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1

A new approah for upper bounding the hannel reliability funtion using

the ode spetrum is desribed. It allows to treat both low and high rate ases

in a uni�ed way. In partiular, the earlier known upper bounds are improved,

and a new derivation of the sphere-paking bound is presented.

� 1. Introdution and main results

We onsider the disrete time hannel with independent additive Gaussian noise, i.e. if

x = (x1, . . . , xn) is the input odeword then the reeived blok y = (y1, . . . , yn) is

yi = xi + ξi , i = 1, . . . , n ,

where (ξ1, . . . , ξn) are independent Gaussian r.v.'s with Eξi = 0 , Eξ2i = 1.

For x,y ∈ R
n
denote (x,y) =

n
∑

i=1

xiyi, ‖x‖2 = (x,x), d (x,y) = ‖x − y‖2 and

Sn−1(b) = {x ∈ Rn : ‖x‖ = b}. We assume that all odewords x satisfy the ondition

‖x‖2 = An, where A > 0 is a given onstant. A subset C = {x1, . . . ,xM} ⊂ Sn−1(
√
An),

M = eRn
, is alled a (R,A, n)-ode of rate R and length n. The minimum distane of the

ode C is d(C) = min{d(xi,xj) : i 6= j}.
The hannel reliability funtion [1, 2℄ is de�ned as

E(R,A) = lim sup
n→∞

1

n
ln

1

Pe(R,A, n)
,

where Pe(R,A, n) is the minimal possible deoding error probability for a (R,A, n)-ode.
After the fundamental results of the paper [1℄, further improvements of various bounds

for E(R,A) have been obtained in [2�9℄. In partiular, on the exat form of the funtion

E(R,A) it was known only that [1℄

E(0, A) =
A

4
, E(R,A) = Esp(R,A) , Rcrit(A) ≤ R ≤ C(A) , (1)
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where

C = C(A) =
1

2
ln(1 + A) , Rcrit(A) =

1

2
ln

2 + A+
√
A2 + 4

4
, (2)

Esp(R,A) =
A

2
−
√

A(1− e−2R)g(R,A)

2
− ln g(R,A) +R ,

g(R,A) =
1

2

(

√

A(1− e−2R) +
√

A(1− e−2R) + 4
)

.

(3)

Moreover, reently [8℄ the exat form of E(R,A) for a new region R1(A) ≤ R ≤ Rcrit(A)
was laimed under some restrition on A. Similar to the ase of the binary symmetri

hannel (BSC), that assertion follows from a useful observation that the tangent (it has

the slope (−1)) to the funtion Esp(R,A) at the point R = Rcrit(A) touhes the previously
known upper bound for E(R,A) [5�7℄. Sine those results from [5�7℄ were proved under

some restritions on A, those restritions were remaining in [8℄ as well. Sine there are

some inauraies in the formulation of that result in [8℄ we do not expose orresponding

formulas from [8℄ (moreover, they have a di�erent from ours form).

From theorem 1 and the formula (9) (see below) the exat form of E(R,A) follows

for the region R1(A) ≤ R ≤ Rcrit(A) for any A > 0. Moreover, if A > A0 ≈ 2.288 (see

(14)) then from theorem 2 below the exat form of E(R,A) follows for a wider region

R3(A) ≤ R ≤ Rcrit(A), where R3(A) < R1(A) and R3(A) ≈ Rcrit(A)− 0.06866, A ≥ A0.

For 0 < R < R1(A), 0 < A ≤ A0, or 0 < R < R3(A), A > A0, still only lower and

upper bounds for E(R,A) are known [1�9℄, and in this paper the most aurate of the

upper bounds is improved.

We begin by explaining what onstituted the di�ulty in upper bounding the funtion

E(R,A) in the earlier papers [5�9℄. Note that when testing only two odewords xi,xj with

large distane ‖xi−xj‖2 = d we have the deoding error probability Pe ∼ e−d/8
. Let Bρn be

the average number of eah odeword xi neighbors on the approximate distane 2A(1−ρ)n.
It was shown in [5℄ that for a (R,A, n)-ode there exists ρ suh that Bρn & 2b(ρ)n, where the
funtion b(ρ) > 0 is desribed below, and 2A(1−ρ)n does not exeed the best upper bound

(linear programming) for the minimal ode distane d(C). Therefore, if eah odeword xi

has approximately Bρn neighbors on the distane 2A(1− ρ)n, then it is natural to expet

that Pe & Bρne
−A(1−ρ)n/4

for large n (and not very small ρ), i.e. a variant of an additive

lower bound for the probability of the union of events holds.

The �rst variant of suh additive bound was obtained in [5℄ under rather severe

onstraints on R and A. Those results of [5℄ have been strengthened in [6, 7℄, using the

method of [10�12℄. However there were still ertain onstraints on R and A. It should

be noted that the investigation of E(R,A) for the Gaussian hannel is similar to the

investigation of E(R,A) for the BSC. The di�erene is only that due to the disrete

struture of a binary alphabet some expressions beome simpler. For the BSC the method

of [6℄ was reently [14, 15℄ further developed. Although the approah of [14, 15℄ is still based

on [6℄, some additional arguments allowed the approah to be essentially strengthened and

simpli�ed.
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It should also be noted that until the papers [14, 15℄, all papers mentioned made use

of various variants of the seond order Bonferroni inequalities.

The main aim of this paper is to prove an additive bound without any onstraints on

R or A. For that purpose the method of [14, 15℄ is applied. It is also worth noting that

Bonferroni inequalities are not used. This approah allows us to treat both low and high

rate R ases in a uni�ed way. As an example, in � 2 a new derivation of the sphere-paking

bound is presented.

Introdue some notations. For a ode C = {x1, . . . ,xM} ⊂ Sn−1(
√
An) denote

ρij =
(xi,xj)

An
, dij = ‖xi − xj‖2 = 2An(1− ρij) . (4)

Below it will be onvenient to use the parametri representation of the transmission rate

R = R(t) via the monotoni inreasing funtion

R(t) = (1 + t) ln(1 + t)− t ln t , t ≥ 0 . (5)

Consequently, for a rate R ≥ 0 introdue tR ≥ 0 as the unique root of the equation

R = R(tR) = (1 + tR) ln(1 + tR)− tR ln tR . (6)

Introdue also the funtions

τ(t) =
2
√

t(1 + t)

1 + 2t
, τR = τ(tR) . (7)

We shall need the values

t1(A) =

√

2 +
√
4 + A2 − 2

4
, τ 1(A) = τ(t1(A)) =

A

2 +
√
4 + A2

,

R1(A) = R(t1(A)) ,

(8)

where the funtions τ(t), R(t) are de�ned in (7) and (6). Sometimes below we shall omit

the argument A in t1(A), τ 1(A), R1(A).
One of the main results of the paper is

T h e o r e m 1. For any A > 0 the following relations hold:

E(R,A) =

{

Esp(Rcrit, A) +Rcrit − R , R1 ≤ R ≤ Rcrit ,
Esp(R,A) , Rcrit ≤ R ≤ C ,

(9)

and

E(R,A) ≤ A(1− τR)

4
+ ln(1 + 2tR)−R , 0 ≤ R ≤ R1 , (10)

where Rcrit(A), R1(A), τR and tR are de�ned in (2), (8), (7) and (6), respetively.

