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CODE SPECTRUM AND RELIABILITY FUNCTION:
GAUSSIAN CHANNEL

A new approach for upper bounding the channel reliability function using
the code spectrum is described. It allows to treat both low and high rate cases
in a unified way. In particular, the earlier known upper bounds are improved,
and a new derivation of the sphere-packing bound is presented.

§ 1. Introduction and main results

We consider the discrete time channel with independent additive Gaussian noise, i.e. if
x = (x1,...,2,) is the input codeword then the received block y = (y1,...,y,) is

yz:xz+£za izl,...,n,

where (&1, ...,&,) are independent Gaussian r.v.’s with E§; =0, EE? = 1.
For T,y € R™ denote (wuy) = inylv ||.’B||2 = (:va)v d(wvy) = ||‘,B - y||2 and
i=1

S"=1(b) = {x € R" : ||z|| = b}. We assume that all codewords x satisfy the condition
||| = An, where A > 0 is a given constant. A subset C = {x1,...,xy} C S" ' (VAn),
M = ef'" is called a (R, A, n)-code of rate R and length n. The minimum distance of the
code C is d(C) = min{d(x;, x;) : i # j}.

The channel reliability function [1I, 2] is defined as

1 1
E(R,A) =1i —In ———7F—
(R’ ) lgl_ijip n n Pe(R’ A’ n) Y

where P,(R, A,n) is the minimal possible decoding error probability for a (R, A, n)-code.

After the fundamental results of the paper [1]], further improvements of various bounds
for E(R, A) have been obtained in [2-9]. In particular, on the exact form of the function
E(R, A) it was known only that [I]

A

E(O,A) - Z,

E(R,A) = Ey(R,A), Rauw(A) <R <C(A), (1)

!The research described in this publication was made possible in part by the Russian Fund for
Fundamental Research (project number 06-01-00226).


http://arxiv.org/abs/0706.0682v1

where

2
C:C(A):%In(1+A), Rcrit(A):%ln2+A+4vA 4 (2)

Ep(R,A) =5 — Al — 6_22R> (R A) ) g(R A+ R, 5

(R, A) = % (VAT =) + VAT - e ) +4)

Moreover, recently [8] the exact form of E(R, A) for a new region Ry (A) < R < Reii(A)
was claimed under some restriction on A. Similar to the case of the binary symmetric
channel (BSC), that assertion follows from a useful observation that the tangent (it has
the slope (—1)) to the function Eg,(R, A) at the point R = Ri(A) touches the previously
known upper bound for E(R, A) [5-7]. Since those results from [5-7] were proved under
some restrictions on A, those restrictions were remaining in [8] as well. Since there are
some inaccuracies in the formulation of that result in [§] we do not expose corresponding
formulas from [§] (moreover, they have a different from ours form).

From theorem 1 and the formula (@) (see below) the exact form of E(R, A) follows
for the region Ri(A) < R < Rui(A) for any A > 0. Moreover, if A > Ay ~ 2.288 (see
(I4)) then from theorem 2 below the exact form of E(R, A) follows for a wider region
Fg(A) <R< Rcrit(A); where Rg(A) < Fl (A) and Rg(A) ~ Rcrit(A) — 006866, A > AO.

For 0 < R < Ry(A),0 < A< Ay, or 0 < R < R3(A), A > Ay, still only lower and
upper bounds for E(R, A) are known [1-9], and in this paper the most accurate of the
upper bounds is improved.

We begin by explaining what constituted the difficulty in upper bounding the function
E(R, A) in the earlier papers [5-9]. Note that when testing only two codewords x;, ; with
large distance ||z; —x;||* = d we have the decoding error probability P, ~ e~%8. Let B,, be
the average number of each codeword @; neighbors on the approximate distance 2A(1—p)n.
It was shown in [5] that for a (R, A, n)-code there exists p such that B, > 2Y¢)" where the
function b(p) > 0 is described below, and 2A(1— p)n does not exceed the best upper bound
(linear programming) for the minimal code distance d(C). Therefore, if each codeword x;
has approximately B,, neighbors on the distance 2A(1 — p)n, then it is natural to expect
that P, 2 Bpne_A(l_p)"/4 for large n (and not very small p), i.e. a variant of an additive
lower bound for the probability of the union of events holds.

The first variant of such additive bound was obtained in [5] under rather severe
constraints on R and A. Those results of [5] have been strengthened in [6, [7], using the
method of [10-12|. However there were still certain constraints on R and A. It should
be noted that the investigation of E(R, A) for the Gaussian channel is similar to the
investigation of E(R,A) for the BSC. The difference is only that due to the discrete
structure of a binary alphabet some expressions become simpler. For the BSC the method
of [6] was recently [14] 15] further developed. Although the approach of [14] 15] is still based
on [6], some additional arguments allowed the approach to be essentially strengthened and
simplified.




It should also be noted that until the papers [14], 15], all papers mentioned made use
of various variants of the second order Bonferroni inequalities.

The main aim of this paper is to prove an additive bound without any constraints on
R or A. For that purpose the method of [14, 15] is applied. It is also worth noting that
Bonferroni inequalities are not used. This approach allows us to treat both low and high
rate R cases in a unified way. As an example, in §2 a new derivation of the sphere-packing
bound is presented.

Introduce some notations. For a code C = {zy,...,xy} C S '(v/An) denote

1) An )
Below it will be convenient to use the parametric representation of the transmission rate
R = R(t) via the monotonic increasing function

dij = |lz; — 2;||* = 2An(1 — py;) . (4)

R(t)=(1+t)In(1+1¢t)—tint, t>0. (5)
Consequently, for a rate R > 0 introduce tz > 0 as the unique root of the equation
R=R(tgr) = (1+tgr)In(1+tg) —tglntg. (6)

Introduce also the functions

24/t(1 + 1)
142t 7

T(t) = TR = T(tRg) . (7)

We shall need the values

= EEEEEEE ) - s
Ri(A) = R(t,(A)),

where the functions 7(t), R(t) are defined in (7) and (@). Sometimes below we shall omit
the argument A in ¢;(A),71(A), R1(A).
One of the main results of the paper is

Theorem 1. For any A > 0 the following relations hold:

_ Esp(Rcritu A) + Rcrit - R, El S R S Rcrit )
B(R4) = { Ey(R.A), Ran<R<C, ®)
and n
prA) < o R 0<R<R. (10)

where Reii(A), Ri(A), 7r and tg are defined in @), ®), [@) and (6), respectively.
Remark 1. We have R;(A) < R (A), A > 0. Moreover, max {Rcrit(A) — Fl(A)} R~
0.06866, and it is attained for A = Ay ~ 2.288.
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Remark 2. Note that (see the formulas (@) and (I0) for R = R;)
A(l —74)
4
Validity of (I]) can be checked using the formulas (@), (7) and the relations

_ A 1 1
1420 =/ =,  Rap=-1 ,
M Ve T R

A (1 — 6_2Rcrit) = AT, = _é —4, g(Rcrit) = 7(1 + 7—1_>\/Z .
T1 2\/7'_1

If A> Ay~ 2.288 (see ([4)) then the upper bound (I0) can be slightly improved, and,
moreover, the validity region of the first of formulas (@) can be enlarged to Rs < R < R,
where R3(A) < R;(A) (see ([[d)). To explain the possibility of such an improvement consider
the problem of upper bounding the minimal code distance 6(R,n) of a spherical code. The
best upper bound for §(R,n) was obtained in [4] using the linear programming bound.
It was also noticed in [4, p. 20| that for R > 0.234 a better upper bound for §(R,n) is
obtained if the linear programming bound is applied not directly to the original spherical
code, but to its subcode on a spherical cap. That observation was recently used in [9] when
estimating the code spectrum and the function E(R, A). Using the approach of [6] an upper
bound for E(R, A) was obtained in [9]. But it is rather difficult to use that upper bound
since it is expressed as an optimization problem over four parameters. In fact, it is possible
to get a more accurate and rather simple bound that constitutes theorem 2 below.

Introduce the function

Eeop(Rerit, A) + Reyit = +1In(1+26) . (11)

(12)

141 1 1
to2/tl+t) 142t

D(t) =1n t>0, (13)

and denote o = 0.061176 the unique root of the equation D(t) = 0. The equivalent equation
(with a sign misprint) appeared earlier in [4, p. 20|. Denote also

Ry = R(#;) =~ 0.2339, Ty = 7(t2) ~ 0.4540,
Fs(A) = Resc(A) + Ty + 3 (1 = 7) & R (4) — 00687, (14)
Ag=min{A: Ri(A) > Ry} ~2.288.
The next result strengthens theorem 1 when A > A,.
Theorem 2. If A> Ay ~ 2.288 then the following relations hold:

_ Esp(Rcritu A) + Rcrit - R, E3 S R S Rcrit )
bR, 4) = { Ew(R,A), Ry <R<C, (15)
and
1 _
—A(l—TR)+1H(1+2tR)—R, 0<R<R,,
E(R,A) <<¢ 1§ 1 1 B B (16)
ZAae_zR -3 In(2 — ae™2%) — 3 Ina, Ry < R < R3(A),



where a = (1 — T)e?R2 ~ 0.8717.

For a comparison purpose we present also the best known lower bound for the function
E(R,A) [1;3, Theorem 7.4.4]

A(l—-V1—e2R) /4, 0 < R < Row,
E(R7 A) Z Esp(Rcrita A) + Rcrit - R, Rlow S R S Rcrit> (17)
Esp(Ra A) ) Rcrit S R S C(A) )

where s
Riow(A) = % In % : (18)
Combining analytical and numerical methods it can be shown that for A > A, we have
Riow(A) < Ry < R3(A) < Ri(A) < Rait(A). (19)

On the figure the plots of upper (I3),(T6]) and lower (I7) bounds for E(R, A) with A =4
are presented.

The paper is organized as follows. In §2 the main analytical tool (proposition 1) is
presented and, as an example, the sphere-packing upper bound is derived. In §3 proposition
1 and the code spectrum are combined in propositions 2-3. In §4 (using results of §3 and
the known bound for the code spectrum - theorem 3) theorem 1 is proved. In §5 theorem
2 is proved. Proofs of some auxiliary results are presented in Appendix.

§ 2. New approach and sphere-packing exponent

For the conditional output probability distribution density p(y|x) of the input codeword
a the formula holds

1 n
Inp(yle) = -5 d(y,2) — 5 In(2r),  =yeR”

(in a similar formula in [6] there is a misprint - the minus sign is missing). To describe our
approach, we fix a small 6 = o(1), n — oo, and s > 0 and for an output y define the set:
X (y)=A{x; €C:|d(y,x;) — sn| < dn} , y e R". (20)

All codewords {x;} are assumed equiprobable. For a chosen decoding method denote
P(ely, z;) the conditional decoding error probability provided that x; was transmitted
and y was received. Denote p.(y) the probability distribution density to get the output y
and to make a decoding error. Then

M
pe(y) = M"Y plylm) Plely, @) > M~ > " p(yla) Plely, ;) =
i=1 z.cX.(y)

=M7'2m) Y e WBIEP(ely, @) >
e X, (y)
> M7 (2ret )2 N Plely, @) > M7 (2me™) T | X (y)] - 1],
e X (Y)



where [z]; = max{0, z} and |A| — the cardinality of the set A . For the decoding error
probability P, we get

- / poly) dy > M~ (2me"+) 12 / 1X.(y)| — 1] dy.
YR Y| X ()| >2

Since (a — 1) > a/2, a > 2, we have

P, > (2M) " (2mest?) /2 / | X s(y)| dy,
y:‘Xs(y)|22
where X (y) is defined in (20). To develop further the right-hand side of (21I]) we fix some
r > 0 and for each x; introduce the set
Zs, (i) = {y : [llyl* —rn| < on, |d(y, z:) — sn| < on, | X.(y)| > 2} =

Yl =rn| < on, |d(y, z;) — sn| < dn and (22)
1Y there exists x; # x; with |d(z;,y) —sn| <dn [’

(21)

For a measurable set A C R™ denote by m(A) its Lebesque measure. Then

M
[ Xy = mz.0)
Y| X ()] =2 =
and from (2I)) we get

Proposition 1. With any 6 > 0 for the decoding error probability P, the lower
bound holds

1 s+6\—n/2 J .
P> oo nsl%x{(zﬁe )~ Zm(ZM(Z))} : (23)

i=1
where Z (i) is defined in ([22)).

Example: sphere-packing upper bound. We show first how to get the sphere-
packing upper bound E(R, A) < Eg,(R, A) from (23)) (cf. |1;3, Chapter 7.4]). To simplify
formulas we write below a = b if |a — b] < 0, where 0 = o(1), n — oco. Note that

Z,,(0) = 200\ 226), 206 = {y:lylP/n~r. diy.@)/nw~s)

ZO ) ={y:llyl*/n=r, dy,z)/n~s |X(y)|=1} =
={y: |yl*/n~r, dly,z;)/n~s and there is no x; # x; with d(x;,y)/n~s }.

Then we have

M
Uzl =Y. ={y: |yllP/n=r, |X,(y)| =1} =
=1

={y: |lyl|*/n =~ r and there exists exactly one x; with d(y,x;)/n~s },
Y, CY(r)={y:llyl*/n=r},

6



and the lower bound (23) takes the form

P. > (2M)7 2re )7 [Mm (|Z0(1)]) = m (Y ()]

.
The surface area of a n-dimensional sphere of radius a is S, (a) = n7™2a" /T (n/2 +1) ~
(2mea?/ n)"/ ?. Then from a standard geometry we get
m (1200]) ~ @rer)™2,  m(Y(r)) ~ @rer)?,
(r—A—s)? (r+A-—s)?

rHn=s—-———"—=7—

4A 4A
Therefore the lower bound (23) takes the form

P> M—l(es+5—1)—n/2 Mrln/2 _ Tn/2] _ (24)
+

We want to maximize the right-hand side of (24)) over s, 7. Since we are interested only

in exponents in n, we may assume that ]\47“?/2 = "2 ie. e2fr; = r. Then we should
maximize the function f(s,r) =Inr — s provided
A )2
s—u—re_zR:O.
4A
As usual, considering the function
_ A g2
g(s,r) =Inr —s+ A\ s——(r A ) —re 28|
and solving the equations ¢, = g, = 0, we get
1 2A
r= , s=r+A—-—,
1—X(1—e2R) A

where A satisfies the equation
(1—6_2R) >\2—|—A(1—6_2R))\—A:0.

Therefore
VA

avl1l— e 2R’
where g1 = g1(R, A) is defined in (B]). Note that
1
g —1=g+/A(l —e2R), 1—)\(1—6_21%):?,
Inr—s=2lng—1—A+gA(l—e2R).

7

A\ =



Taking into account that e*r; = r, we get from (24)) and (3]

1 1 s—1 s—1 1
EIHES 5 —lnle 5 +R—§1HT:
A— /Al —e2R)g(R, A
= 26 Jo(k, 4) —Ing(R,A)+ R=Ey(R,A),

which gives the sphere-packing upper bound E(R, A) < Eg (R, A).

§ 3. Lower bound (23)) and code spectrum

For a code C C S""!(v/An) introduce the code spectrum function

B(s,t) = 1|'{u,v€C:s§(u’v)<t} , (25)

|? An

and denote ]
b(p,e)=—InB(p—e,p+e), 0<e<p.
n

To simplify notation we write below a ~ b if |a — b| < ¢, where § = 1/+/An. For some
r > 0 we consider only the set of outputs

Y(r)={y:|yll’/n=r} CR". (26)

To investigate the function E(R, A), R < Rej, we use a variant of the lower bound

3)

s,r>0 p —
1=

P, > (2M)~! max max {(27Tes+6)_"/2 Z m(Zs.(p, Z))} ) (27)

where
there exists x; with p;; = p and } (28)

Zuslpi) = {w e v () MR R

and p;; is defined in (). We develop the lower bound (27), relating it to the code spectrum
(23)), i.e. to the distribution of the pairwise inner products {p;;}.
For codewords x;, x; with p;; =~ p introduce the set

Zsi(pi, ) ={y €Y (r): dmi,y)/n~d(x;,y)/nxs }. (29)
Then for any i from (28) and (29) we have
Z,(pi)= | Zur(pi ). (30)
JpijRp
Denoting
Z(Sarvp) :m(ZS,T(p7i7.j>> (31)

8



(since the measure of that set does not depend on indices (i, j)), we have (see Appendix)

1 InZ(s,r,p) = %ln [2mez(s,r, p)] +o(1), n — oo, (32)
n
where (4 2
+r—s
z(s,r,p)—r—m (33)

Note that due to (B0)), for the sum in the right-hand side of (27) for any p we have

Zm Zospi) < Y m(Zarlpis)) = Z(s1,p) HGnd) : pig ~ o} =
(4,9):pij=p (34)

= exp {g In [2mez(s,r, p)] + [R+ b(p)|n + o(n)} ,
since for b(p) = b(p, d) the following formula holds (see (23))
{(i,) : pi = p}| = " B(p — 6, p + ) = el

Suppose that for some p = py in the relation (34) the following asymptotic equality holds:

%ln [Z m (Z,.(po, z))] In [2mez(s,r, po)] + R+ b(po) + o(1) n—oo. (35)

Using the functions s = s(p), 7 = r(p) (they are chosen below), from (27), (35) and
B3) for such py we get

%1 %Ssgl—%m{r—%}—b(p0)+0(1). (36)
We set below e n
sty =20y = ALED (37)

Such choice of s(p),r(p) minimizes (over s,r) the right-hand side of (B6]). Optimality of
such s, 7 can also be deduced from the formulas (72) (see Appendix).
For such s(p),r(p) we have r — (A +1r — s)?/[2A(1 + p)] = 1, and then (36) takes the

simple form
11 _A(l—p)
Tln — < 2\ P
"R 4
Note that b(p) > 0 if there exists a pair (x;, ;) with p;; = p, and b(p) = —oo if there is
no any pair with p;; =~ p.
We formulate the result obtained as follows.

Proposition 2. If for some py the condition (B5) is fulfilled, then the inequality
B8) for the decoding error probability P, holds.

— b(po) +o(1). (38)

9



We show that as such py we may choose the value py, minimizing the right-hand side
of (38). In other words, define py as follows

Apo -+ 4b(py) = max {Ap + 4b(p)} . (39)

Remark 3. If there are several such pg, we may use any of them. It is not important
that we do not know the function b(p). We may use as b(p) any lower bound for it (see
proofs of theorems 1 and 2).

Proposition 3. For py from [39) the condition (B5) holds and therefore the
inequality (B8) is valid.

P r o o f. It is convenient to “quantize” the range of possible values of the normalized
inner products p;;. For that purpose we partition the whole range [—1; 1] of values p;; on
subintervals of the length § = 1/v/An. There will be n; = 2/§ of such subintervals. We
may assume that p;; takes values from the set {—1=p; < ... < p,, =1}.

We call (z;,x;) a p-pair if (z;, z;)/(An) ~ p. Then Me™® is the total number of
p-pairs. We use s = s(pg), = r(pg) from (B7) and consider only outputs y € Y (r) =
Y (r(po)). We say that such a point y is p-covered if there exists a p-pair (x;, ;) such
that d(x;,y)/n ~ d(x;,y)/n ~ s. Then the total (taking into account the covering
multiplicities) Lebesque measure of all p-covered points y equals Me™) Z(s,r, p).
Introduce the set Y (po, p) of all p-covered points y

Y (po,p) ={y € Y(r) : y is p—covered} .

We consider the set Y (po, p) and perform its “cleaning”, excluding from it all points y that
are also p-covered for any p such that |p — po| > 49, i.e. we consider the set

Y (po; po) =Y (po, po) \ U Y (po,p) =

lp—po|>45

(40)
= {yGY(r):

y is pp—covered and is not p—covered
for any p such that [p — po| > 46

Each point y € Y’(po, po) can be p-covered only if |p— po| < 40. We show that both sets
Y (po, po) and Y'(po, po) have essentially the same Lebesque measures. Note that a p-pair
(@i, x;) p-covers the set Z,,.(p,4,j) from ([29) with the Lebesque measure Z(s,r, p). We
compare the values Y. €™ Z(s,r, p) and e™?0) Z(s 1, py) (see ([@0)). For that purpose

lp—po|>45
we consider the function
1 e Z(s, 1, p 1. z(s,rp
) Pt AT RV S Y% U S LAY RV ) S P PY

n enb(pO)Z(Sarv /70) 2 Z(S,’f’, PO)

where z(s,r, p) is defined in (33)). From (33) we also have

A(1+ po)(p — po)
2(1+ p) '

z(s,rp) =1+

10



Since b(p) < b(po) — A(p — po)/4 (see ([B9)), for the function g(p) from (@) we get

AL+ po)(p — /70)} _Alp—po) A(p — p)?

2(1+p) 4 == 41+ p) (42)

1
g9(p) < 5ln {1 +

Since p — pg = 40, |i| > 4, after simple calculations we have

Z enb(p)Z(Sara p)
|p—po|>45 _ Z eng(p) <9 Zexp _An52i2 —9 Z e—i2/8 < 1
emb(ro) Z (s, 1, po) - 8 2

|p—po|>45 >4 >4

Therefore we get

L ()= Y O Zs10) > e 25,1 ).
lp—po|>44

Then the total (taking into account the covering multiplicities) Lebesque measure of all
p-covered points y € Y (pg, po) exceeds Me™?0) Z(s r, py)/2. Remind that any point y €
Y'(po, po) can be p-covered only if [p — po| < 49.

For each point y € Y'(po, po) consider the set X ,(y) defined in (20), i.e. the set of
all codewords {a;} such that d(x;,y)/n ~ s. The codewords from X (y) satisfy also the
condition |(x;, x;) /(An) — po| < 40, i.e. the set {x;} constitutes almost a simplex. It is
rather clear that the number | X (y)| of such codewords is not exponential on n, i.e.

1
max {—1n|X5(y)|} =o(1), n— oo. (43)
yeY (po,p0) LT

Formally the validity of (43) follows from lemma 2 (see below).
Note that if A;,..., Ay C R" are a measurable sets, and any point a € [ J A; is covered

)

by the sets {A;} not more than K times, then

N

m (U A,) > %Zm(/li). (44)

i=1
For y € Y'(po, po) denote

Xi(y)={z;: dlm;,y)/n~dx;y)/n~s, p;=p },
Xmwe = max | X,(y)|. (45)

i, yeY (po,po0)

Due to (43) we have
1
—In Xpax = 0(1), n— 0. (46)
n

11



Since any point y € Y'(pg, po) can be p-covered not more than X, times and Y (po, po) C
Y (po, po), then from (43)—(46) we get

1

%ln [Zm(Zs,r(po,z')) > Ehlm(Y/(PO,PO)) >

1

> ~In (Me™) Z(s,7, pg)) + o(1) = (47)

3

1
= 5111 [271'62(8,7’, PO)] +R+b(p0) +O(1) ) n—0o0.

Therefore due to the inequalities (84]) and (A7), the condition (B5) is fulfilled, and then the
relation (B8] holds.

To complete the proof of proposition 2 it remains to establish the formula (43]). We
prove it first for a simpler (but a more natural) case p* < 71, and then consider the general
case.

Case pp <7;.In that case the relation ([43) follows from simple lemma (see proof in
Appendix).

Lemma 1. Let y € R with ||y||* = rn. Let C = {x1,...,xy} C S" 1 (VAn) be a
code with ||@; —y||* =sn,i=1,..., M, and mjx(wi,a}j) < Anp. If
i#£j

Adr—s5>2\/Arp, (48)
then M < 2n.
For s(p),r(p) from (B7) the condition (48) holds, if
A _
p= m =T1(4). (49)
From lemma 1 and (@3] the relation (@3]) follows.

General case. Although a code with py > 7; can hardly decrease the decoding
error probability P, its investigation needs a bit more efforts. The relation ([43]) follows
from lemma (see proof in Appendix).

Lemm a 2. Let for a code C = {x1,...,xy} C S" ' (VAn) and some p < 1 it holds
that
max |(x;, x;) — Apn| = o(n), n — 0o.
i#]
Then In M = o(n), n — oo.
It completes the proof of proposition 3. A

Using proposition 3 and two lower bounds for b(p) we shall prove theorems 1 and 2.

§ 4. Proof of theorem 1

12



First we investigate the function E(R, A) for 0 < R < R;(A) and prove the upper bound
([@@). Then for Ri(A) < R < Ruit(A), using the “straight-line bound” [2], we will prove the
formula (@). To apply proposition 3 we use the known bound for the code spectrum. The
next result is a slight refinement of |5, Theorem 9| (see also |6, Theorem 1]).

Theorem 3. Let C C S"1(VAn) be a code with |C| = e, R > 0. Then for any

e =¢e(n) > 0 there exists p such that p > Tg and
1 Ine
b(p) = - InB(p—e,p+e)>R— J(tR,p)+7 +o(1), n— o0,
J(t,p) = (1+20)In [26p + qt, p)) ~ Inq(t. p) — tfae(1 + 1)), (50)
q(t,p) = p+ /(1 +2)%p% — 4t(1 +1),

where tg, Tr are defined in () and (M), and o(1) does not depend on e.

Note that

, 4t(1 4 t)
Tl p) = p+ /(L +2020% —at(1+¢t)
T () = — 4t(1 +t) (14 2t)2p
aa [p+ /(1 +26)2p2 — 4t (1 +1)]? VaAF202p2 —at(1+1) | (51)
Ji(t,p) =2mn2tp +q(t, p)] — In[4t(1 + t)],
2(1+1)

[R(t) — J(t,p)], =2In 0, J(tg,7g) =In(1+2tg), J(tg,1)=R.

2tp+q

Proposition 4. Forthe function E(R,A) the upper bound (I0) holds.

P r o o f. Due to theorem 2 there exists p > 7g such that the inequality (B50) holds.
Denote p* the largest of such p. Since b(pg) > b(p*) — A(po — p*)/4 (cm. ([B9)), from (B8)

and (B0) we get

1 1 Al — A(l —p*
Tt < A 4oy < AL g o) <
< S e ) — R+ o0(1).
Note that if 7 <7 (i.e. if R < R;(A)) then (see Appendix)
[J(tr,p) — Ap/4], <0,  p>7g, (53)

and therefore the function J(tg, p) — Ap/4 monotone decreases on p > 7g. Since p* > Tx
then for 7 <7, we can continue (52) as follows

1 1 A(l —
2 S %”@R’m)—mr)(l):
noe (54)

Al - -
:%+1n(1+2t1{)—}%, 0<R<T,
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which is the desired upper bound (I0). A

To prove the relation (@) note that the best upper bound for E(R, A) is a combination
of the upper bound (0} and the sphere-packing bound via the “straight-line bound” 2],
which gives

A(l —74)

E(R, A) S -+ 11'1(1 + 2f1) - R, El S R S Rcrit .

On the other hand, the random coding bound [}, 3] gives
E(R> A) 2 Esp(Rcrita A) + Rcrit - R> R S Rcrit 3

where Eg,(R, A) is defined in (3]). Together with the formula (IT]) it completes the proof of
theorem 1. A

§ 5. Proof of theorem 2

As was already mentioned in §1, for R > 0.234 the upper bounds for the minimal
code distance |4, p. 20| of a spherical code and its spectrum [9] can be improved, if the
linear programming bound is not directly applied to the original spherical code, but to its
subcodes on spherical caps. The same approach allows to improve the upper bound for
E(R, A) as well. For that purpose we will need a bound for a code spectrum better than
(B0). The bound obtained below (theorem 4), probably, is equivalent to the similar bound
in [9, Theorem 3| (expressed in a different terms), but its derivation is simpler and a more
accurate.

Since we are interested only in angles between codewords x;,x;, for the formulas
simplification we may set An = 1, and consider a code C C S"!(1) = S"~!. Let Tj*(2) be
the spherical cap with half-angle 0 < 6§ < 7/2 and center z € S} i.e.

Ty(z)={x e S" ' : (x,2z) >cosb}.

It will be convenient to consider subcodes of C not on spherical caps Tj'(z), but on related
with them thin ring-shaped surfaces D} (z). We set further = 1/n?, and denote Dj(z) as

Dy(z) =Ty (2)\ Ty 5(z) = {w € S" " : cos < (w,2) < cos(d —0)} . (55)

Denote D,,(6) the surface area of Dj(z). Then [I], formula (21)]

(n— 1)x(=1/2

D,(6) = in""?ud §<6<1/2.
(9) T+ 1/2) /sm udu, <6<m/
0-5
It is not difficult to show that
2
{1 1 < D, ((n+1)/2)n <1

2nsing — 7(=1/2(p —1)sin" 20 —

14



Since the surface area | S"~!| of the sphere S"~! equals n7"/?/T'(n/2+1), we have uniformly
over 1/n <60 <m/2

L Dal0)
1
E

- = Insinf +o(1), n— 0o.
For the code C C S™! and 6 such that max{arcsine ", 1/n} <0 < 7/2, and z € S*!
we consider the subcode C(6, z) = C N Dj(z) with |C(6, z)| = e""*) codewords. Then

ﬁ / \c(e,z>|dz:%zexp{mﬂnsmf))"“(")%

zesn—1

i.e. in average (over z € S !) a subcode C(6, z) has the rate r = R + Insin 6 + o(1). All
its |C(0, z)| codewords are located in the ball B™(sinf, z’) of radius sin @ and centered at
z' = zcosf. Moreover, they are located in a thin (of thickness ~ §) torus orthogonal to z.
If ¢ € Dj(z), then we denote &’ = & — 2’ the corresponding vector from B™(sin 0, z'). The
original angle ¢ between two vectors x,y € Dj(z) becomes the angle ¢’ + O(J) between
the vectors o',y € B"(sinf, z’), where sin(¢’'/2) = sin(¢/2)/sinf. The original value
p = cos ¢ becomes the value p’ + O(6), where p’ = cos ¢’ is defined by the formula

1—p=(1-p)sin?0, (56)

since

sin 0 sin? 6

p = cos (2 arcsin (M)) =1- 25in*(p/2) _ 1—(1—p)e2f=),

The angle ¢" and the value p’ correspond to the case when the vectors @', y" are orthogonal
to z. The code C(6, z) is then transferred to the code C'(z) =C'(0, z) C B"(sin6, 2’).

To evaluate the average number e™¢®) of p-neighbors in the code C, we consider any
pair x;, x; with (x;, ;) = p and introduce the sets

Z(x,a)={z€ 5" " (2, 2)>a},
Z(x,y.a)={z€85" " (x,2) >a and (y,2) >a} .
Denote by ,(0) the surface area of the spherical cap Tj'(z). For 0 < 6 < 7/2 we have

a(=D/2ginn=1 g

F((n+1)/2)cos€(1+O(1))7 e

Qn (9) =

Then for the Lebesque measure m(a) of the set Z(x,a) we have

m(a) = m(Z(x,a)) = Q,(arccosa) .
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We evaluate the Lebesque measure m(p, a) of the set Z(x,y,a) provided (x,y) = p. Note
that if z,y € S"! and (x,y) = p, then ||z + y||* = 2(1 + p). Therefore v =

(x+1y)/\/2(1+p) € S"!, and then

Z(x,y,a) C{ze S (z+y,z)>2a} =
= {z cS" (v, 2) ZCL\/W} :Z<fv,a\/m> _

Therefore we get

m(p,a) =m(Z(x,y,a)) <m <Z <’U, a\/m>) =Q, <arccos (a\/m>) :

That upper bound for m(p, a) is logarithmically (as n — o) exact. In particular, if a =
cosf and (x,y) = p, then

1 lnM > Insind — Insin (arccos <\/2/(1 +p) cos@)) =

n m(p,cosf)
= Insinf —In+/1 —2cos26/(1 + p).

We use below the values p' = p/(p,6) from and (56) and ¢’ = ¢/sin? . Then denoting
BC(p) = BC(p —&p+ 8)7 BC’(Z)(p/) = BC’(Z) (p/ - 6/7pl + 6/)7 for any p,& we have

1

B Cl=—F——"— Ber NIc dz . 57

el = s [ Bem (i) dz (57)
zesn-1

Indeed, the value Be(p)|C| is the total number of pairs x;, x; € C with |(x;, x;) — p| < ¢,

and Ber(z)(p')|C'(2)] is the total number of similar pairs z;, =’ € C'(z) with |(x}, }) /(||| -

|25]) — p'| < €'. Moreover, each pair x}, x; € C'(2) gives the contribution m(p,cos?) to

the integral, from which the formula (&7) follows. From (57) for any set A C S™! we have

1 /
nbe(p) ~ nber 2y ()| 0! d
O ]| e %)
zeA
and also ) )
_ - ’ > - ’ ‘
€] m(cos @) / C'(2)] dz > m(cos @) / C'(2)] dz
zesn—1 zecA

The code C'(z) has the rate 7(z) = (In|C'(2z)|)/n. Then there exists ry such that

6o(n) . ) eron—l—o(n)m(so)
) n n—L. —t < =
IC] (cosd) mtax{e m(zeS Ir(z) —t| <e)} micosd)  (59)
So={z€ 8" i |r(z) —ry| < e} .
Since m(Sy) < m(S™ 1) then
1. |Clm(cos@) .
> D P :
oz In () R+ 1Insinf + o(1) (60)
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We set A = Sy and € = o(1), n — oo. Then using the Jensen inequality, from (58) and

(B9) we have
1 ,
nbe(p) > nberz)(p') C! dz >
T R
zZeSy

m(cos )™ bor (o
nberz2)(P) 1z >
— m(p, cos0)m(Sp) / ‘ 2=

ZESo

m(cos )e”™ n

/ berz)(p') dz ¢,

Z€eSoy

— m(p,cosb) P m(Sop)

from which we get

1. m(cos®) 1

belp) 2 Eln m(p,cos@)  m(Sy)

/ berz)(p) dz + o(1) . (61)
zES

Due to theorem 3 for each code C'(z), z € Sp, there exists p” = p”(z) such that p” > 7,
and

berz)(p") = 1o — J(trg, p") +0(1).
Therefore there exists p’ > 7, and the corresponding p = p(p’) from (B6) such that from
the inequality (61) we get

m(cos 6)

In +ro— J(try, p') +0(1) >

1
b > —
clp) 2 n  m(p,cosb)
—llnM—l-RlensinQ—J(t e, p) +o(1) >
= - m(p’ o8 9) R+lnsiné, P = (62)
> R+ 2Insing — J(trpmsing, /) — /1= 2c0s20/(1 4 p) +o(1) =
(1+p)
(1+p)
where we used the formula (60) and monotonicity of the function r — J(t,, p) on r (see
1), and p' = p'(p, 0) is defined in (56). After the variable change sin§ = ¢"% from (62))
we get

Theorem 4. Let C C S"1(1) be a code with |C| = ef™, R > 0. Then for anyr < R
there exists p' such that o' > 7, and for p = 1— (1 — p")e2"=B) the following inequality holds

1
:R—l—lnsin9—J(tR+1nsing,p')—l—§1n +o0(1),

belp) = 1~ Tty ) + S n ((fj ;j)) Fo1). (63)

Using the relation (63) in the inequality (B8]) we prove theorem 2. We have

n PC TSR pIZTr

A(l — p’)e2(’“_m , 1, 14/
— Z1
{ 4 r+ Il p) 211,

L1 : A(l - p)
—In— < minmax{ ———= —b(p) ¢ + 0o(1) <
S »

< min max

r<R p'>m = min max f(r, p),

r<R p>7,
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where

A(1 — p)e2tr—HR) 1 1
( /26 +R—2r+ J(t, p) + =1 L

f(7“>,0): 2 n262(R—r)+p_1'

With ¢t = ¢, and (1 — 7,.)e?"~f) = 22 we have

e Ae?r=H) 1 N 4¢(1 +t) N 1
p 4 2221 +p—1)  p+ A+ 2027 —dt(1+1) 2(1+p)’
) A62(T—R) 1 1
fp‘ _r. - 2(R—r + -
p=r 4 2(2e2(B=) 47, —1) " 2(1—1,)

AP —(A+2)2+1

i n) <0

Since [’)’p < 0 then p = 7, is optimal if f;)’p:r < 0. Since r < R then z < 1. Therefore

fy|,—,. < 0if the following inequalities are fulfilled:
2 e, A2+ VATHA
Z .
A+2+VA2Z+4 2A

The right one of the inequalities (G0 is always satisfied. The left one of the inequalities
(69) is equivalent to the inequality

(65)

fo(r)=2r+In(1 —7,) > 2R — 2Ruit(4) . (66)

The next simple technical lemma concerns the function fo(r) in the left-hand side of (66).

Lemma 3. The function fa(r) from (66) monotone decreases on 0 < r < Ry, and
monotone increases on r > Ry, where Ry is defined in ([I4). Moreover, the formula holds

In(1—71(A)) = —2Rqit(A), A>0. (67)

Since the function E(R, A), R > R;(A), is known exactly (see theorem 1), we consider
only the case R < Ri(A). Then two cases are possible: R < min{R;(A), Ry} and Ry <
R < Ry (A).

Case R <min{R(A), Ry}. For R < Ry minimum (over r < R) in the left-hand side
of (66 is attained when r = R, and then due to (€17) the inequality (66) reduces to the
condition 7z < 71(A), i.e. to R < R;(A). Therefore if r < R < min{R;(A), Ry} then the
inequalities ([66]) and (65) are fulfilled, and then p = 7, is optimal in the right-hand side of
©4). Since J(t,,7.) =In(1+ 2t,) = —In(1 — 72)/2 (see (5I) and (7)), then (64) takes the

form
In L < min f(r,7.) = minC(v(r)) — R, R < min{R;(A), R.}, (68)

r<R

S
o

5

IA

)

18



where

Cv)=— — -Inv(2 —v)], v(r) = (1 —7,)e2 ) (69)

Note that for » = R the inequality (68) reduces to the previous bound (I0). We show that
such r is optimal in (G8). We have

4u(2 =)0 = —Av® + 2(A+2)v — 4, " > 0.
Since 0 < v < 1, the equation C! = 0 has the unique root vy, where

4 2Rt (A)
V] = = g “lerit 70
YT A+2+ VA2 14 (70)

The function C'(v), 0 < v < 1, monotone decreases on 0 < v < v; and monotone increases
on v > v;. Note that since v(r) = e2()=2% then (see lemma 3) the function v(r) monotone
decreases on 0 < r < Ry and monotone increases on 7 > Ry.

If now R < min{R;(A), Ry}, then v(r) > v, for r < R. Therefore r = R is optimal in
(68), and then (G8) reduces to the previous bound (I0).

Case EQ < R < El(A) (1e A > Ao) Then EQ < Eg(A) < El(A), where Eg(A) is
defined in (I4)). Consider first the case Ry < R < R3(A). It is simple to check that then the
inequality (6] is again satisfied (see (I4])). