Then
we remain with points y that can be only (t(s), v)–covered with v > s− δ1. Introduce the
set

Z′(s, δ) =

{

y :
y is (t(s), s)-covered and is not

(t(s), λ)–covered for any λ ≤ s− δ

}

. (42)

Then we have

Z′(s, δ1) ⊆
M
⋃

i=1

Zi(t(s), s) . (43)

Due to the relation (41) all points y of the set Z′(s, δ1) in total are (t(s), s)-covered, at
least, M(1− 1/n)BsnZ(t(s), s) times. For any y ∈ Z′(s, δ1) and any covering pair (xi,xj)
we have dij ≥ (s − δ1)n. Due to the formula (32) the covering multiplicity of any point
y ∈ Z′(s, δ1) does not exceed n2. Therefore for s ≤ ω1(p) we get from (43)

|Z′(s, δ1)| ≥ n−2M(1− 1/n)BsnZ(t(s), s) . (44)

Now from (44) and (24) we get for s ≤ ω1(p)

Pe ≥
qn(1− 1/n)

2n2

(

p

q

)t(s)n

BsnZ(t(s), s) . (45)

Due to the Theorem 2 there exists ω ≤ G(α, τ) such that Bωn ≥ 2µ(R,α,ω)n+o(n). Then by
definition of the value s from (33) and (45) we get

Pe ≥
qn(1− 1/n)

2n2

(

p

q

)t(ω)n

BωnZ(t(ω), ω) , 0.003 ≤ p ≤ 0.22 .

From the last relation the bound (36) for 0.003 ≤ p ≤ 0.22 follows. But that bound is
interesting only for p > p1 ≈ 0.0078176 (for p < p1 the sphere-packing bound is more
accurate).

If p > 0.22 then we should perform a cleaning procedure more accurately. We disregard
the point y if it is (t(s), λ)–covered by some pair (xi,xj) with dij = λn, where λ ≤ s− δ1.
Moreover, we shall demand that there exists xk with dik = djk = sn and the point y is
also (t(s), s)–covered by both pairs (xi,xk) and (xj ,xk). Then we shall essentially follow
the computations of [8], introducing the function m(ω, λ), etc. We omit such repeating of
the part of the paper [8], moreover, for such p such result was proved in [8]. N

2) Case ω1(p) ≤ λ < s. Taking into account a different form of the function t(s) from
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(29), we have

g(λ, s) = (1− λ)

[

h2

(

1

2
− (1− 2p)(1− s)

2(1− λ)

)

− h2(p)

]

−
(

1

2
− p

)

(s− λ) log
q

p
,

g′λ =
1

2
log

1

4pq
+

1

2
log

[

1− (1− 2p)2(1− s)2

(1− λ)2

]

> 0 , λ < s ,

g′′λλ = − (1− 2p)2(1− s)2 log2 e

(1− λ)[(1− λ)2 − (1− 2p)2(1− s)2]
< −(1− 2p)2

3
.

Since g(s, s) = g′λ(s, s) = 0, we have

g(λ, s) < −(1 − 2p)2

6
(s− λ)2 , ω1(p) ≤ λ < s ,

and then for ω1(p) ≤ λ < s we get

1

n
log

BλnZ(t(s), λ)

BsnZ(t(s), s)
< −(1− 2p)2

6
(s− λ)2 , λ < s .

Now for δ > 0 we have

∑

ω1(p)≤λ≤s−δ

BλnZ(t(s), λ)

BsnZ(t(s), s)
<

∑

ω1(p)≤λ≤s−δ

2−(1−2p)2(s−λ)2n/6 < n2−(1−2p)2δ2n/6 .

We set

δ = δ2 =

√
12 logn

(1− 2p)
√
n
,

and then get
∑

ω1(p)≤λ≤s−δ2

BλnZ(t(s), λ) < n−1BsnZ(t(s), s) .