Remark 1. We have R1(A) < Rcrit(A) , A > 0. Moreover, max
A

{

Rcrit(A)− R1(A)
}

≈
0.06866, and it is attained for A = A0 ≈ 2.288.
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Remark 2. Note that (see the formulas (9) and (10) for R = R1)

Esp(Rcrit, A) +Rcrit =
A(1− τ 1)

4
+ ln(1 + 2t1) . (11)

Validity of (11) an be heked using the formulas (6), (7) and the relations

1 + 2t1 =

√

A

4τ 1
, Rcrit =

1

2
ln

1

1− τ 1
,

A
(

1− e−2Rcrit
)

= Aτ 1 =
A

τ 1
− 4 , g(Rcrit) =

(1 + τ 1)
√
A

2
√
τ 1

.

(12)

If A > A0 ≈ 2.288 (see (14)) then the upper bound (10) an be slightly improved, and,

moreover, the validity region of the �rst of formulas (9) an be enlarged to R3 ≤ R ≤ Rcrit,

where R3(A) < R1(A) (see (14)). To explain the possibility of suh an improvement onsider

the problem of upper bounding the minimal ode distane δ(R, n) of a spherial ode. The
best upper bound for δ(R, n) was obtained in [4℄ using the linear programming bound.

It was also notied in [4, p. 20℄ that for R > 0.234 a better upper bound for δ(R, n) is
obtained if the linear programming bound is applied not diretly to the original spherial

ode, but to its subode on a spherial ap. That observation was reently used in [9℄ when

estimating the ode spetrum and the funtion E(R,A). Using the approah of [6℄ an upper
bound for E(R,A) was obtained in [9℄. But it is rather di�ult to use that upper bound

sine it is expressed as an optimization problem over four parameters. In fat, it is possible

to get a more aurate and rather simple bound that onstitutes theorem 2 below.

Introdue the funtion

D(t) = ln
1 + t

t
− 1

2
√

t(1 + t)
− 1

1 + 2t
, t > 0 ,

(13)

and denote t2 ≈ 0.061176 the unique root of the equationD(t) = 0. The equivalent equation
(with a sign misprint) appeared earlier in [4, p. 20℄. Denote also

R2 = R(t2) ≈ 0.2339 , τ 2 = τ(t2) ≈ 0.4540 ,

R3(A) = Rcrit(A) +R2 +
1

2
ln(1− τ 2) ≈ Rcrit(A)− 0.0687 ,

A0 = min
{

A : R1(A) ≥ R2

}

≈ 2.288 .

(14)

The next result strengthens theorem 1 when A > A0.

T h e o r e m 2. If A > A0 ≈ 2.288 then the following relations hold:

E(R,A) =

{

Esp(Rcrit, A) +Rcrit − R , R3 ≤ R ≤ Rcrit ,
Esp(R,A) , Rcrit ≤ R ≤ C ,

(15)

and

E(R,A) ≤











1

4
A(1− τR) + ln(1 + 2tR)− R , 0 < R ≤ R2 ,

1

4
Aae−2R − 1

2
ln(2− ae−2R)− 1

2
ln a , R2 ≤ R ≤ R3(A) ,

(16)
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where a = (1− τ 2)e
2R2 ≈ 0.8717.

For a omparison purpose we present also the best known lower bound for the funtion

E(R,A) [1;3, Theorem 7.4.4℄

E(R,A) ≥







A
(

1−
√
1− e−2R

)

/4 , 0 ≤ R ≤ Rlow,
Esp(Rcrit, A) +Rcrit − R , Rlow ≤ R ≤ Rcrit,
Esp(R,A) , Rcrit ≤ R ≤ C(A) ,

(17)

where

Rlow(A) =
1

2
ln

2 +
√
A2 + 4

4
. (18)

Combining analytial and numerial methods it an be shown that for A > A0 we have

Rlow(A) < R2 < R3(A) < R1(A) < Rcrit(A) . (19)

On the �gure the plots of upper (15),(16) and lower (17) bounds for E(R,A) with A = 4
are presented.

The paper is organized as follows. In �2 the main analytial tool (proposition 1) is

presented and, as an example, the sphere-paking upper bound is derived. In �3 proposition

1 and the ode spetrum are ombined in propositions 2�3. In �4 (using results of �3 and

the known bound for the ode spetrum - theorem 3) theorem 1 is proved. In �5 theorem

2 is proved. Proofs of some auxiliary results are presented in Appendix.

� 2. New approah and sphere-paking exponent

For the onditional output probability distribution density p(y|x) of the input odeword
x the formula holds

ln p(y|x) = −1

2
d(y,x)− n

2
ln(2π) , x,y ∈ R

n

(in a similar formula in [6℄ there is a misprint - the minus sign is missing). To desribe our

approah, we �x a small δ = o(1), n → ∞, and s > 0 and for an output y de�ne the set:

Xs(y) = {xi ∈ C : |d(y,xi)− sn| ≤ δn} , y ∈ R
n. (20)

All odewords {xi} are assumed equiprobable. For a hosen deoding method denote

P (e|y,xi) the onditional deoding error probability provided that xi was transmitted

and y was reeived. Denote pe(y) the probability distribution density to get the output y

and to make a deoding error. Then

pe(y) = M−1

M
∑

i=1

p(y|xi)P (e|y,xi) ≥ M−1
∑

xi∈Xs(y)

p(y|xi)P (e|y,xi) =

= M−1(2π)−n/2
∑

xi∈Xs(y)

e−d(y,xi)/2P (e|y,xi) ≥

≥ M−1(2πes+δ)−n/2
∑

xi∈Xs(y)

P (e|y,xi) ≥ M−1(2πes+δ)−n/2 [|Xs(y)| − 1]+ ,

5



where [z]+ = max{0, z} and |A| � the ardinality of the set A . For the deoding error

probability Pe we get

Pe =

∫

y∈Rn

pe(y) dy ≥ M−1(2πes+δ)−n/2

∫

y:|Xs(y)|≥2

[|Xs(y)| − 1] dy .

Sine (a− 1) ≥ a/2, a ≥ 2, we have

Pe ≥ (2M)−1(2πes+δ)−n/2

∫

y:|Xs(y)|≥2

|Xs(y)| dy ,
(21)

where Xs(y) is de�ned in (20). To develop further the right-hand side of (21) we �x some

r > 0 and for eah xi introdue the set

Zs,r(i) =
{

y :
∣

∣‖y‖2 − rn
∣

∣ ≤ δn , |d(y,xi)− sn| ≤ δn, |Xs(y)| ≥ 2
}

=

=

{

y :
|‖y‖2 − rn| ≤ δn , |d(y,xi)− sn| ≤ δn and

there exists xj 6= xi with |d(xj ,y)− sn| ≤ δn

}

.
(22)

For a measurable set A ⊆ R
n
denote by m(A) its Lebesque measure. Then

∫

y:|Xs(y)|≥2

|Xs(y)| dy ≥
M
∑

i=1

m (Zs,r(i))

and from (21) we get

P r o p o s i t i o n 1. With any δ > 0 for the deoding error probability Pe the lower

bound holds

Pe ≥
1

2M
max
s,r

{

(2πes+δ)−n/2
M
∑

i=1

m (Zs,r(i))

}

, (23)

where Zs,r(i) is de�ned in (22).

