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A new approa
h for upper bounding the 
hannel reliability fun
tion using

the 
ode spe
trum is des
ribed. It allows to treat both low and high rate 
ases

in a uni�ed way. In parti
ular, the earlier known upper bounds are improved,

and a new derivation of the sphere-pa
king bound is presented.

� 1. Introdu
tion and main results

We 
onsider the dis
rete time 
hannel with independent additive Gaussian noise, i.e. if

x = (x1, . . . , xn) is the input 
odeword then the re
eived blo
k y = (y1, . . . , yn) is

yi = xi + ξi , i = 1, . . . , n ,

where (ξ1, . . . , ξn) are independent Gaussian r.v.'s with Eξi = 0 , Eξ2i = 1.

For x,y ∈ R
n
denote (x,y) =

n
∑

i=1

xiyi, ‖x‖2 = (x,x), d (x,y) = ‖x − y‖2 and

Sn−1(b) = {x ∈ Rn : ‖x‖ = b}. We assume that all 
odewords x satisfy the 
ondition

‖x‖2 = An, where A > 0 is a given 
onstant. A subset C = {x1, . . . ,xM} ⊂ Sn−1(
√
An),

M = eRn
, is 
alled a (R,A, n)-
ode of rate R and length n. The minimum distan
e of the


ode C is d(C) = min{d(xi,xj) : i 6= j}.
The 
hannel reliability fun
tion [1, 2℄ is de�ned as

E(R,A) = lim sup
n→∞

1

n
ln

1

Pe(R,A, n)
,

where Pe(R,A, n) is the minimal possible de
oding error probability for a (R,A, n)-
ode.
After the fundamental results of the paper [1℄, further improvements of various bounds

for E(R,A) have been obtained in [2�9℄. In parti
ular, on the exa
t form of the fun
tion

E(R,A) it was known only that [1℄

E(0, A) =
A

4
, E(R,A) = Esp(R,A) , Rcrit(A) ≤ R ≤ C(A) , (1)
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where

C = C(A) =
1

2
ln(1 + A) , Rcrit(A) =

1

2
ln

2 + A+
√
A2 + 4

4
, (2)

Esp(R,A) =
A

2
−
√

A(1− e−2R)g(R,A)

2
− ln g(R,A) +R ,

g(R,A) =
1

2

(

√

A(1− e−2R) +
√

A(1− e−2R) + 4
)

.

(3)

Moreover, re
ently [8℄ the exa
t form of E(R,A) for a new region R1(A) ≤ R ≤ Rcrit(A)
was 
laimed under some restri
tion on A. Similar to the 
ase of the binary symmetri



hannel (BSC), that assertion follows from a useful observation that the tangent (it has

the slope (−1)) to the fun
tion Esp(R,A) at the point R = Rcrit(A) tou
hes the previously
known upper bound for E(R,A) [5�7℄. Sin
e those results from [5�7℄ were proved under

some restri
tions on A, those restri
tions were remaining in [8℄ as well. Sin
e there are

some ina

ura
ies in the formulation of that result in [8℄ we do not expose 
orresponding

formulas from [8℄ (moreover, they have a di�erent from ours form).

From theorem 1 and the formula (9) (see below) the exa
t form of E(R,A) follows

for the region R1(A) ≤ R ≤ Rcrit(A) for any A > 0. Moreover, if A > A0 ≈ 2.288 (see

(14)) then from theorem 2 below the exa
t form of E(R,A) follows for a wider region

R3(A) ≤ R ≤ Rcrit(A), where R3(A) < R1(A) and R3(A) ≈ Rcrit(A)− 0.06866, A ≥ A0.

For 0 < R < R1(A), 0 < A ≤ A0, or 0 < R < R3(A), A > A0, still only lower and

upper bounds for E(R,A) are known [1�9℄, and in this paper the most a

urate of the

upper bounds is improved.

We begin by explaining what 
onstituted the di�
ulty in upper bounding the fun
tion

E(R,A) in the earlier papers [5�9℄. Note that when testing only two 
odewords xi,xj with

large distan
e ‖xi−xj‖2 = d we have the de
oding error probability Pe ∼ e−d/8
. Let Bρn be

the average number of ea
h 
odeword xi neighbors on the approximate distan
e 2A(1−ρ)n.
It was shown in [5℄ that for a (R,A, n)-
ode there exists ρ su
h that Bρn & 2b(ρ)n, where the
fun
tion b(ρ) > 0 is des
ribed below, and 2A(1−ρ)n does not ex
eed the best upper bound

(linear programming) for the minimal 
ode distan
e d(C). Therefore, if ea
h 
odeword xi

has approximately Bρn neighbors on the distan
e 2A(1− ρ)n, then it is natural to expe
t

that Pe & Bρne
−A(1−ρ)n/4

for large n (and not very small ρ), i.e. a variant of an additive

lower bound for the probability of the union of events holds.

The �rst variant of su
h additive bound was obtained in [5℄ under rather severe


onstraints on R and A. Those results of [5℄ have been strengthened in [6, 7℄, using the

method of [10�12℄. However there were still 
ertain 
onstraints on R and A. It should

be noted that the investigation of E(R,A) for the Gaussian 
hannel is similar to the

investigation of E(R,A) for the BSC. The di�eren
e is only that due to the dis
rete

stru
ture of a binary alphabet some expressions be
ome simpler. For the BSC the method

of [6℄ was re
ently [14, 15℄ further developed. Although the approa
h of [14, 15℄ is still based

on [6℄, some additional arguments allowed the approa
h to be essentially strengthened and

simpli�ed.
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It should also be noted that until the papers [14, 15℄, all papers mentioned made use

of various variants of the se
ond order Bonferroni inequalities.

The main aim of this paper is to prove an additive bound without any 
onstraints on

R or A. For that purpose the method of [14, 15℄ is applied. It is also worth noting that

Bonferroni inequalities are not used. This approa
h allows us to treat both low and high

rate R 
ases in a uni�ed way. As an example, in � 2 a new derivation of the sphere-pa
king

bound is presented.

Introdu
e some notations. For a 
ode C = {x1, . . . ,xM} ⊂ Sn−1(
√
An) denote

ρij =
(xi,xj)

An
, dij = ‖xi − xj‖2 = 2An(1− ρij) . (4)

Below it will be 
onvenient to use the parametri
 representation of the transmission rate

R = R(t) via the monotoni
 in
reasing fun
tion

R(t) = (1 + t) ln(1 + t)− t ln t , t ≥ 0 . (5)

Consequently, for a rate R ≥ 0 introdu
e tR ≥ 0 as the unique root of the equation

R = R(tR) = (1 + tR) ln(1 + tR)− tR ln tR . (6)

Introdu
e also the fun
tions

τ(t) =
2
√

t(1 + t)

1 + 2t
, τR = τ(tR) . (7)

We shall need the values

t1(A) =

√

2 +
√
4 + A2 − 2

4
, τ 1(A) = τ(t1(A)) =

A

2 +
√
4 + A2

,

R1(A) = R(t1(A)) ,

(8)

where the fun
tions τ(t), R(t) are de�ned in (7) and (6). Sometimes below we shall omit

the argument A in t1(A), τ 1(A), R1(A).
One of the main results of the paper is

T h e o r e m 1. For any A > 0 the following relations hold:

E(R,A) =

{

Esp(Rcrit, A) +Rcrit − R , R1 ≤ R ≤ Rcrit ,
Esp(R,A) , Rcrit ≤ R ≤ C ,

(9)

and

E(R,A) ≤ A(1− τR)

4
+ ln(1 + 2tR)−R , 0 ≤ R ≤ R1 , (10)

where Rcrit(A), R1(A), τR and tR are de�ned in (2), (8), (7) and (6), respe
tively.