Similar to the previous case, we disregard all points y which are (t(s), λ)–covered for
λ ≤ s− δ2. Then we get the set Z′(s, δ2) from (42), for which the relation (43) holds. All
points y of the set Z′(s, δ2) in total are (t(s), s)-covered, at least, M(1− 1/n)BsnZ(t(s), s)
times. For any such covering pair (xi,xj) we have dij ≥ (s−δ2)n. Due to Johnson’s bound
(30) the covering multiplicity of any point y does not exceed n2, if

s > ω1(p) +
δ2

√

4pq + δ2(1− 4pq) +
√
4pq

. (46)

Therefore for s, satisfying the condition (46), we get from (43)

|Z′(s, δ2)| ≥ n−2M(1− 1/n)BsnZ(t(s), s) . (47)

Now from (44) and (24) we again get (45), from which the upper bound (34) follows.
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3) Case λ < ω1(p) < s. For the function g(λ, s) from (35) we use the representation

g(λ, s) = f(λ, s) + g(λ, ω1(p)) ,

f(λ, s) = u(t(s), λ)− u(t(ω1), λ)− [t(s)− t(ω1)] log
q

p
,

and get

f(λ, s) = (1− λ)

[

h2

(

1

2
− (1− s)(1− 2p)

2(1− λ)

)

− h2

(

1

2
− (1− ω1)(1− 2p)

2(1− λ)

)]

−

−(s− ω1)(1− 2p)

2
log

q

p
,

f ′
s(λ, s) =

(1− 2p)

2

[

log
1− λ+ (1− s)(1− 2p)

1− λ− (1− s)(1− 2p)
− log

q

p

]

< 0 , λ < u ,

f ′′
ss(λ, s) = − (1− 2p)2(1− λ)

(1− λ)2 − (1− s)2(1− 2p)2
< −(1 − 2p)2 .

Therefore from Taylor’s formula we have

f(λ, s) ≤ −(1− 2p)2(s− ω1)
2 ,

and then, using also (40), we get for 0.003 ≤ p ≤ 0.22

g(λ, s) ≤ −(1− 2p)2(s− ω1)
2 − (ω1 − λ)D , ωm ≤ λ < ω1 < s . (48)

Now we repeat the same arguments as in the case ωm ≤ λ < s ≤ ω1, but using the inequality
(48) instead of (40). As a result, we again get the upper bound (34). It completes the proof
of Theorem 1 for 0.003 ≤ p ≤ 0.22. For p > 0.22 that result was proved in [8]. N

Remark 4. We explain the choice of the function t(ω) from (29). Note that when
testing only two codewords (xi,xj) with large dij = ωn for the decoding error probability
Pe we have Pe ∼ (4pq)ωn/2. Minimal ambiguity set Yij (i.e. all outputs y for which
xi,xj are approximately equal) of the same probability has the cardinality of the order
2ωn/2+(1−ω)h(p)n. If ω ≥ ω1(p) (i.e. R ≤ R1(p)), then the function t(ω) from (29) gives
exactly such order. In the case ω < ω1(p) (which corresponds to R > min{R1(p), Rcrit(p)})
the function t(ω) in (29) is chosen such that in the right-hand side of (30) to have 2w2 −
2wn+ dn > 0.

The author thanks L.A.Bassalygo for useful discussions and constructive critical re-
marks.

APPENDIX

P r o o f o f T h e o r e m 2. For a set A ⊆ F n and an integer w denote

A(w) = {x ∈ A : ‖x‖ = w} .
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For some w ≤ n/2 consider a code C(w) = C(n, w) of length n and constant weight w.

Denote by B
(w)
i its spectrum values defined in (1). Using Hahn polynomials Qj(i) =

Q
(n,w)
j (i) define the polynomials

f(x) =
w
∑

j=0

fjQj(x) , (A.1)

where f0 > 0 and fi ≥ 0, i = 1, . . . , w. Then for the code C(w) the inequality holds

∣

∣C(w)
∣

∣ f(0) +
∑

x,y∈C(w)

x 6=y

f(d(x,y)) ≥
∣

∣C(w)
∣

∣

2
f0 , (A.2)

which follows from [18, formula (1.7) and §6.4]. It follows from (A.2) that
L e m m a 1. For f(x) from (A.1) introduce the set

I = I(f0, f1, . . . , fw) = {i ∈ {1, . . . , w} : f(i) > 0} . (A.3)

If d
(

C(w)
)

> 0 and |I| > 0 then there exists i ∈ I such that

B
(w)
2i ≥ f0|C(w)| − f(0)

|I|f(i) . (A.4)

Remark 5. In [5, Lemma 3] the lower bound (A.4) is derived from Delsarte [19] inequal-
ities

w
∑

i=0

B
(w)
2i Qj(i) ≥ 0 , 0 ≤ j ≤ w .