Example: sphere-paking upper bound. We show �rst how to get the sphere-

paking upper bound E(R,A) ≤ Esp(R,A) from (23) (f. [1;3, Chapter 7.4℄). To simplify

formulas we write below a ≈ b if |a− b| ≤ δ, where δ = o(1), n → ∞. Note that

Zs,r(i) = Z(1)
s,r(i) \Z(2)

s,r(i) , Z(1)
s,r(i) =

{

y : ‖y‖2/n ≈ r , d(y,xi)/n ≈ s
}

,

Z(2)
s,r(i) =

{

y : ‖y‖2/n ≈ r , d(y,xi)/n ≈ s, |Xs(y)| = 1
}

=

=
{

y : ‖y‖2/n ≈ r , d(y,xi)/n ≈ s and there is no xj 6= xi with d(xj,y)/n ≈ s
}

.

Then we have

M
⋃

i=1

Z(2)
s,r(i) = Y s =

{

y : ‖y‖2/n ≈ r , |Xs(y)| = 1
}

=

=
{

y : ‖y‖2/n ≈ r and there exists exatly one xi with d(y,xi)/n ≈ s
}

,

Y s ⊆ Y (r) =
{

y : ‖y‖2/n ≈ r
}

,

6



and the lower bound (23) takes the form

Pe ≥ (2M)−1(2πes+δ)−n/2
[

Mm
(

|Z(1)
s,r(1)|

)

−m (Y (r))
]

+
.

The surfae area of a n-dimensional sphere of radius a is Sn(a) = nπn/2an−1/Γ(n/2+ 1) ∼
(2πea2/n)

n/2
. Then from a standard geometry we get

m
(

|Z(1)
s,r(1)|

)

∼ (2πer1)
n/2 , m (Y (r)) ∼ (2πer)n/2 ,

r1 = s− (r − A− s)2

4A
= r − (r + A− s)2

4A
.

Therefore the lower bound (23) takes the form

Pe & M−1(es+δ−1)−n/2
[

Mr
n/2
1 − rn/2

]

+
.

(24)

We want to maximize the right-hand side of (24) over s, r. Sine we are interested only

in exponents in n, we may assume that Mr
n/2
1 = rn/2, i.e. e2Rr1 = r. Then we should

maximize the funtion f(s, r) = ln r − s provided

s− (r − A− s)2

4A
− re−2R = 0 .

As usual, onsidering the funtion

g(s, r) = ln r − s+ λ

[

s− (r − A− s)2

4A
− re−2R

]

,

and solving the equations g′s = g′r = 0, we get

r =
1

1− λ (1− e−2R)
, s = r + A− 2A

λ
,

where λ satis�es the equation

(

1− e−2R
)

λ2 + A
(

1− e−2R
)

λ− A = 0 .

Therefore

λ =

√
A

g1
√
1− e−2R

,

where g1 = g1(R,A) is de�ned in (3). Note that

g2 − 1 = g
√

A (1− e−2R) , 1− λ
(

1− e−2R
)

=
1

g2
,

ln r − s = 2 ln g − 1− A+ g
√

A (1− e−2R) .

7



Taking into aount that e2Rr1 = r, we get from (24) and (3)

1

n
ln

1

Pe
≤ s− 1

2
− ln r1 =

s− 1

2
+R− 1

2
ln r =

=
A−

√

A (1− e−2R)g(R,A)

2
− ln g(R,A) +R = Esp(R,A) ,

whih gives the sphere-paking upper bound E(R,A) ≤ Esp(R,A).

� 3. Lower bound (23) and ode spetrum

For a ode C ⊂ Sn−1(
√
An) introdue the ode spetrum funtion

B(s, t) =
1

|C|

∣

∣

∣

∣

{

u, v ∈ C : s ≤ (u, v)

An
< t

}
∣

∣

∣

∣

, (25)

and denote

b(ρ, ε) =
1

n
lnB(ρ− ε, ρ+ ε) , 0 < ε < ρ .

To simplify notation we write below a ≈ b if |a− b| ≤ δ, where δ = 1/
√
An. For some

r > 0 we onsider only the set of outputs

Y (r) =
{

y : ‖y‖2/n ≈ r
}

⊆ R
n . (26)

To investigate the funtion E(R,A), R < Rcrit, we use a variant of the lower bound

(23)

Pe ≥ (2M)−1 max
s,r>0

max
ρ

{

(2πes+δ)−n/2
M
∑

i=1

m (Zs,r(ρ, i))

}

, (27)

where

Zs,r(ρ, i) =

{

y ∈ Y (r) :
there exists xj with ρij ≈ ρ and
d(xi,y)/n ≈ d(xj ,y)/n ≈ s

}

, (28)

and ρij is de�ned in (4). We develop the lower bound (27), relating it to the ode spetrum

(25), i.e. to the distribution of the pairwise inner produts {ρij}.
For odewords xi,xj with ρij ≈ ρ introdue the set

Zs,r(ρ, i, j) =
{

y ∈ Y (r) : d(xi,y)/n ≈ d(xj ,y)/n ≈ s
}

. (29)

Then for any i from (28) and (29) we have

Zs,r(ρ, i) =
⋃

j:ρij≈ρ

Zs,r(ρ, i, j) . (30)

Denoting

Z(s, r, ρ) = m (Zs,r(ρ, i, j)) (31)

8



(sine the measure of that set does not depend on indies (i, j)), we have (see Appendix)

1

n
lnZ(s, r, ρ) =

1

2
ln [2πez(s, r, ρ)] + o(1) , n → ∞ , (32)

where

z(s, r, ρ) = r − (A+ r − s)2

2A(1 + ρ)
. (33)

Note that due to (30), for the sum in the right-hand side of (27) for any ρ we have

M
∑

i=1

m (Zs,r(ρ, i)) ≤
∑

(i,j):ρij≈ρ

m (Zs,r(ρ, i, j)) = Z(s, r, ρ) |{(i, j) : ρij ≈ ρ}| =

= exp
{n

2
ln [2πez(s, r, ρ)] + [R + b(ρ)]n + o(n)

}

,

(34)

sine for b(ρ) = b(ρ, δ) the following formula holds (see (25))

|{(i, j) : ρij ≈ ρ}| = eRnB(ρ− δ, ρ+ δ) = e(R+b(ρ))n .

Suppose that for some ρ = ρ0 in the relation (34) the following asymptoti equality holds:

1

n
ln

[

M
∑

i=1

m (Zs,r(ρ0, i))

]

=
1

2
ln [2πez(s, r, ρ0)] +R + b(ρ0) + o(1) , n → ∞ . (35)

Using the funtions s = s(ρ), r = r(ρ) (they are hosen below), from (27), (35) and

(33) for suh ρ0 we get

1

n
ln

1

Pe

≤ s− 1

2
− 1

2
ln

[

r − (A+ r − s)2

2A(1 + ρ0)

]

− b(ρ0) + o(1) . (36)

We set below

s(ρ) =
A(1− ρ)

2
+ 1 , r(ρ) =

A(1 + ρ)

2
+ 1 . (37)

Suh hoie of s(ρ), r(ρ) minimizes (over s, r) the right-hand side of (36). Optimality of

suh s, r an also be dedued from the formulas (72) (see Appendix).

For suh s(ρ), r(ρ) we have r − (A + r − s)2/[2A(1 + ρ)] = 1, and then (36) takes the

simple form

1

n
ln

1

Pe
≤ A(1− ρ0)

4
− b(ρ0) + o(1) . (38)

Note that b(ρ) ≥ 0 if there exists a pair (xi,xj) with ρij ≈ ρ, and b(ρ) = −∞ if there is

no any pair with ρij ≈ ρ.
We formulate the result obtained as follows.

P r o p o s i t i o n 2. If for some ρ0 the ondition (35) is ful�lled, then the inequality

(38) for the deoding error probability Pe holds.

9



We show that as suh ρ0 we may hoose the value ρ0, minimizing the right-hand side

of (38). In other words, de�ne ρ0 as follows

Aρ0 + 4b(ρ0) = max
|ρ|≤1

{Aρ+ 4b(ρ)} .
(39)

Remark 3. If there are several suh ρ0, we may use any of them. It is not important

that we do not know the funtion b(ρ). We may use as b(ρ) any lower bound for it (see

proofs of theorems 1 and 2).

P r o p o s i t i o n 3. For ρ0 from (39) the ondition (35) holds and therefore the

inequality (38) is valid.

P r o o f. It is onvenient to �quantize� the range of possible values of the normalized

inner produts ρij . For that purpose we partition the whole range [−1; 1] of values ρij on
subintervals of the length δ = 1/

√
An. There will be n1 = 2/δ of suh subintervals. We

may assume that ρij takes values from the set {−1 = ρ1 < . . . < ρn1 = 1}.
We all (xi,xj) a ρ-pair if (xi,xj)/(An) ≈ ρ. Then Menb(ρ) is the total number of

ρ-pairs. We use s = s(ρ0), r = r(ρ0) from (37) and onsider only outputs y ∈ Y (r) =
Y (r(ρ0)). We say that suh a point y is ρ-overed if there exists a ρ-pair (xi,xj) suh

that d(xi,y)/n ≈ d(xj,y)/n ≈ s. Then the total (taking into aount the overing

multipliities) Lebesque measure of all ρ-overed points y equals Menb(ρ)Z(s, r, ρ).
Introdue the set Y (ρ0, ρ) of all ρ-overed points y

Y (ρ0, ρ) = {y ∈ Y (r) : y is ρ−overed} .

We onsider the set Y (ρ0, ρ) and perform its �leaning�, exluding from it all points y that

are also ρ-overed for any ρ suh that |ρ− ρ0| ≥ 4δ, i.e. we onsider the set

Y ′(ρ0, ρ0) = Y (ρ0, ρ0) \
⋃

|ρ−ρ0|≥4δ

Y (ρ0, ρ) =

=

{

y ∈ Y (r) :
y is ρ0−overed and is not ρ−overed
for any ρ suh that |ρ− ρ0| ≥ 4δ

}

.

(40)

Eah point y ∈ Y ′(ρ0, ρ0) an be ρ-overed only if |ρ−ρ0| < 4δ. We show that both sets

Y (ρ0, ρ0) and Y ′(ρ0, ρ0) have essentially the same Lebesque measures. Note that a ρ-pair
(xi,xj) ρ-overs the set Zs,r(ρ, i, j) from (29) with the Lebesque measure Z(s, r, ρ). We

ompare the values

∑

|ρ−ρ0|≥4δ

enb(ρ)Z(s, r, ρ) and enb(ρ0)Z(s, r, ρ0) (see (40)). For that purpose

we onsider the funtion

g(ρ) =
1

n
ln

enb(ρ)Z(s, r, ρ)

enb(ρ0)Z(s, r, ρ0)
= b(ρ)− b(ρ0) +

1

2
ln

z(s, r, ρ)

z(s, r, ρ0)
+ o(1) , (41)

where z(s, r, ρ) is de�ned in (33). From (33) we also have

z(s, r, ρ) = 1 +
A(1 + ρ0)(ρ− ρ0)

2(1 + ρ)
.

10



Sine b(ρ) ≤ b(ρ0)− A(ρ− ρ0)/4 (see (39)), for the funtion g(ρ) from (41) we get

g(ρ) ≤ 1

2
ln

[

1 +
A(1 + ρ0)(ρ− ρ0)

2(1 + ρ)

]

− A(ρ− ρ0)

4
≤ −A(ρ− ρ0)

2

4(1 + ρ)
. (42)

Sine ρ− ρ0 = iδ , |i| ≥ 4, after simple alulations we have

∑

|ρ−ρ0|≥4δ

enb(ρ)Z(s, r, ρ)

enb(ρ0)Z(s, r, ρ0)
=

∑

|ρ−ρ0|≥4δ

eng(ρ) ≤ 2
∑

i≥4

exp

{

−Anδ2i2

8

}

= 2
∑

i≥4

e−i2/8 <
1

2
.

Therefore we get

enb(ρ0)Z(s, r, ρ0)−
∑

|ρ−ρ0|≥4δ

enb(ρ)Z(s, r, ρ) >
1

2
enb(ρ0)Z(s, r, ρ0) .

Then the total (taking into aount the overing multipliities) Lebesque measure of all

ρ-overed points y ∈ Y ′(ρ0, ρ0) exeeds Menb(ρ0)Z(s, r, ρ0)/2. Remind that any point y ∈
Y ′(ρ0, ρ0) an be ρ-overed only if |ρ− ρ0| < 4δ.

For eah point y ∈ Y ′(ρ0, ρ0) onsider the set Xs(y) de�ned in (20), i.e. the set of

all odewords {xi} suh that d(xi,y)/n ≈ s. The odewords from Xs(y) satisfy also the

ondition |(xi,xj) /(An)− ρ0| < 4δ, i.e. the set {xi} onstitutes almost a simplex. It is

rather lear that the number |Xs(y)| of suh odewords is not exponential on n, i.e.

max
y∈Y

′

(ρ0,ρ0)

{

1

n
ln |Xs(y)|

}

= o(1) , n → ∞ . (43)

Formally the validity of (43) follows from lemma 2 (see below).

Note that if A1, . . . , AN ⊂ R
n
are a measurable sets, and any point a ∈

⋃

i

Ai is overed

by the sets {Ai} not more than K times, then

m

(

N
⋃

i=1

Ai

)

≥ 1

K

N
∑

i=1

m(Ai) . (44)

For y ∈ Y ′(ρ0, ρ0) denote

X i(y) =
{

xj : d(xi,y)/n ≈ d(xj,y)/n ≈ s, ρij ≈ ρ0
}

,

Xmax = max
i,y∈Y

′

(ρ0,ρ0)

|X i(y)| . (45)

Due to (43) we have

1

n
lnXmax = o(1) , n → ∞ . (46)
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Sine any point y ∈ Y ′(ρ0, ρ0) an be ρ-overed not more than Xmax times and Y ′(ρ0, ρ0) ⊆
Y (ρ0, ρ0), then from (43)�(46) we get

1

n
ln

[

M
∑

i=1

m (Zs,r(ρ0, i))

]

≥ 1

n
lnm (Y ′(ρ0, ρ0)) ≥

≥ 1

n
ln
(

Menb(ρ0)Z(s, r, ρ0)
)

+ o(1) =

=
1

2
ln [2πez(s, r, ρ0)] +R + b(ρ0) + o(1) , n → ∞ .

(47)

Therefore due to the inequalities (34) and (47), the ondition (35) is ful�lled, and then the

relation (38) holds.

To omplete the proof of proposition 2 it remains to establish the formula (43). We

prove it �rst for a simpler (but a more natural) ase ρ∗ ≤ τ 1, and then onsider the general

ase.

C a s e ρ0 ≤ τ 1. In that ase the relation (43) follows from simple lemma (see proof in

Appendix).

L e m m a 1. Let y ∈ R
n
with ‖y‖2 = rn. Let C = {x1, . . . ,xM} ⊂ Sn−1(

√
An) be a

ode with ‖xi − y‖2 = sn, i = 1, . . . ,M , and max
i 6=j

(xi,xj) ≤ Anρ. If

A+ r − s ≥ 2
√

Arρ , (48)

then M ≤ 2n.

For s(ρ), r(ρ) from (37) the ondition (48) holds, if

ρ ≤ A

2 +
√
4 + A2

= τ 1(A) . (49)

From lemma 1 and (49) the relation (43) follows.

G e n e r a l  a s e. Although a ode with ρ0 > τ 1 an hardly derease the deoding

error probability Pe, its investigation needs a bit more e�orts. The relation (43) follows

from lemma (see proof in Appendix).

L e m m a 2. Let for a ode C = {x1, . . . ,xM} ⊂ Sn−1(
√
An) and some ρ < 1 it holds

that

max
i 6=j

|(xi,xj)− Aρn| = o(n), n → ∞ .

Then lnM = o(n), n → ∞.

It ompletes the proof of proposition 3. N

Using proposition 3 and two lower bounds for b(ρ) we shall prove theorems 1 and 2.

� 4. Proof of theorem 1

12



First we investigate the funtion E(R,A) for 0 < R ≤ R1(A) and prove the upper bound
(10). Then for R1(A) < R < Rcrit(A), using the �straight-line bound� [2℄, we will prove the
formula (9). To apply proposition 3 we use the known bound for the ode spetrum. The

next result is a slight re�nement of [5, Theorem 9℄ (see also [6, Theorem 1℄).

T h e o r e m 3. Let C ⊂ Sn−1(
√
An) be a ode with |C| = eRn, R > 0. Then for any

ε = ε(n) > 0 there exists ρ suh that ρ ≥ τR and

b(ρ) =
1

n
lnB(ρ− ε, ρ+ ε) ≥ R− J(tR, ρ) +

ln ε

n
+ o(1) , n → ∞ ,

J(t, ρ) = (1 + 2t) ln [2tρ+ q(t, ρ)]− ln q(t, ρ)− t ln[4t(1 + t)] ,

q(t, ρ) = ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t) ,

(50)

where tR, τR are de�ned in (4) and (7), and o(1) does not depend on ε.

Note that

J ′
ρ(t, ρ) =

4t(1 + t)

ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t)
,

J ′′
ρρ(t, ρ) = − 4t(1 + t)

[ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t)]2

[

1 +
(1 + 2t)2ρ

√

(1 + 2t)2ρ2 − 4t(1 + t)

]

,

J ′
t(t, ρ) = 2 ln [2tρ+ q(t, ρ)]− ln[4t(1 + t)] ,

[R(t)− J(t, ρ)]′t = 2 ln
2(1 + t)

2tρ+ q
> 0 , J(tR, τR) = ln(1 + 2tR) , J(tR, 1) = R .

(51)

P r o p o s i t i o n 4. For the funtion E(R,A) the upper bound (10) holds.

P r o o f. Due to theorem 2 there exists ρ ≥ τR suh that the inequality (50) holds.

Denote ρ∗ the largest of suh ρ. Sine b(ρ0) ≥ b(ρ∗) − A(ρ0 − ρ∗)/4 (ñì. (39)), from (38)

and (50) we get

1

n
ln

1

Pe
≤ A(1− ρ0)

4
− b(ρ0) + o(1) ≤ A(1− ρ∗)

4
− b(ρ∗) + o(1) ≤

≤ A(1− ρ∗)

4
+ J(tR, ρ

∗)−R + o(1) .

(52)

Note that if τR ≤ τ 1 (i.e. if R ≤ R1(A)) then (see Appendix)

[J(tR, ρ)− Aρ/4]′ρ ≤ 0 , ρ ≥ τR , (53)

and therefore the funtion J(tR, ρ) − Aρ/4 monotone dereases on ρ ≥ τR. Sine ρ∗ ≥ τR
then for τR ≤ τ 1 we an ontinue (52) as follows

1

n
ln

1

Pe
≤ A(1− τR)

4
+ J(tR, τR)−R + o(1) =

=
A(1− τR)

4
+ ln(1 + 2tR)− R , 0 < R ≤ R1 ,

(54)
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whih is the desired upper bound (10). N

To prove the relation (9) note that the best upper bound for E(R,A) is a ombination
of the upper bound (10) and the sphere-paking bound via the �straight-line bound� [2℄,

whih gives

E(R,A) ≤ A(1− τ 1)

4
+ ln(1 + 2t1)− R , R1 ≤ R ≤ Rcrit .

On the other hand, the random oding bound [1, 3℄ gives

E(R,A) ≥ Esp(Rcrit, A) +Rcrit − R , R ≤ Rcrit ,

where Esp(R,A) is de�ned in (3). Together with the formula (11) it ompletes the proof of

theorem 1. N

� 5. Proof of theorem 2

As was already mentioned in � 1, for R > 0.234 the upper bounds for the minimal

ode distane [4, p. 20℄ of a spherial ode and its spetrum [9℄ an be improved, if the

linear programming bound is not diretly applied to the original spherial ode, but to its

subodes on spherial aps. The same approah allows to improve the upper bound for

E(R,A) as well. For that purpose we will need a bound for a ode spetrum better than

(50). The bound obtained below (theorem 4), probably, is equivalent to the similar bound

in [9, Theorem 3℄ (expressed in a di�erent terms), but its derivation is simpler and a more

aurate.

Sine we are interested only in angles between odewords xi,xj , for the formulas

simpli�ation we may set An = 1, and onsider a ode C ⊂ Sn−1(1) = Sn−1
. Let T n

θ (z) be
the spherial ap with half-angle 0 ≤ θ ≤ π/2 and enter z ∈ Sn−1

, i.e.

T n
θ (z) =

{

x ∈ Sn−1 : (x, z) ≥ cos θ
}

.

It will be onvenient to onsider subodes of C not on spherial aps T n
θ (z), but on related

with them thin ring-shaped surfaes Dn
θ (z). We set further δ = 1/n2

, and denote Dn
θ (z) as

Dn
θ (z) = T n

θ (z) \ T n
θ−δ(z) =

{

x ∈ Sn−1 : cos θ ≤ (x, z) ≤ cos(θ − δ)
}

. (55)

Denote Dn(θ) the surfae area of Dn
θ (z). Then [1, formula (21)℄

Dn(θ) =
(n− 1)π(n−1)/2

Γ((n+ 1)/2)

θ
∫

θ−δ

sinn−2 u du , δ ≤ θ ≤ π/2 .