Remark 1. We have R1(A) < Rcrit(A) , A > 0. Moreover, max
A

{

Rcrit(A)− R1(A)
}

≈
0.06866, and it is attained for A = A0 ≈ 2.288.
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Remark 2. Note that (see the formulas (9) and (10) for R = R1)

Esp(Rcrit, A) +Rcrit =
A(1− τ 1)

4
+ ln(1 + 2t1) . (11)

Validity of (11) 
an be 
he
ked using the formulas (6), (7) and the relations

1 + 2t1 =

√

A

4τ 1
, Rcrit =

1

2
ln

1

1− τ 1
,

A
(

1− e−2Rcrit
)

= Aτ 1 =
A

τ 1
− 4 , g(Rcrit) =

(1 + τ 1)
√
A

2
√
τ 1

.

(12)

If A > A0 ≈ 2.288 (see (14)) then the upper bound (10) 
an be slightly improved, and,

moreover, the validity region of the �rst of formulas (9) 
an be enlarged to R3 ≤ R ≤ Rcrit,

where R3(A) < R1(A) (see (14)). To explain the possibility of su
h an improvement 
onsider

the problem of upper bounding the minimal 
ode distan
e δ(R, n) of a spheri
al 
ode. The
best upper bound for δ(R, n) was obtained in [4℄ using the linear programming bound.

It was also noti
ed in [4, p. 20℄ that for R > 0.234 a better upper bound for δ(R, n) is
obtained if the linear programming bound is applied not dire
tly to the original spheri
al


ode, but to its sub
ode on a spheri
al 
ap. That observation was re
ently used in [9℄ when

estimating the 
ode spe
trum and the fun
tion E(R,A). Using the approa
h of [6℄ an upper
bound for E(R,A) was obtained in [9℄. But it is rather di�
ult to use that upper bound

sin
e it is expressed as an optimization problem over four parameters. In fa
t, it is possible

to get a more a

urate and rather simple bound that 
onstitutes theorem 2 below.

Introdu
e the fun
tion

D(t) = ln
1 + t

t
− 1

2
√

t(1 + t)
− 1

1 + 2t
, t > 0 ,

(13)

and denote t2 ≈ 0.061176 the unique root of the equationD(t) = 0. The equivalent equation
(with a sign misprint) appeared earlier in [4, p. 20℄. Denote also

R2 = R(t2) ≈ 0.2339 , τ 2 = τ(t2) ≈ 0.4540 ,

R3(A) = Rcrit(A) +R2 +
1

2
ln(1− τ 2) ≈ Rcrit(A)− 0.0687 ,

A0 = min
{

A : R1(A) ≥ R2

}

≈ 2.288 .

(14)

The next result strengthens theorem 1 when A > A0.

T h e o r e m 2. If A > A0 ≈ 2.288 then the following relations hold:

E(R,A) =

{

Esp(Rcrit, A) +Rcrit − R , R3 ≤ R ≤ Rcrit ,
Esp(R,A) , Rcrit ≤ R ≤ C ,

(15)

and

E(R,A) ≤











1

4
A(1− τR) + ln(1 + 2tR)− R , 0 < R ≤ R2 ,

1

4
Aae−2R − 1

2
ln(2− ae−2R)− 1

2
ln a , R2 ≤ R ≤ R3(A) ,

(16)
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where a = (1− τ 2)e
2R2 ≈ 0.8717.

For a 
omparison purpose we present also the best known lower bound for the fun
tion

E(R,A) [1;3, Theorem 7.4.4℄

E(R,A) ≥







A
(

1−
√
1− e−2R

)

/4 , 0 ≤ R ≤ Rlow,
Esp(Rcrit, A) +Rcrit − R , Rlow ≤ R ≤ Rcrit,
Esp(R,A) , Rcrit ≤ R ≤ C(A) ,

(17)

where

Rlow(A) =
1

2
ln

2 +
√
A2 + 4

4
. (18)

Combining analyti
al and numeri
al methods it 
an be shown that for A > A0 we have

Rlow(A) < R2 < R3(A) < R1(A) < Rcrit(A) . (19)

On the �gure the plots of upper (15),(16) and lower (17) bounds for E(R,A) with A = 4
are presented.

The paper is organized as follows. In �2 the main analyti
al tool (proposition 1) is

presented and, as an example, the sphere-pa
king upper bound is derived. In �3 proposition

1 and the 
ode spe
trum are 
ombined in propositions 2�3. In �4 (using results of �3 and

the known bound for the 
ode spe
trum - theorem 3) theorem 1 is proved. In �5 theorem

2 is proved. Proofs of some auxiliary results are presented in Appendix.

� 2. New approa
h and sphere-pa
king exponent

For the 
onditional output probability distribution density p(y|x) of the input 
odeword
x the formula holds

ln p(y|x) = −1

2
d(y,x)− n

2
ln(2π) , x,y ∈ R

n

(in a similar formula in [6℄ there is a misprint - the minus sign is missing). To des
ribe our

approa
h, we �x a small δ = o(1), n → ∞, and s > 0 and for an output y de�ne the set:

Xs(y) = {xi ∈ C : |d(y,xi)− sn| ≤ δn} , y ∈ R
n. (20)

All 
odewords {xi} are assumed equiprobable. For a 
hosen de
oding method denote

P (e|y,xi) the 
onditional de
oding error probability provided that xi was transmitted

and y was re
eived. Denote pe(y) the probability distribution density to get the output y

and to make a de
oding error. Then

pe(y) = M−1

M
∑

i=1

p(y|xi)P (e|y,xi) ≥ M−1
∑

xi∈Xs(y)

p(y|xi)P (e|y,xi) =

= M−1(2π)−n/2
∑

xi∈Xs(y)

e−d(y,xi)/2P (e|y,xi) ≥

≥ M−1(2πes+δ)−n/2
∑

xi∈Xs(y)

P (e|y,xi) ≥ M−1(2πes+δ)−n/2 [|Xs(y)| − 1]+ ,

5



where [z]+ = max{0, z} and |A| � the 
ardinality of the set A . For the de
oding error

probability Pe we get

Pe =

∫

y∈Rn

pe(y) dy ≥ M−1(2πes+δ)−n/2

∫

y:|Xs(y)|≥2

[|Xs(y)| − 1] dy .

Sin
e (a− 1) ≥ a/2, a ≥ 2, we have

Pe ≥ (2M)−1(2πes+δ)−n/2

∫

y:|Xs(y)|≥2

|Xs(y)| dy ,
(21)

where Xs(y) is de�ned in (20). To develop further the right-hand side of (21) we �x some

r > 0 and for ea
h xi introdu
e the set

Zs,r(i) =
{

y :
∣

∣‖y‖2 − rn
∣

∣ ≤ δn , |d(y,xi)− sn| ≤ δn, |Xs(y)| ≥ 2
}

=

=

{

y :
|‖y‖2 − rn| ≤ δn , |d(y,xi)− sn| ≤ δn and

there exists xj 6= xi with |d(xj ,y)− sn| ≤ δn

}

.
(22)

For a measurable set A ⊆ R
n
denote by m(A) its Lebesque measure. Then

∫

y:|Xs(y)|≥2

|Xs(y)| dy ≥
M
∑

i=1

m (Zs,r(i))

and from (21) we get

P r o p o s i t i o n 1. With any δ > 0 for the de
oding error probability Pe the lower

bound holds

Pe ≥
1

2M
max
s,r

{

(2πes+δ)−n/2
M
∑

i=1

m (Zs,r(i))

}

, (23)

where Zs,r(i) is de�ned in (22).