Next result is a part of derivation of Bassalygo–Elias Lemma (cf. [5, Lemma 2]).
L e m m a 2. For any w ≤ n and any 2i ≤ min{n, 2(n− w) the relation holds

B2i(C)|C|
(

2i

i

)(

n− 2i

w − i

)

=
∑

x∈Fn

B2i

(

(C + x)(w)
)
∣

∣(C + x)(w)
∣

∣ . (A.5)

Next result follows from (A.5) and (A.4), and in such form appeared first in [5, Lemma
4].

L e m m a 3. If for f(x) from (A.1) and I(f) from (A.3) we have |I(f)| > 0, then for

any w ≤ n there exists i ∈ I(f) such that

B2i(C)
(

2i

i

)(

n− 2i

w − i

)

f(i)|I| ≥
(

n

w

)[

f02
−n

(

n

w

)

|C| − f(0)

]

. (A.6)
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Proof. From the formula (A.5) and using (A.4) for some i ∈ I we have

B2i(C)
(

2i

i

)(

n− 2i

w − i

)

f(i)|I| = f(i)|I|
|C|

∑

x∈Fn

B2i

(

(C + x)(w)
)
∣

∣(C + x)(w)
∣

∣ ≥

≥ 1

|C|
∑

x∈Fn

[

f0
∣

∣(C + x)(w)
∣

∣

2 − f(0)
∣

∣(C + x)(w)
∣

∣

]

≥

≥ f0
|F n||C|

[

∑

x∈Fn

∣

∣(C + x)(w)
∣

∣

]2

− f(0)

|C|
∑

x∈Fn

∣

∣(C + x)(w)
∣

∣ =

=

(

n

w

)[

f02
−n

(

n

w

)

|C| − f(0)

]

,

where at the end we used the Cauchy–Bounjakowsky–Schwarz inequality, and the formula
∑

x∈Fn

∣

∣(C + x)(w)
∣

∣ =
(

n
w

)

|C|. N

Denote xw
t the minimal root of the polynomial Q

(n,w)
t (x). Then xw

t+1 < xw
t . We use in

(A.6) the same polynomial f(x) as in [14, formulas (4.4) and (4.6)]:

f(x) =
1

(a− x)
Q2

t (a) [Qt(x) +Qt+1(x)]
2 , (A.7)

where the value t ≤ w will be chosen later, and the parameter a ∈ (xw
t+1, x

w
t ) is such that

Qt(a) = −Qt+1(a). Then f(a) = 0 and f(x) ≤ 0, a < x ≤ w. Expansion coefficients of
f(x) in the polynomials {Qj} basis are nonnegative (see [14]). We also have (see [14])

f0 =

((

n

t

)

−
(

n

t− 1

))

(n− 2t)(n− 2t− 1)

(t+ 1)(w − t)(n− w − t)
Q2

t (a) ,

f(0) =
1

a

((

n

t+ 1

)

−
(

n

t− 1

))2

Q2
t (a) .

(A.8)

We choose t such that
f(0)

f0
≤ 2−(n+1)

(

n

w

)

|C| .

Then

f02
−n

(

n

w

)

|C| − f(0) ≥ f02
−(n+1)

(

n

w

)

|C| ,

and from (A.6) we get

B2i(C)
(

2i

i

)(

n− 2i

w − i

)

f(i)|I(f)| ≥ f02
−(n+1)|C|

(

n

w

)2

.

The set I(f) from (A.3) has the form

I = I(f) = {i ∈ {0, 1, . . . , w} : f(i) > 0} = {0, 1, . . . , a− 1} .
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Then the bound (A.6) takes the form

B2i(C) ≥
f02

−(n+1)|C|
(

n
w

)2

xw
t

(

2i
i

)(

n−2i
w−i

)

f(i)
, (A.9)

and it remains us to evaluate the value f(i). From (A.7) and (A.8) we have

f0
f(i)

=

(

n

t

)

(n− 2t+ 1)(n− 2t)(n− 2t− 1)(a− i)

(n− t+ 1)(t+ 1)(w − t)(n− w − t) [Qt(i) +Qt+1(i)]
2

We consider the asymptotic case when w = αn, i = ξn, t = τn, where τ ≤ α ≤ 1/2
n → ∞. It is known [18] that

xαn
τn

n
=

G(α, τ)

2
+ o(1) =

α(1− α)− τ(1− τ)

1 + 2
√

τ(1− τ)
+ o(1) .

Denote

q(α, τ, ξ) = lim
n→∞

1

n
logQ(n,αn)

τn (ξn) . (A.10)

Then

lim
n→∞

1

n
log

f0
f(i)

= h2(τ)− 2q(α, τ, ξ) ,

and from (A.9) we get (since h2(α)− h2(τ) = 1−R)

lim
n→∞

1

n
logB2ξn(C) ≥

≥ R + 2h2(α) + h2(τ)− 1− 2ξ − (1− 2ξ)h2

(

α− ξ

1− 2ξ

)

− 2q(α, τ, ξ) =

= h2(α) + 2h2(τ)− 2ξ − (1− 2ξ)h2

(

α− ξ

1− 2ξ

)

− 2q(α, τ, ξ).

(A.11)

Therefore it remains us to evaluate the function q(α, τ, ξ), moreover it is sufficient to upper
bound it (as accurate as possible). How to do that, essentially, is described in [14]. Denote

q0(α, τ, ξ) = h2(τ)− αh2

(

ξ

α

)

− (1− α)h2

(

ξ

1− α

)

− 2ξ log
ξ

e
− ξ+

+

ξ
∫

0

log
[

s(u) + 2u2 +
√

s2(u)− 4τ(1− τ)u2
]

du ,

s(u) = α(1− α)− τ(1− τ)− u .

(A.12)

L e m m a 4. The estimate holds

q(α, τ, ξ) ≤ q0(α, τ, ξ) , ξ <
α(1− α)− τ(1 − τ)

1 + 2
√

τ(1 − τ)
=

xαn
τn

n
+ o(1) , (A.13)
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where q(α, τ, ξ) and q0(α, τ, ξ) are defined in (A.10) and (A.12).
Remark 6. In [5, formula (42)] the result similar to (A.13) is claimed (moreover, even

with the equality q(α, τ, ξ) = q0(α, τ, ξ)), but its proof is not sufficiently argumented (cf.,
for example, the derivation in [14, formula (B.21)] of a simpler upper bound for xαn

τn).
P r o o f. For fixed n, w, j denote by x1 < x2 < . . . < xj the roots of the polynomial

Q
(n,w)
j (x). Denote also

ρi =
Qj(i+ 1)

Qj(i)
.

Then

logQj(i) = logQj(0) +

i−1
∑

k=0

log ρk , Qj(0) =
(n− 2j + 1)

(n− j + 1)

(

n

j

)

.

From [14, formula (i)] for k < x1 we have

j log

[

1− 1

(x1 − k)2

]

< log
ρk
ρk−1

=

j
∑

l=1

log

[

1− 1

(xl − k)2

]

< 0 .

In particular, after simple estimates we get

1 <
ρk−1

ρk
< 1 +

ej

(x1 − k)2
, if (x1 − k)2 ≥ j + 2 . (A.14)

For {ρk} the recurrent equation holds [14, formula (B.20)]

(w − k)(n− w − k)ρkρk−1 − bkρk−1 + k2 = 0 ,

where
bk = w(n− w)− k(n− 2k)− j(n + 1− j) .

Using representation ρk−1 = (1 + εk)ρk, where εk is evaluated in (A.14), we have

(w − k)(n− w − k)(1 + εk)ρ
2
k − bk(1 + εk)ρk + k2 = 0 ,

from which we get (since
√
a+ b ≤ √

a +
√
b)

ρk ≤ bk +
√

b2k − 4k2(w − k)(n− w − k)/(1 + εk)

2(w − k)(n− w − k)
≤

≤ bk +
√

b2k − 4k2(w − k)(n− w − k)

2(w − k)(n− w − k)
+

k
√
εk

√

(w − k)(n− w − k)
,

where
b2k − 4k2(w − k)(n− w − k) ≤

≤ [w(n− w)− j(n− j)− kn]2 − 4k2j(n− j) + 2nkj .

Remark 7. The upper bound for ρk, perhaps, asymptotically (as n → ∞) is exact, but
it needs a more accurate investigation.
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Denote
fk =

√

[w(n− w)− j(n− j)− kn]2 − 4k2j(n− j) ≥ 0 ,

k ≤ w(n− w)− j(n− j)

n+ 2
√

j(n− j)
,

and

gk =
w(n− w)− j(n− j)− k(n− 2k) + fk

2(w − k)(n− w − k)
.

Then we have

ρk ≤ gk +

√
2nkj

2(w − k)(n− w − k)
+

k
√
εk

√

(w − k)(n− w − k)
,

and therefore
log ρk ≤ log gk + δk ,

δk =

√
2nkj + 2k

√

εkw(n− w)

w(n− w)− k(n− 2k)− j(n− j)
log e .

Now
i−1
∑

k=0

log gk =

i−1
∑

k=0

log
w(n− w)− j(n− j)− k(n− 2k) + fk

(w − k)(n− w − k)
− i .

We also have

i−1
∑

k=0

log(w − k) ≥
i

∫

0

log(w − x) dx =

= w logw − (w − i) log(w − i)− i log e = wh2

(

i

w

)

+ i log
i

e
,

where the formula was used

bh2

(a

b

)

= b log b− a log a− (b− a) log(b− a) .

Then

i−1
∑

k=0

log
1

(w − k)(n− w − k)
≤ −wh2

(

i

w

)

− (n− w)h2

(

i

n− w

)

− 2i log
i

e
.

The function T (x) = w(n−w)−j(n−j)−x(n−2x)+fx is piecewise monotone, and it has
not more than four intervals of monotonicity. Moreover, max

x
T (x) = 2[w(n−w)−j(n−j)].

Therefore

∣

∣

∣

∣

i−1
∑

k=0

log T (k)−
i

∫

0

log T (x) dx

∣

∣

∣

∣

≤ 4 log[w(n− w)− j(n− j)] + 4 .
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Hence

i−1
∑

k=0

log gk ≤
i

∫

0

log T (x) dx− wh2

(

i

w

)

− (n− w)h2

(

i

n− w

)

− 2i log
i

e
− i+

+4 log[w(n− w)− j(n− j)] + 4 .

In particualr, with w = αn, i = ξn, t = τn we have

1

n

i−1
∑

k=0

log gk ≤ q0(α, τ, ξ) +
8 logn

n
.

It follows from (A.14) that εk ≤ ej(x1 − k)−2. Therefore we also have

1

n

i−1
∑

k=0

δk ≤
i−1
∑

k=0

√
2nkj + 2k

√

εkw(n− w)

[w(n− w)− j(n− j)]
√

j(n− j)
log e ≤

≤
√
n i3/2 + i2

√

ew(n− w)/(x1 − i)

[w(n− w)− j(n− j)]
√
n− j

log e ≤ n5/2

(w − j)(n− w − j)(x1 − i)
.

As a result, with w = αn, i = ξn, j = τn we get

1

n
logQ(n,αn)

τn (ξn) ≤ q0(α, τ, ξ) +
2
√
n

(α− τ)(1− α− τ)(x1 − ξn)
. (A.15)

Since the function Q
(n,αn)
τn (ξn) monotone decreases for ξ < x1/n, and the function

q0(α, τ, ξ) is continuous and bounded on ξ, from (A.15) the inequality (A.13) follows. N

Replacing 2ξ by ω, from (A.13) and (A.11) we get the Theorem 2 and (14). N
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