It is not di�ult to show that

1− 1

2n sin θ
≤ Dn(θ)Γ((n+ 1)/2)n2

π(n−1)/2(n− 1) sinn−2 θ
≤ 1 .
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Sine the surfae area |Sn−1| of the sphere Sn−1
equals nπn/2/Γ(n/2+1), we have uniformly

over 1/n ≤ θ ≤ π/2

1

n
ln

Dn(θ)

|Sn−1| = ln sin θ + o(1) , n → ∞ .

For the ode C ⊂ Sn−1
and θ suh that max{arcsin e−R, 1/n} ≤ θ ≤ π/2, and z ∈ Sn−1

we onsider the subode C(θ, z) = C ∩Dn
θ (z) with |C(θ, z)| = enr(z)

odewords. Then

1

m(Sn−1)

∫

z∈Sn−1

|C(θ, z)| dz =
|C|Dn(θ)

|Sn−1| = exp {(R + ln sin θ)n + o(n)} ,

i.e. in average (over z ∈ Sn−1
) a subode C(θ, z) has the rate r = R + ln sin θ + o(1). All

its |C(θ, z)| odewords are loated in the ball Bn(sin θ, z′) of radius sin θ and entered at

z′ = z cos θ. Moreover, they are loated in a thin (of thikness ∼ δ) torus orthogonal to z.

If x ∈ Dn
θ (z), then we denote x′ = x−z′

the orresponding vetor from Bn(sin θ, z′). The
original angle ϕ between two vetors x,y ∈ Dn

θ (z) beomes the angle ϕ′ + O(δ) between
the vetors x′,y′ ∈ Bn(sin θ, z′), where sin(ϕ′/2) = sin(ϕ/2)/ sin θ. The original value

ρ = cosϕ beomes the value ρ′ +O(δ), where ρ′ = cosϕ′
is de�ned by the formula

1− ρ = (1− ρ′) sin2 θ , (56)

sine

ρ′ = cos

(

2 arcsin

(

sin(ϕ/2)

sin θ

))

= 1− 2 sin2(ϕ/2)

sin2 θ
= 1− (1− ρ)e2(R−r) .

The angle ϕ′
and the value ρ′ orrespond to the ase when the vetors x′,y′

are orthogonal

to z. The ode C(θ, z) is then transferred to the ode C′(z) = C′(θ, z) ⊂ Bn(sin θ, z′).
To evaluate the average number enbC(ρ) of ρ-neighbors in the ode C, we onsider any

pair xi,xj with (xi,xj) = ρ and introdue the sets

Z(x, a) =
{

z ∈ Sn−1 : (x, z) ≥ a
}

,

Z(x,y, a) =
{

z ∈ Sn−1 : (x, z) ≥ a and (y, z) ≥ a
}

.

Denote by Ωn(θ) the surfae area of the spherial ap T n
θ (z). For 0 ≤ θ < π/2 we have

Ωn(θ) =
π(n−1)/2 sinn−1 θ

Γ((n+ 1)/2) cos θ
(1 + o(1)) , n → ∞ .

Then for the Lebesque measure m(a) of the set Z(x, a) we have

m(a) = m (Z(x, a)) = Ωn(arccos a) .
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We evaluate the Lebesque measure m(ρ, a) of the set Z(x,y, a) provided (x,y) = ρ. Note
that if x,y ∈ Sn−1

and (x,y) = ρ, then ‖x+ y‖2 = 2(1 + ρ). Therefore v =
(x+ y)/

√

2(1 + ρ) ∈ Sn−1
, and then

Z(x,y, a) ⊆
{

z ∈ Sn−1 : (x+ y, z) ≥ 2a
}

=

=
{

z ∈ Sn−1 : (v, z) ≥ a
√

2/(1 + ρ)
}

= Z

(

v, a
√

2/(1 + ρ)
)

.

Therefore we get

m(ρ, a) = m (Z(x,y, a)) ≤ m
(

Z

(

v, a
√

2/(1 + ρ)
))

= Ωn

(

arccos
(

a
√

2/(1 + ρ)
))

.

That upper bound for m(ρ, a) is logarithmially (as n → ∞) exat. In partiular, if a =
cos θ and (x,y) = ρ, then

1

n
ln

m(cos θ)

m(ρ, cos θ)
≥ ln sin θ − ln sin

(

arccos
(

√

2/(1 + ρ) cos θ
))

=

= ln sin θ − ln
√

1− 2 cos2 θ/(1 + ρ) .

We use below the values ρ′ = ρ′(ρ, θ) from and (56) and ε′ = ε/ sin2 θ. Then denoting

BC(ρ) = BC(ρ− ε, ρ+ ε), BC′(z)(ρ
′) = BC′(z)(ρ

′ − ε′, ρ′ + ε′), for any ρ, ε we have

BC(ρ)|C| =
1

m(ρ, cos θ)

∫

z∈Sn−1

BC′(z)(ρ
′)|C′(z)| dz . (57)

Indeed, the value BC(ρ)|C| is the total number of pairs xi,xj ∈ C with |(xi,xj)− ρ| ≤ ε,
and BC′(z)(ρ

′)|C′(z)| is the total number of similar pairs x′
i,x

′
j ∈ C′(z) with |(x′

i,x
′
j)/(‖x′

i‖·
‖x′

j‖) − ρ′| ≤ ε′. Moreover, eah pair x′
i,x

′
j ∈ C′(z) gives the ontribution m(ρ, cos θ) to

the integral, from whih the formula (57) follows. From (57) for any set A ⊆ Sn−1
we have

enbC(ρ) ≥ 1

m(ρ, cos θ)|C|

∫

z∈A

enbC′(z)(ρ
′)|C′(z)| dz , (58)

and also

|C| = 1

m(cos θ)

∫

z∈Sn−1

|C′(z)| dz ≥ 1

m(cos θ)

∫

z∈A

|C′(z)| dz .

The ode C′(z) has the rate r(z) = (ln |C′(z)|)/n. Then there exists r0 suh that

|C| = eo(n)

m(cos θ)
max

t

{

etnm
(

z ∈ Sn−1 : |r(z)− t| ≤ ε
)}

=
er0n+o(n)m(S0)

m(cos θ)
,

S0 =
{

z ∈ Sn−1 : |r(z)− r0| ≤ ε
}

.

(59)

Sine m(S0) ≤ m(Sn−1) then

r0 ≥
1

n
ln

|C|m(cos θ)

m(Sn−1)
= R + ln sin θ + o(1) . (60)
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We set A = S0 and ε = o(1), n → ∞. Then using the Jensen inequality, from (58) and

(59) we have

enbC(ρ) ≥ 1

m(ρ, cos θ)|C|

∫

z∈S0

enbC′(z)(ρ
′)|C′(z)| dz ≥

≥ m(cos θ)eo(n)

m(ρ, cos θ)m(S0)

∫

z∈S0

enbC′(z)(ρ
′) dz ≥

≥ m(cos θ)eo(n)

m(ρ, cos θ)
exp







n

m(S0)

∫

z∈S0

bC′(z)(ρ
′) dz







,

from whih we get

bC(ρ) ≥
1

n
ln

m(cos θ)

m(ρ, cos θ)
+

1

m(S0)

∫

z∈S0

bC′(z)(ρ
′) dz + o(1) .

(61)

Due to theorem 3 for eah ode C′(z), z ∈ S0, there exists ρ
′′ = ρ′′(z) suh that ρ′′ ≥ τr0

and

bC′(z)(ρ
′′) ≥ r0 − J(tr0 , ρ

′′) + o(1) .

Therefore there exists ρ′ ≥ τr0 and the orresponding ρ = ρ(ρ′) from (56) suh that from

the inequality (61) we get

bC(ρ) ≥
1

n
ln

m(cos θ)

m(ρ, cos θ)
+ r0 − J(tr0 , ρ

′) + o(1) ≥

=
1

n
ln

m(cos θ)

m(ρ, cos θ)
+R + ln sin θ − J(tR+ln sin θ, ρ

′) + o(1) ≥

≥ R + 2 ln sin θ − J(tR+ln sin θ, ρ
′)− ln

√

1− 2 cos2 θ/(1 + ρ) + o(1) =

= R + ln sin θ − J(tR+ln sin θ, ρ
′) +

1

2
ln

(1 + ρ)

(1 + ρ′)
+ o(1) ,

(62)

where we used the formula (60) and monotoniity of the funtion r − J(tr, ρ) on r (see

(51)), and ρ′ = ρ′(ρ, θ) is de�ned in (56). After the variable hange sin θ = er−R
from (62)

we get

T h e o r e m 4. Let C ⊂ Sn−1(1) be a ode with |C| = eRn, R > 0. Then for any r ≤ R
there exists ρ′ suh that ρ′ ≥ τr and for ρ = 1− (1−ρ′)e2(r−R)

the following inequality holds

bC(ρ) ≥ r − J(tr, ρ
′) +

1

2
ln

(1 + ρ)

(1 + ρ′)
+ o(1) . (63)

Using the relation (63) in the inequality (38) we prove theorem 2. We have

1

n
ln

1

Pe
≤ min

r≤R
max
ρ′≥τr

{

A(1− ρ)

4
− b(ρ)

}

+ o(1) ≤

≤ min
r≤R

max
ρ′≥τr

{

A(1− ρ′)e2(r−R)

4
− r + J(tr, ρ

′) +
1

2
ln

1 + ρ′

1 + ρ

}

= min
r≤R

max
ρ≥τr

f(r, ρ) ,

(64)
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where

f(r, ρ) =
A(1− ρ)e2(r−R)

4
+R − 2r + J(tr, ρ) +

1

2
ln

1 + ρ

2e2(R−r) + ρ− 1
.

With t = tr and (1− τr)e
2(r−R) = 2z we have

f ′
ρ = −Ae2(r−R)

4
− 1

2(2e2(R−r) + ρ− 1)
+

4t(1 + t)

ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t)
+

1

2(1 + ρ)
,

f ′
ρ

∣

∣

ρ=τr
= −Ae2(r−R)

4
− 1

2(2e2(R−r) + τr − 1)
+

1

2(1− τr)
=

=
Az2 − (A+ 2)z + 1

2(1− z)(1 − τr)
, f ′′

ρρ < 0 .

Sine f ′′
ρρ < 0 then ρ = τr is optimal if f ′

ρ

∣

∣

ρ=τr
≤ 0. Sine r ≤ R then z ≤ 1. Therefore

f ′
ρ

∣

∣

ρ=τr
≤ 0 if the following inequalities are ful�lled:

2

A + 2 +
√
A2 + 4

≤ z ≤ A + 2 +
√
A2 + 4

2A
. (65)

The right one of the inequalities (65) is always satis�ed. The left one of the inequalities

(65) is equivalent to the inequality

f2(r) = 2r + ln(1− τr) ≥ 2R− 2Rcrit(A) . (66)

The next simple tehnial lemma onerns the funtion f2(r) in the left-hand side of (66).

L e m m a 3. The funtion f2(r) from (66) monotone dereases on 0 ≤ r < R2, and

monotone inreases on r > R2, where R2 is de�ned in (14). Moreover, the formula holds

ln (1− τ 1(A)) = −2Rcrit(A) , A > 0 . (67)

Sine the funtion E(R,A), R ≥ R1(A), is known exatly (see theorem 1), we onsider

only the ase R < R1(A). Then two ases are possible: R ≤ min{R1(A), R2} and R2 <
R < R1(A).

C a s e R ≤ min{R1(A), R2}. For R ≤ R2 minimum (over r ≤ R) in the left-hand side

of (66) is attained when r = R, and then due to (67) the inequality (66) redues to the

ondition τR ≤ τ 1(A), i.e. to R ≤ R1(A). Therefore if r ≤ R ≤ min{R1(A), R2} then the

inequalities (66) and (65) are ful�lled, and then ρ = τr is optimal in the right-hand side of

(64). Sine J(tr, τr) = ln(1 + 2tr) = − ln(1− τ 2r )/2 (see (51) and (7)), then (64) takes the

form

1

n
ln

1

Pe
≤ min

r≤R
f(r, τr) = min

r≤R
C(v(r))− R , R ≤ min{R1(A), R2} , (68)
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where

C(v) =
Av

4
− 1

2
ln[v(2− v)] , v(r) = (1− τr)e

2(r−R) . (69)

Note that for r = R the inequality (68) redues to the previous bound (10). We show that

suh r is optimal in (68). We have

4v(2− v)C ′
v = −Av2 + 2(A+ 2)v − 4 , C ′′

v2 > 0 .

Sine 0 ≤ v ≤ 1 , the equation C ′
v = 0 has the unique root v1, where

v1 =
4

A+ 2 +
√
A2 + 4

= e−2Rcrit(A) . (70)

The funtion C(v), 0 ≤ v ≤ 1, monotone dereases on 0 ≤ v < v1 and monotone inreases

on v > v1. Note that sine v(r) = ef2(r)−2R
, then (see lemma 3) the funtion v(r) monotone

dereases on 0 ≤ r < R2 and monotone inreases on r > R2.

If now R ≤ min{R1(A), R2}, then v(r) ≥ v1 for r ≤ R. Therefore r = R is optimal in

(68), and then (68) redues to the previous bound (10).

C a s e R2 < R < R1(A) (i.e. A > A0). Then R2 < R3(A) < R1(A), where R3(A) is
de�ned in (14). Consider �rst the ase R2 ≤ R ≤ R3(A). It is simple to hek that then the

inequality (66) is again satis�ed (see (14)). Therefore ρ = τr is optimal in the right-hand

side of (64), and (64) takes the form (68). Sine R ≤ R3(A), then v(r) ≥ v1 for r ≤ R.
Sine R ≥ R2 then r = R2 is optimal in (68), and then from (68) the seond of bounds

(16) follows.

It remains to onsider the ase R2 ≤ R3(A) ≤ R ≤ R1(A). Sine minimum of C(v) over
0 ≤ v ≤ 1 is attained for v = v1 (see (70)), then

min
0≤v≤1

C(v) = C(v1) = Esp(Rcrit, A) +Rcrit ,
(71)

where the formula was used

Esp(Rcrit, A) +Rcrit =
Av1
4

− 1

2
ln v1 −

1

2
ln(2− v1) .

Now in the right-hand side of (64) we set r suh that v(r) = v1 (it is possible when R ≥ R3).

Then again the inequality (66) is ful�lled and ρ = τr is optimal in the right-hand side of

(64). From (68) and (71) the �rst of upper bounds (15) follows. The upper bound (15)

an also be proved applying the �straight-line bound� to the sphere-paking bound and the

seond of upper bounds (16) at R = R3, and the formula

Esp(Rcrit, A) +Rcrit −R3 =
Aae−2R3

4
− 1

2
ln(2− ae−2R3)− 1

2
ln a ,

whih is simple to hek using the relations (12). It ompletes the proof of theorem 2.

N
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APPENDIX

P r o o f o f f o r m u l a (32). Without loss of generality we may assume that

xi,xj ,y have the form

xi = (x1, x2, 0, . . . , 0), xj = (−x1, x2, 0, . . . , 0), y = (0, y2, y3, . . . , yn),

from whih we have

d(xi,xj) = 4x2
1 = 2An(1− ρij) ,

d(xi,y) = x2
1 + (y2 − x2)

2 +

n
∑

k=3

y2k = sn ,

x2
1 + x2

2 = An ,

n
∑

k=2

y2k = rn .

Solving those equations we get

x1 =

√

An(1− ρij)

2
, x2 =

√

An(1 + ρij)

2
, y2 =

(A+ r − s)n
√

2An(1 + ρij)
, (72)

and therefore

n
∑

k=3

y2k = rn− y22 = rn− (A + r − s)2n

2A(1 + ρij)
= r1n ,

from whih the formula (32) follows. N

Optimality of s(ρ), r(ρ) from the formulas (37) also follows from (72).

P r o o f o f f o r m u l a (53). For the funtion f(ρ) = J(tR, ρ)− Aρ/4 from (51)

we have

f ′ =
4tR(1 + tR)

ρ+
√

(1 + 2tR)2ρ2 − 4tR(1 + tR)
− A

4
, f ′′(t, ρ) < 0 .

Then for ρ ≥ τR we have

f ′ ≤ f ′
∣

∣

∣

ρ=τR
=

4tR(1 + tR)

τR
− A

4
=

τR
1− τ 2R

− A

4
≤ 0 ,

if τR ≤ τ 1(A), whih proves the formula (53). N

P r o o f o f l e m m a 1. Let {x1, . . . ,xM} ⊂ Sn−1(
√
An) be a ode suh that

max
i 6=j

(xi,xj) ≤ 0, i.e. min
i 6=j

‖xi − xj‖2 ≥ 2A. Then, learly, M ≤ 2n.

In lemma 1 for all i we have (xi,y) = (A+r−s)n/2. ConsiderM vetors {x′
i = xi−ay},

where a = (A+ r − s)/(2r). Then due to the ondition (48) we have

max
i 6=j

(

x′
i,x

′
j

)

≤
[

4Arρ− (A+ r − s)2
]

n/(4r) ≤ 0 ,
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and therefore M ≤ 2n. N

P r o o f o f l e m m a 2. To prove lemma we redue it to the ase ρ ≈ 0, and then

use lemma 4 (see below). We set some integer m suh that 1 < m < M , and introdue the

vetor

z = a
m
∑

k=1

xk , a =
ρ

1 + (m− 1)ρ
.

After simple alulations we get

ρ− δ − 1

m
≤ ‖z‖2 ≤ ρ+ δ ,

ρ− δ

1 + (1− ρ)/(mρ)
≤ (xi, z) ≤

ρ+ δ

1 + (1− ρ)/(mρ)
, i = m+ 1, . . . ,M.

(73)

Consider the normalized vetors

ui =
xi − z

‖xi − z‖ , i = m+ 1, . . . ,M.

Using the formulas (73), for any i, j ≥ m+ 1, i 6= j, we get

(ui,uj) ≤
2

(1− ρ)

(

δ +
1

m

)

= o(1) , n → ∞ , (74)

if we set m → ∞ as n → ∞. To upperbound the maximal possible number M − m of

vetors {ui} satisfying the ondition (74), we use a modi�ation of [16, Theorem 2℄.

L e m m a 4. Let C = {x1, . . . ,xM} ⊂ Sn−1(1) be a ode with (xi,xj) ≤ µ, i 6= j. Then
for n ≥ 1 the upper bound holds

M ≤ 2n3/2(1− µ)−n/2 , 0 ≤ µ < 1 . (75)

P r o o f. Denote µ = cos(2ϕ), and let M(ϕ) be the maximal ardinality of suh a ode.

For M(ϕ) the upper bound holds [16, Theorem 2℄

M(ϕ) ≤
(n− 1)

√
π Γ

(

n− 1

2

)

sin β tan β

2Γ
(n

2

)

[

sinn−1 β − f(β, n− 2) cosβ
]

, 0 < ϕ <
π

4
, (76)

where β = arcsin(
√
2 sinϕ) and

f(β, n− 2) = (n− 1)

β
∫

0

sinn−2 z dz .
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Integrating by parts, for the funtion f(β, n− 2) we have

f(β, n− 2) =
sinn−1 β

cos β
− sinn+1 β

(n + 1) cos3 β
− 3

(n+ 1)

β
∫

0

sinn+2 z

cos4 z
dz ≥

≥ sinn−1 β

cos β
− sinn+1 β

(n+ 1) cos3 β
− 3 tan4 β

(n + 1)
f(β, n− 2) ,

and therefore

1
/

[

1 +
3 tan4 β

n2 − 1

]

≤ f(β, n− 2)
/

{

sinn−1 β

cos β

[

1− tan2 β

n + 1

]}

≤ 1 , (77)

if tan2 β < n + 1, i.e. if 2 sin2 ϕ < (n+ 1)/(n+ 2). From (76) and (77) we get

M(ϕ) ≤

√
π Γ

(

n− 1

2

)

(n2 − 1) cos β

2Γ
(n

2

)

sinn−1 β
<

n
√

πn(1− 2 sin2 ϕ)
√
2
(√

2 sinϕ
)n−1 , (78)

sine

Γ

(

z − 1

2

)

(z2 − 1)

/

Γ
(z

2

)

<
√
2 z3/2e1/z , z ≥ 0 .

From (78) the inequality (75) follows provided 2 sin2 ϕ < (n+1)/(n+2), i.e. if µ > 1/(n+2).
Sine the funtion M(ϕ) is ontinuous on the left for ϕ ∈ (0, π], the upper bound (78)

remains valid for µ = 1/(n + 2) as well. For µ = 1/(n + 2), n ≥ 1, the right-hand side of

(78) does not exeed n
√

πe/2, whih in turn does not exeed the right-hand side of (75)

for any µ ≥ 0, n ≥ 2. Sine M(ϕ) is a dereasing funtion, it proves the inequality (75) for

any µ ≥ 0, n ≥ 2. Clearly, (75) remains valid for n = 1 as well. N

Now from (74) and (75) we get lemma 2. N

The author thanks L.A.Bassalygo, G.A.Kabatyansky and V.V.Prelov for useful

disussions and onstrutive ritial remarks.
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Figure. Upper (15),(16) and lower (17) bounds for E(R,A) and A = 4
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