Example: sphere-pa
king upper bound. We show �rst how to get the sphere-

pa
king upper bound E(R,A) ≤ Esp(R,A) from (23) (
f. [1;3, Chapter 7.4℄). To simplify

formulas we write below a ≈ b if |a− b| ≤ δ, where δ = o(1), n → ∞. Note that

Zs,r(i) = Z(1)
s,r(i) \Z(2)

s,r(i) , Z(1)
s,r(i) =

{

y : ‖y‖2/n ≈ r , d(y,xi)/n ≈ s
}

,

Z(2)
s,r(i) =

{

y : ‖y‖2/n ≈ r , d(y,xi)/n ≈ s, |Xs(y)| = 1
}

=

=
{

y : ‖y‖2/n ≈ r , d(y,xi)/n ≈ s and there is no xj 6= xi with d(xj,y)/n ≈ s
}

.

Then we have

M
⋃

i=1

Z(2)
s,r(i) = Y s =

{

y : ‖y‖2/n ≈ r , |Xs(y)| = 1
}

=

=
{

y : ‖y‖2/n ≈ r and there exists exa
tly one xi with d(y,xi)/n ≈ s
}

,

Y s ⊆ Y (r) =
{

y : ‖y‖2/n ≈ r
}

,

6



and the lower bound (23) takes the form

Pe ≥ (2M)−1(2πes+δ)−n/2
[

Mm
(

|Z(1)
s,r(1)|

)

−m (Y (r))
]

+
.

The surfa
e area of a n-dimensional sphere of radius a is Sn(a) = nπn/2an−1/Γ(n/2+ 1) ∼
(2πea2/n)

n/2
. Then from a standard geometry we get

m
(

|Z(1)
s,r(1)|

)

∼ (2πer1)
n/2 , m (Y (r)) ∼ (2πer)n/2 ,

r1 = s− (r − A− s)2

4A
= r − (r + A− s)2

4A
.

Therefore the lower bound (23) takes the form

Pe & M−1(es+δ−1)−n/2
[

Mr
n/2
1 − rn/2

]

+
.

(24)

We want to maximize the right-hand side of (24) over s, r. Sin
e we are interested only

in exponents in n, we may assume that Mr
n/2
1 = rn/2, i.e. e2Rr1 = r. Then we should

maximize the fun
tion f(s, r) = ln r − s provided

s− (r − A− s)2

4A
− re−2R = 0 .

As usual, 
onsidering the fun
tion

g(s, r) = ln r − s+ λ

[

s− (r − A− s)2

4A
− re−2R

]

,

and solving the equations g′s = g′r = 0, we get

r =
1

1− λ (1− e−2R)
, s = r + A− 2A

λ
,

where λ satis�es the equation

(

1− e−2R
)

λ2 + A
(

1− e−2R
)

λ− A = 0 .

Therefore

λ =

√
A

g1
√
1− e−2R

,

where g1 = g1(R,A) is de�ned in (3). Note that

g2 − 1 = g
√

A (1− e−2R) , 1− λ
(

1− e−2R
)

=
1

g2
,

ln r − s = 2 ln g − 1− A+ g
√

A (1− e−2R) .

7



Taking into a

ount that e2Rr1 = r, we get from (24) and (3)

1

n
ln

1

Pe
≤ s− 1

2
− ln r1 =

s− 1

2
+R− 1

2
ln r =

=
A−

√

A (1− e−2R)g(R,A)

2
− ln g(R,A) +R = Esp(R,A) ,

whi
h gives the sphere-pa
king upper bound E(R,A) ≤ Esp(R,A).

� 3. Lower bound (23) and 
ode spe
trum

For a 
ode C ⊂ Sn−1(
√
An) introdu
e the 
ode spe
trum fun
tion

B(s, t) =
1

|C|

∣

∣

∣

∣

{

u, v ∈ C : s ≤ (u, v)

An
< t

}
∣

∣

∣

∣

, (25)

and denote

b(ρ, ε) =
1

n
lnB(ρ− ε, ρ+ ε) , 0 < ε < ρ .

To simplify notation we write below a ≈ b if |a− b| ≤ δ, where δ = 1/
√
An. For some

r > 0 we 
onsider only the set of outputs

Y (r) =
{

y : ‖y‖2/n ≈ r
}

⊆ R
n . (26)

To investigate the fun
tion E(R,A), R < Rcrit, we use a variant of the lower bound

(23)

Pe ≥ (2M)−1 max
s,r>0

max
ρ

{

(2πes+δ)−n/2
M
∑

i=1

m (Zs,r(ρ, i))

}

, (27)

where

Zs,r(ρ, i) =

{

y ∈ Y (r) :
there exists xj with ρij ≈ ρ and
d(xi,y)/n ≈ d(xj ,y)/n ≈ s

}

, (28)

and ρij is de�ned in (4). We develop the lower bound (27), relating it to the 
ode spe
trum

(25), i.e. to the distribution of the pairwise inner produ
ts {ρij}.
For 
odewords xi,xj with ρij ≈ ρ introdu
e the set

Zs,r(ρ, i, j) =
{

y ∈ Y (r) : d(xi,y)/n ≈ d(xj ,y)/n ≈ s
}

. (29)

Then for any i from (28) and (29) we have

Zs,r(ρ, i) =
⋃

j:ρij≈ρ

Zs,r(ρ, i, j) . (30)

Denoting

Z(s, r, ρ) = m (Zs,r(ρ, i, j)) (31)
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(sin
e the measure of that set does not depend on indi
es (i, j)), we have (see Appendix)

1

n
lnZ(s, r, ρ) =

1

2
ln [2πez(s, r, ρ)] + o(1) , n → ∞ , (32)

where

z(s, r, ρ) = r − (A+ r − s)2

2A(1 + ρ)
. (33)

Note that due to (30), for the sum in the right-hand side of (27) for any ρ we have

M
∑

i=1

m (Zs,r(ρ, i)) ≤
∑

(i,j):ρij≈ρ

m (Zs,r(ρ, i, j)) = Z(s, r, ρ) |{(i, j) : ρij ≈ ρ}| =

= exp
{n

2
ln [2πez(s, r, ρ)] + [R + b(ρ)]n + o(n)

}

,

(34)

sin
e for b(ρ) = b(ρ, δ) the following formula holds (see (25))

|{(i, j) : ρij ≈ ρ}| = eRnB(ρ− δ, ρ+ δ) = e(R+b(ρ))n .

Suppose that for some ρ = ρ0 in the relation (34) the following asymptoti
 equality holds:

1

n
ln

[

M
∑

i=1

m (Zs,r(ρ0, i))

]

=
1

2
ln [2πez(s, r, ρ0)] +R + b(ρ0) + o(1) , n → ∞ . (35)

Using the fun
tions s = s(ρ), r = r(ρ) (they are 
hosen below), from (27), (35) and

(33) for su
h ρ0 we get

1

n
ln

1

Pe

≤ s− 1

2
− 1

2
ln

[

r − (A+ r − s)2

2A(1 + ρ0)

]

− b(ρ0) + o(1) . (36)

We set below

s(ρ) =
A(1− ρ)

2
+ 1 , r(ρ) =

A(1 + ρ)

2
+ 1 . (37)

Su
h 
hoi
e of s(ρ), r(ρ) minimizes (over s, r) the right-hand side of (36). Optimality of

su
h s, r 
an also be dedu
ed from the formulas (72) (see Appendix).

For su
h s(ρ), r(ρ) we have r − (A + r − s)2/[2A(1 + ρ)] = 1, and then (36) takes the

simple form

1

n
ln

1

Pe
≤ A(1− ρ0)

4
− b(ρ0) + o(1) . (38)

Note that b(ρ) ≥ 0 if there exists a pair (xi,xj) with ρij ≈ ρ, and b(ρ) = −∞ if there is

no any pair with ρij ≈ ρ.
We formulate the result obtained as follows.

P r o p o s i t i o n 2. If for some ρ0 the 
ondition (35) is ful�lled, then the inequality

(38) for the de
oding error probability Pe holds.

9



We show that as su
h ρ0 we may 
hoose the value ρ0, minimizing the right-hand side

of (38). In other words, de�ne ρ0 as follows

Aρ0 + 4b(ρ0) = max
|ρ|≤1

{Aρ+ 4b(ρ)} .
(39)

Remark 3. If there are several su
h ρ0, we may use any of them. It is not important

that we do not know the fun
tion b(ρ). We may use as b(ρ) any lower bound for it (see

proofs of theorems 1 and 2).

P r o p o s i t i o n 3. For ρ0 from (39) the 
ondition (35) holds and therefore the

inequality (38) is valid.

P r o o f. It is 
onvenient to �quantize� the range of possible values of the normalized

inner produ
ts ρij . For that purpose we partition the whole range [−1; 1] of values ρij on
subintervals of the length δ = 1/

√
An. There will be n1 = 2/δ of su
h subintervals. We

may assume that ρij takes values from the set {−1 = ρ1 < . . . < ρn1 = 1}.
We 
all (xi,xj) a ρ-pair if (xi,xj)/(An) ≈ ρ. Then Menb(ρ) is the total number of

ρ-pairs. We use s = s(ρ0), r = r(ρ0) from (37) and 
onsider only outputs y ∈ Y (r) =
Y (r(ρ0)). We say that su
h a point y is ρ-
overed if there exists a ρ-pair (xi,xj) su
h

that d(xi,y)/n ≈ d(xj,y)/n ≈ s. Then the total (taking into a

ount the 
overing

multipli
ities) Lebesque measure of all ρ-
overed points y equals Menb(ρ)Z(s, r, ρ).
Introdu
e the set Y (ρ0, ρ) of all ρ-
overed points y

Y (ρ0, ρ) = {y ∈ Y (r) : y is ρ−
overed} .

We 
onsider the set Y (ρ0, ρ) and perform its �
leaning�, ex
luding from it all points y that

are also ρ-
overed for any ρ su
h that |ρ− ρ0| ≥ 4δ, i.e. we 
onsider the set

Y ′(ρ0, ρ0) = Y (ρ0, ρ0) \
⋃

|ρ−ρ0|≥4δ

Y (ρ0, ρ) =

=

{

y ∈ Y (r) :
y is ρ0−
overed and is not ρ−
overed
for any ρ su
h that |ρ− ρ0| ≥ 4δ

}

.

(40)

Ea
h point y ∈ Y ′(ρ0, ρ0) 
an be ρ-
overed only if |ρ−ρ0| < 4δ. We show that both sets

Y (ρ0, ρ0) and Y ′(ρ0, ρ0) have essentially the same Lebesque measures. Note that a ρ-pair
(xi,xj) ρ-
overs the set Zs,r(ρ, i, j) from (29) with the Lebesque measure Z(s, r, ρ). We


ompare the values

∑

|ρ−ρ0|≥4δ

enb(ρ)Z(s, r, ρ) and enb(ρ0)Z(s, r, ρ0) (see (40)). For that purpose

we 
onsider the fun
tion

g(ρ) =
1

n
ln

enb(ρ)Z(s, r, ρ)

enb(ρ0)Z(s, r, ρ0)
= b(ρ)− b(ρ0) +

1

2
ln

z(s, r, ρ)

z(s, r, ρ0)
+ o(1) , (41)

where z(s, r, ρ) is de�ned in (33). From (33) we also have

z(s, r, ρ) = 1 +
A(1 + ρ0)(ρ− ρ0)

2(1 + ρ)
.

10



Sin
e b(ρ) ≤ b(ρ0)− A(ρ− ρ0)/4 (see (39)), for the fun
tion g(ρ) from (41) we get

g(ρ) ≤ 1

2
ln

[

1 +
A(1 + ρ0)(ρ− ρ0)

2(1 + ρ)

]

− A(ρ− ρ0)

4
≤ −A(ρ− ρ0)

2

4(1 + ρ)
. (42)

Sin
e ρ− ρ0 = iδ , |i| ≥ 4, after simple 
al
ulations we have

∑

|ρ−ρ0|≥4δ

enb(ρ)Z(s, r, ρ)

enb(ρ0)Z(s, r, ρ0)
=

∑

|ρ−ρ0|≥4δ

eng(ρ) ≤ 2
∑

i≥4

exp

{

−Anδ2i2

8

}

= 2
∑

i≥4

e−i2/8 <
1

2
.

Therefore we get

enb(ρ0)Z(s, r, ρ0)−
∑

|ρ−ρ0|≥4δ

enb(ρ)Z(s, r, ρ) >
1

2
enb(ρ0)Z(s, r, ρ0) .

Then the total (taking into a

ount the 
overing multipli
ities) Lebesque measure of all

ρ-
overed points y ∈ Y ′(ρ0, ρ0) ex
eeds Menb(ρ0)Z(s, r, ρ0)/2. Remind that any point y ∈
Y ′(ρ0, ρ0) 
an be ρ-
overed only if |ρ− ρ0| < 4δ.

For ea
h point y ∈ Y ′(ρ0, ρ0) 
onsider the set Xs(y) de�ned in (20), i.e. the set of

all 
odewords {xi} su
h that d(xi,y)/n ≈ s. The 
odewords from Xs(y) satisfy also the


ondition |(xi,xj) /(An)− ρ0| < 4δ, i.e. the set {xi} 
onstitutes almost a simplex. It is

rather 
lear that the number |Xs(y)| of su
h 
odewords is not exponential on n, i.e.

max
y∈Y

′

(ρ0,ρ0)

{

1

n
ln |Xs(y)|

}

= o(1) , n → ∞ . (43)

Formally the validity of (43) follows from lemma 2 (see below).

Note that if A1, . . . , AN ⊂ R
n
are a measurable sets, and any point a ∈

⋃

i

Ai is 
overed

by the sets {Ai} not more than K times, then

m

(

N
⋃

i=1

Ai

)

≥ 1

K

N
∑

i=1

m(Ai) . (44)

For y ∈ Y ′(ρ0, ρ0) denote

X i(y) =
{

xj : d(xi,y)/n ≈ d(xj,y)/n ≈ s, ρij ≈ ρ0
}

,

Xmax = max
i,y∈Y

′

(ρ0,ρ0)

|X i(y)| . (45)

Due to (43) we have

1

n
lnXmax = o(1) , n → ∞ . (46)

11



Sin
e any point y ∈ Y ′(ρ0, ρ0) 
an be ρ-
overed not more than Xmax times and Y ′(ρ0, ρ0) ⊆
Y (ρ0, ρ0), then from (43)�(46) we get

1

n
ln

[

M
∑

i=1

m (Zs,r(ρ0, i))

]

≥ 1

n
lnm (Y ′(ρ0, ρ0)) ≥

≥ 1

n
ln
(

Menb(ρ0)Z(s, r, ρ0)
)

+ o(1) =

=
1

2
ln [2πez(s, r, ρ0)] +R + b(ρ0) + o(1) , n → ∞ .

(47)

Therefore due to the inequalities (34) and (47), the 
ondition (35) is ful�lled, and then the

relation (38) holds.

To 
omplete the proof of proposition 2 it remains to establish the formula (43). We

prove it �rst for a simpler (but a more natural) 
ase ρ∗ ≤ τ 1, and then 
onsider the general


ase.

C a s e ρ0 ≤ τ 1. In that 
ase the relation (43) follows from simple lemma (see proof in

Appendix).

L e m m a 1. Let y ∈ R
n
with ‖y‖2 = rn. Let C = {x1, . . . ,xM} ⊂ Sn−1(

√
An) be a


ode with ‖xi − y‖2 = sn, i = 1, . . . ,M , and max
i 6=j

(xi,xj) ≤ Anρ. If

A+ r − s ≥ 2
√

Arρ , (48)

then M ≤ 2n.

For s(ρ), r(ρ) from (37) the 
ondition (48) holds, if

ρ ≤ A

2 +
√
4 + A2

= τ 1(A) . (49)

From lemma 1 and (49) the relation (43) follows.

G e n e r a l 
 a s e. Although a 
ode with ρ0 > τ 1 
an hardly de
rease the de
oding

error probability Pe, its investigation needs a bit more e�orts. The relation (43) follows

from lemma (see proof in Appendix).

L e m m a 2. Let for a 
ode C = {x1, . . . ,xM} ⊂ Sn−1(
√
An) and some ρ < 1 it holds

that

max
i 6=j

|(xi,xj)− Aρn| = o(n), n → ∞ .

Then lnM = o(n), n → ∞.

It 
ompletes the proof of proposition 3. N

Using proposition 3 and two lower bounds for b(ρ) we shall prove theorems 1 and 2.

� 4. Proof of theorem 1

12



First we investigate the fun
tion E(R,A) for 0 < R ≤ R1(A) and prove the upper bound
(10). Then for R1(A) < R < Rcrit(A), using the �straight-line bound� [2℄, we will prove the
formula (9). To apply proposition 3 we use the known bound for the 
ode spe
trum. The

next result is a slight re�nement of [5, Theorem 9℄ (see also [6, Theorem 1℄).

T h e o r e m 3. Let C ⊂ Sn−1(
√
An) be a 
ode with |C| = eRn, R > 0. Then for any

ε = ε(n) > 0 there exists ρ su
h that ρ ≥ τR and

b(ρ) =
1

n
lnB(ρ− ε, ρ+ ε) ≥ R− J(tR, ρ) +

ln ε

n
+ o(1) , n → ∞ ,

J(t, ρ) = (1 + 2t) ln [2tρ+ q(t, ρ)]− ln q(t, ρ)− t ln[4t(1 + t)] ,

q(t, ρ) = ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t) ,

(50)

where tR, τR are de�ned in (4) and (7), and o(1) does not depend on ε.

Note that

J ′
ρ(t, ρ) =

4t(1 + t)

ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t)
,

J ′′
ρρ(t, ρ) = − 4t(1 + t)

[ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t)]2

[

1 +
(1 + 2t)2ρ

√

(1 + 2t)2ρ2 − 4t(1 + t)

]

,

J ′
t(t, ρ) = 2 ln [2tρ+ q(t, ρ)]− ln[4t(1 + t)] ,

[R(t)− J(t, ρ)]′t = 2 ln
2(1 + t)

2tρ+ q
> 0 , J(tR, τR) = ln(1 + 2tR) , J(tR, 1) = R .

(51)

P r o p o s i t i o n 4. For the fun
tion E(R,A) the upper bound (10) holds.

P r o o f. Due to theorem 2 there exists ρ ≥ τR su
h that the inequality (50) holds.

Denote ρ∗ the largest of su
h ρ. Sin
e b(ρ0) ≥ b(ρ∗) − A(ρ0 − ρ∗)/4 (ñì. (39)), from (38)

and (50) we get

1

n
ln

1

Pe
≤ A(1− ρ0)

4
− b(ρ0) + o(1) ≤ A(1− ρ∗)

4
− b(ρ∗) + o(1) ≤

≤ A(1− ρ∗)

4
+ J(tR, ρ

∗)−R + o(1) .

(52)

Note that if τR ≤ τ 1 (i.e. if R ≤ R1(A)) then (see Appendix)

[J(tR, ρ)− Aρ/4]′ρ ≤ 0 , ρ ≥ τR , (53)

and therefore the fun
tion J(tR, ρ) − Aρ/4 monotone de
reases on ρ ≥ τR. Sin
e ρ∗ ≥ τR
then for τR ≤ τ 1 we 
an 
ontinue (52) as follows

1

n
ln

1

Pe
≤ A(1− τR)

4
+ J(tR, τR)−R + o(1) =

=
A(1− τR)

4
+ ln(1 + 2tR)− R , 0 < R ≤ R1 ,

(54)
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whi
h is the desired upper bound (10). N

To prove the relation (9) note that the best upper bound for E(R,A) is a 
ombination
of the upper bound (10) and the sphere-pa
king bound via the �straight-line bound� [2℄,

whi
h gives

E(R,A) ≤ A(1− τ 1)

4
+ ln(1 + 2t1)− R , R1 ≤ R ≤ Rcrit .

On the other hand, the random 
oding bound [1, 3℄ gives

E(R,A) ≥ Esp(Rcrit, A) +Rcrit − R , R ≤ Rcrit ,

where Esp(R,A) is de�ned in (3). Together with the formula (11) it 
ompletes the proof of

theorem 1. N

� 5. Proof of theorem 2

As was already mentioned in � 1, for R > 0.234 the upper bounds for the minimal


ode distan
e [4, p. 20℄ of a spheri
al 
ode and its spe
trum [9℄ 
an be improved, if the

linear programming bound is not dire
tly applied to the original spheri
al 
ode, but to its

sub
odes on spheri
al 
aps. The same approa
h allows to improve the upper bound for

E(R,A) as well. For that purpose we will need a bound for a 
ode spe
trum better than

(50). The bound obtained below (theorem 4), probably, is equivalent to the similar bound

in [9, Theorem 3℄ (expressed in a di�erent terms), but its derivation is simpler and a more

a

urate.

Sin
e we are interested only in angles between 
odewords xi,xj , for the formulas

simpli�
ation we may set An = 1, and 
onsider a 
ode C ⊂ Sn−1(1) = Sn−1
. Let T n

θ (z) be
the spheri
al 
ap with half-angle 0 ≤ θ ≤ π/2 and 
enter z ∈ Sn−1

, i.e.

T n
θ (z) =

{

x ∈ Sn−1 : (x, z) ≥ cos θ
}

.

It will be 
onvenient to 
onsider sub
odes of C not on spheri
al 
aps T n
θ (z), but on related

with them thin ring-shaped surfa
es Dn
θ (z). We set further δ = 1/n2

, and denote Dn
θ (z) as

Dn
θ (z) = T n

θ (z) \ T n
θ−δ(z) =

{

x ∈ Sn−1 : cos θ ≤ (x, z) ≤ cos(θ − δ)
}

. (55)

Denote Dn(θ) the surfa
e area of Dn
θ (z). Then [1, formula (21)℄

Dn(θ) =
(n− 1)π(n−1)/2

Γ((n+ 1)/2)

θ
∫

θ−δ

sinn−2 u du , δ ≤ θ ≤ π/2 .

It is not di�
ult to show that

1− 1

2n sin θ
≤ Dn(θ)Γ((n+ 1)/2)n2

π(n−1)/2(n− 1) sinn−2 θ
≤ 1 .
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Sin
e the surfa
e area |Sn−1| of the sphere Sn−1
equals nπn/2/Γ(n/2+1), we have uniformly

over 1/n ≤ θ ≤ π/2

1

n
ln

Dn(θ)

|Sn−1| = ln sin θ + o(1) , n → ∞ .

For the 
ode C ⊂ Sn−1
and θ su
h that max{arcsin e−R, 1/n} ≤ θ ≤ π/2, and z ∈ Sn−1

we 
onsider the sub
ode C(θ, z) = C ∩Dn
θ (z) with |C(θ, z)| = enr(z)


odewords. Then

1

m(Sn−1)

∫

z∈Sn−1

|C(θ, z)| dz =
|C|Dn(θ)

|Sn−1| = exp {(R + ln sin θ)n + o(n)} ,

i.e. in average (over z ∈ Sn−1
) a sub
ode C(θ, z) has the rate r = R + ln sin θ + o(1). All

its |C(θ, z)| 
odewords are lo
ated in the ball Bn(sin θ, z′) of radius sin θ and 
entered at

z′ = z cos θ. Moreover, they are lo
ated in a thin (of thi
kness ∼ δ) torus orthogonal to z.

If x ∈ Dn
θ (z), then we denote x′ = x−z′

the 
orresponding ve
tor from Bn(sin θ, z′). The
original angle ϕ between two ve
tors x,y ∈ Dn

θ (z) be
omes the angle ϕ′ + O(δ) between
the ve
tors x′,y′ ∈ Bn(sin θ, z′), where sin(ϕ′/2) = sin(ϕ/2)/ sin θ. The original value

ρ = cosϕ be
omes the value ρ′ +O(δ), where ρ′ = cosϕ′
is de�ned by the formula

1− ρ = (1− ρ′) sin2 θ , (56)

sin
e

ρ′ = cos

(

2 arcsin

(

sin(ϕ/2)

sin θ

))

= 1− 2 sin2(ϕ/2)

sin2 θ
= 1− (1− ρ)e2(R−r) .

The angle ϕ′
and the value ρ′ 
orrespond to the 
ase when the ve
tors x′,y′

are orthogonal

to z. The 
ode C(θ, z) is then transferred to the 
ode C′(z) = C′(θ, z) ⊂ Bn(sin θ, z′).
To evaluate the average number enbC(ρ) of ρ-neighbors in the 
ode C, we 
onsider any

pair xi,xj with (xi,xj) = ρ and introdu
e the sets

Z(x, a) =
{

z ∈ Sn−1 : (x, z) ≥ a
}

,

Z(x,y, a) =
{

z ∈ Sn−1 : (x, z) ≥ a and (y, z) ≥ a
}

.

Denote by Ωn(θ) the surfa
e area of the spheri
al 
ap T n
θ (z). For 0 ≤ θ < π/2 we have

Ωn(θ) =
π(n−1)/2 sinn−1 θ

Γ((n+ 1)/2) cos θ
(1 + o(1)) , n → ∞ .

Then for the Lebesque measure m(a) of the set Z(x, a) we have

m(a) = m (Z(x, a)) = Ωn(arccos a) .
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We evaluate the Lebesque measure m(ρ, a) of the set Z(x,y, a) provided (x,y) = ρ. Note
that if x,y ∈ Sn−1

and (x,y) = ρ, then ‖x+ y‖2 = 2(1 + ρ). Therefore v =
(x+ y)/

√

2(1 + ρ) ∈ Sn−1
, and then

Z(x,y, a) ⊆
{

z ∈ Sn−1 : (x+ y, z) ≥ 2a
}

=

=
{

z ∈ Sn−1 : (v, z) ≥ a
√

2/(1 + ρ)
}

= Z

(

v, a
√

2/(1 + ρ)
)

.

Therefore we get

m(ρ, a) = m (Z(x,y, a)) ≤ m
(

Z

(

v, a
√

2/(1 + ρ)
))

= Ωn

(

arccos
(

a
√

2/(1 + ρ)
))

.

That upper bound for m(ρ, a) is logarithmi
ally (as n → ∞) exa
t. In parti
ular, if a =
cos θ and (x,y) = ρ, then

1

n
ln

m(cos θ)

m(ρ, cos θ)
≥ ln sin θ − ln sin

(

arccos
(

√

2/(1 + ρ) cos θ
))

=

= ln sin θ − ln
√

1− 2 cos2 θ/(1 + ρ) .

We use below the values ρ′ = ρ′(ρ, θ) from and (56) and ε′ = ε/ sin2 θ. Then denoting

BC(ρ) = BC(ρ− ε, ρ+ ε), BC′(z)(ρ
′) = BC′(z)(ρ

′ − ε′, ρ′ + ε′), for any ρ, ε we have

BC(ρ)|C| =
1

m(ρ, cos θ)

∫

z∈Sn−1

BC′(z)(ρ
′)|C′(z)| dz . (57)

Indeed, the value BC(ρ)|C| is the total number of pairs xi,xj ∈ C with |(xi,xj)− ρ| ≤ ε,
and BC′(z)(ρ

′)|C′(z)| is the total number of similar pairs x′
i,x

′
j ∈ C′(z) with |(x′

i,x
′
j)/(‖x′

i‖·
‖x′

j‖) − ρ′| ≤ ε′. Moreover, ea
h pair x′
i,x

′
j ∈ C′(z) gives the 
ontribution m(ρ, cos θ) to

the integral, from whi
h the formula (57) follows. From (57) for any set A ⊆ Sn−1
we have

enbC(ρ) ≥ 1

m(ρ, cos θ)|C|

∫

z∈A

enbC′(z)(ρ
′)|C′(z)| dz , (58)

and also

|C| = 1

m(cos θ)

∫

z∈Sn−1

|C′(z)| dz ≥ 1

m(cos θ)

∫

z∈A

|C′(z)| dz .

The 
ode C′(z) has the rate r(z) = (ln |C′(z)|)/n. Then there exists r0 su
h that

|C| = eo(n)

m(cos θ)
max

t

{

etnm
(

z ∈ Sn−1 : |r(z)− t| ≤ ε
)}

=
er0n+o(n)m(S0)

m(cos θ)
,

S0 =
{

z ∈ Sn−1 : |r(z)− r0| ≤ ε
}

.

(59)

Sin
e m(S0) ≤ m(Sn−1) then

r0 ≥
1

n
ln

|C|m(cos θ)

m(Sn−1)
= R + ln sin θ + o(1) . (60)
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We set A = S0 and ε = o(1), n → ∞. Then using the Jensen inequality, from (58) and

(59) we have

enbC(ρ) ≥ 1

m(ρ, cos θ)|C|

∫

z∈S0

enbC′(z)(ρ
′)|C′(z)| dz ≥

≥ m(cos θ)eo(n)

m(ρ, cos θ)m(S0)

∫

z∈S0

enbC′(z)(ρ
′) dz ≥

≥ m(cos θ)eo(n)

m(ρ, cos θ)
exp







n

m(S0)

∫

z∈S0

bC′(z)(ρ
′) dz







,

from whi
h we get

bC(ρ) ≥
1

n
ln

m(cos θ)

m(ρ, cos θ)
+

1

m(S0)

∫

z∈S0

bC′(z)(ρ
′) dz + o(1) .

(61)

Due to theorem 3 for ea
h 
ode C′(z), z ∈ S0, there exists ρ
′′ = ρ′′(z) su
h that ρ′′ ≥ τr0

and

bC′(z)(ρ
′′) ≥ r0 − J(tr0 , ρ

′′) + o(1) .

Therefore there exists ρ′ ≥ τr0 and the 
orresponding ρ = ρ(ρ′) from (56) su
h that from

the inequality (61) we get

bC(ρ) ≥
1

n
ln

m(cos θ)

m(ρ, cos θ)
+ r0 − J(tr0 , ρ

′) + o(1) ≥

=
1

n
ln

m(cos θ)

m(ρ, cos θ)
+R + ln sin θ − J(tR+ln sin θ, ρ

′) + o(1) ≥

≥ R + 2 ln sin θ − J(tR+ln sin θ, ρ
′)− ln

√

1− 2 cos2 θ/(1 + ρ) + o(1) =

= R + ln sin θ − J(tR+ln sin θ, ρ
′) +

1

2
ln

(1 + ρ)

(1 + ρ′)
+ o(1) ,

(62)

where we used the formula (60) and monotoni
ity of the fun
tion r − J(tr, ρ) on r (see

(51)), and ρ′ = ρ′(ρ, θ) is de�ned in (56). After the variable 
hange sin θ = er−R
from (62)

we get

T h e o r e m 4. Let C ⊂ Sn−1(1) be a 
ode with |C| = eRn, R > 0. Then for any r ≤ R
there exists ρ′ su
h that ρ′ ≥ τr and for ρ = 1− (1−ρ′)e2(r−R)

the following inequality holds

bC(ρ) ≥ r − J(tr, ρ
′) +

1

2
ln

(1 + ρ)

(1 + ρ′)
+ o(1) . (63)

Using the relation (63) in the inequality (38) we prove theorem 2. We have

1

n
ln

1

Pe
≤ min

r≤R
max
ρ′≥τr

{

A(1− ρ)

4
− b(ρ)

}

+ o(1) ≤

≤ min
r≤R

max
ρ′≥τr

{

A(1− ρ′)e2(r−R)

4
− r + J(tr, ρ

′) +
1

2
ln

1 + ρ′

1 + ρ

}

= min
r≤R

max
ρ≥τr

f(r, ρ) ,

(64)
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where

f(r, ρ) =
A(1− ρ)e2(r−R)

4
+R − 2r + J(tr, ρ) +

1

2
ln

1 + ρ

2e2(R−r) + ρ− 1
.

With t = tr and (1− τr)e
2(r−R) = 2z we have

f ′
ρ = −Ae2(r−R)

4
− 1

2(2e2(R−r) + ρ− 1)
+

4t(1 + t)

ρ+
√

(1 + 2t)2ρ2 − 4t(1 + t)
+

1

2(1 + ρ)
,

f ′
ρ

∣

∣

ρ=τr
= −Ae2(r−R)

4
− 1

2(2e2(R−r) + τr − 1)
+

1

2(1− τr)
=

=
Az2 − (A+ 2)z + 1

2(1− z)(1 − τr)
, f ′′

ρρ < 0 .

Sin
e f ′′
ρρ < 0 then ρ = τr is optimal if f ′

ρ

∣

∣

ρ=τr
≤ 0. Sin
e r ≤ R then z ≤ 1. Therefore

f ′
ρ

∣

∣

ρ=τr
≤ 0 if the following inequalities are ful�lled:

2

A + 2 +
√
A2 + 4

≤ z ≤ A + 2 +
√
A2 + 4

2A
. (65)

The right one of the inequalities (65) is always satis�ed. The left one of the inequalities

(65) is equivalent to the inequality

f2(r) = 2r + ln(1− τr) ≥ 2R− 2Rcrit(A) . (66)

The next simple te
hni
al lemma 
on
erns the fun
tion f2(r) in the left-hand side of (66).

L e m m a 3. The fun
tion f2(r) from (66) monotone de
reases on 0 ≤ r < R2, and

monotone in
reases on r > R2, where R2 is de�ned in (14). Moreover, the formula holds

ln (1− τ 1(A)) = −2Rcrit(A) , A > 0 . (67)

Sin
e the fun
tion E(R,A), R ≥ R1(A), is known exa
tly (see theorem 1), we 
onsider

only the 
ase R < R1(A). Then two 
ases are possible: R ≤ min{R1(A), R2} and R2 <
R < R1(A).

C a s e R ≤ min{R1(A), R2}. For R ≤ R2 minimum (over r ≤ R) in the left-hand side

of (66) is attained when r = R, and then due to (67) the inequality (66) redu
es to the


ondition τR ≤ τ 1(A), i.e. to R ≤ R1(A). Therefore if r ≤ R ≤ min{R1(A), R2} then the

inequalities (66) and (65) are ful�lled, and then ρ = τr is optimal in the right-hand side of

(64). Sin
e J(tr, τr) = ln(1 + 2tr) = − ln(1− τ 2r )/2 (see (51) and (7)), then (64) takes the

form

1

n
ln

1

Pe
≤ min

r≤R
f(r, τr) = min

r≤R
C(v(r))− R , R ≤ min{R1(A), R2} , (68)
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where

C(v) =
Av

4
− 1

2
ln[v(2− v)] , v(r) = (1− τr)e

2(r−R) . (69)

Note that for r = R the inequality (68) redu
es to the previous bound (10). We show that

su
h r is optimal in (68). We have

4v(2− v)C ′
v = −Av2 + 2(A+ 2)v − 4 , C ′′

v2 > 0 .

Sin
e 0 ≤ v ≤ 1 , the equation C ′
v = 0 has the unique root v1, where

v1 =
4

A+ 2 +
√
A2 + 4

= e−2Rcrit(A) . (70)

The fun
tion C(v), 0 ≤ v ≤ 1, monotone de
reases on 0 ≤ v < v1 and monotone in
reases

on v > v1. Note that sin
e v(r) = ef2(r)−2R
, then (see lemma 3) the fun
tion v(r) monotone

de
reases on 0 ≤ r < R2 and monotone in
reases on r > R2.

If now R ≤ min{R1(A), R2}, then v(r) ≥ v1 for r ≤ R. Therefore r = R is optimal in

(68), and then (68) redu
es to the previous bound (10).

C a s e R2 < R < R1(A) (i.e. A > A0). Then R2 < R3(A) < R1(A), where R3(A) is
de�ned in (14). Consider �rst the 
ase R2 ≤ R ≤ R3(A). It is simple to 
he
k that then the

inequality (66) is again satis�ed (see (14)). Therefore ρ = τr is optimal in the right-hand

side of (64), and (64) takes the form (68). Sin
e R ≤ R3(A), then v(r) ≥ v1 for r ≤ R.
Sin
e R ≥ R2 then r = R2 is optimal in (68), and then from (68) the se
ond of bounds

(16) follows.

It remains to 
onsider the 
ase R2 ≤ R3(A) ≤ R ≤ R1(A). Sin
e minimum of C(v) over
0 ≤ v ≤ 1 is attained for v = v1 (see (70)), then

min
0≤v≤1

C(v) = C(v1) = Esp(Rcrit, A) +Rcrit ,
(71)

where the formula was used

Esp(Rcrit, A) +Rcrit =
Av1
4

− 1

2
ln v1 −

1

2
ln(2− v1) .

Now in the right-hand side of (64) we set r su
h that v(r) = v1 (it is possible when R ≥ R3).

Then again the inequality (66) is ful�lled and ρ = τr is optimal in the right-hand side of

(64). From (68) and (71) the �rst of upper bounds (15) follows. The upper bound (15)


an also be proved applying the �straight-line bound� to the sphere-pa
king bound and the

se
ond of upper bounds (16) at R = R3, and the formula

Esp(Rcrit, A) +Rcrit −R3 =
Aae−2R3

4
− 1

2
ln(2− ae−2R3)− 1

2
ln a ,

whi
h is simple to 
he
k using the relations (12). It 
ompletes the proof of theorem 2.

N
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APPENDIX

P r o o f o f f o r m u l a (32). Without loss of generality we may assume that

xi,xj ,y have the form

xi = (x1, x2, 0, . . . , 0), xj = (−x1, x2, 0, . . . , 0), y = (0, y2, y3, . . . , yn),

from whi
h we have

d(xi,xj) = 4x2
1 = 2An(1− ρij) ,

d(xi,y) = x2
1 + (y2 − x2)

2 +

n
∑

k=3

y2k = sn ,

x2
1 + x2

2 = An ,

n
∑

k=2

y2k = rn .

Solving those equations we get

x1 =

√

An(1− ρij)

2
, x2 =

√

An(1 + ρij)

2
, y2 =

(A+ r − s)n
√

2An(1 + ρij)
, (72)

and therefore

n
∑

k=3

y2k = rn− y22 = rn− (A + r − s)2n

2A(1 + ρij)
= r1n ,

from whi
h the formula (32) follows. N

Optimality of s(ρ), r(ρ) from the formulas (37) also follows from (72).

P r o o f o f f o r m u l a (53). For the fun
tion f(ρ) = J(tR, ρ)− Aρ/4 from (51)

we have

f ′ =
4tR(1 + tR)

ρ+
√

(1 + 2tR)2ρ2 − 4tR(1 + tR)
− A

4
, f ′′(t, ρ) < 0 .

Then for ρ ≥ τR we have

f ′ ≤ f ′
∣

∣

∣

ρ=τR
=

4tR(1 + tR)

τR
− A

4
=

τR
1− τ 2R

− A

4
≤ 0 ,

if τR ≤ τ 1(A), whi
h proves the formula (53). N

P r o o f o f l e m m a 1. Let {x1, . . . ,xM} ⊂ Sn−1(
√
An) be a 
ode su
h that

max
i 6=j

(xi,xj) ≤ 0, i.e. min
i 6=j

‖xi − xj‖2 ≥ 2A. Then, 
learly, M ≤ 2n.

In lemma 1 for all i we have (xi,y) = (A+r−s)n/2. ConsiderM ve
tors {x′
i = xi−ay},

where a = (A+ r − s)/(2r). Then due to the 
ondition (48) we have

max
i 6=j

(

x′
i,x

′
j

)

≤
[

4Arρ− (A+ r − s)2
]

n/(4r) ≤ 0 ,
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and therefore M ≤ 2n. N

P r o o f o f l e m m a 2. To prove lemma we redu
e it to the 
ase ρ ≈ 0, and then

use lemma 4 (see below). We set some integer m su
h that 1 < m < M , and introdu
e the

ve
tor

z = a
m
∑

k=1

xk , a =
ρ

1 + (m− 1)ρ
.

After simple 
al
ulations we get

ρ− δ − 1

m
≤ ‖z‖2 ≤ ρ+ δ ,

ρ− δ

1 + (1− ρ)/(mρ)
≤ (xi, z) ≤

ρ+ δ

1 + (1− ρ)/(mρ)
, i = m+ 1, . . . ,M.

(73)

Consider the normalized ve
tors

ui =
xi − z

‖xi − z‖ , i = m+ 1, . . . ,M.

Using the formulas (73), for any i, j ≥ m+ 1, i 6= j, we get

(ui,uj) ≤
2

(1− ρ)

(

δ +
1

m

)

= o(1) , n → ∞ , (74)

if we set m → ∞ as n → ∞. To upperbound the maximal possible number M − m of

ve
tors {ui} satisfying the 
ondition (74), we use a modi�
ation of [16, Theorem 2℄.

L e m m a 4. Let C = {x1, . . . ,xM} ⊂ Sn−1(1) be a 
ode with (xi,xj) ≤ µ, i 6= j. Then
for n ≥ 1 the upper bound holds

M ≤ 2n3/2(1− µ)−n/2 , 0 ≤ µ < 1 . (75)

P r o o f. Denote µ = cos(2ϕ), and let M(ϕ) be the maximal 
ardinality of su
h a 
ode.

For M(ϕ) the upper bound holds [16, Theorem 2℄

M(ϕ) ≤
(n− 1)

√
π Γ

(

n− 1

2

)

sin β tan β

2Γ
(n

2

)

[

sinn−1 β − f(β, n− 2) cosβ
]

, 0 < ϕ <
π

4
, (76)

where β = arcsin(
√
2 sinϕ) and

f(β, n− 2) = (n− 1)

β
∫

0

sinn−2 z dz .
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Integrating by parts, for the fun
tion f(β, n− 2) we have

f(β, n− 2) =
sinn−1 β

cos β
− sinn+1 β

(n + 1) cos3 β
− 3

(n+ 1)

β
∫

0

sinn+2 z

cos4 z
dz ≥

≥ sinn−1 β

cos β
− sinn+1 β

(n+ 1) cos3 β
− 3 tan4 β

(n + 1)
f(β, n− 2) ,

and therefore

1
/

[

1 +
3 tan4 β

n2 − 1

]

≤ f(β, n− 2)
/

{

sinn−1 β

cos β

[

1− tan2 β

n + 1

]}

≤ 1 , (77)

if tan2 β < n + 1, i.e. if 2 sin2 ϕ < (n+ 1)/(n+ 2). From (76) and (77) we get

M(ϕ) ≤

√
π Γ

(

n− 1

2

)

(n2 − 1) cos β

2Γ
(n

2

)

sinn−1 β
<

n
√

πn(1− 2 sin2 ϕ)
√
2
(√

2 sinϕ
)n−1 , (78)

sin
e

Γ

(

z − 1

2

)

(z2 − 1)

/

Γ
(z

2

)

<
√
2 z3/2e1/z , z ≥ 0 .

From (78) the inequality (75) follows provided 2 sin2 ϕ < (n+1)/(n+2), i.e. if µ > 1/(n+2).
Sin
e the fun
tion M(ϕ) is 
ontinuous on the left for ϕ ∈ (0, π], the upper bound (78)

remains valid for µ = 1/(n + 2) as well. For µ = 1/(n + 2), n ≥ 1, the right-hand side of

(78) does not ex
eed n
√

πe/2, whi
h in turn does not ex
eed the right-hand side of (75)

for any µ ≥ 0, n ≥ 2. Sin
e M(ϕ) is a de
reasing fun
tion, it proves the inequality (75) for

any µ ≥ 0, n ≥ 2. Clearly, (75) remains valid for n = 1 as well. N

Now from (74) and (75) we get lemma 2. N

The author thanks L.A.Bassalygo, G.A.Kabatyansky and V.V.Prelov for useful

dis
ussions and 
onstru
tive 
riti
al remarks.
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Figure. Upper (15),(16) and lower (17) bounds for E(R,A) and A = 4
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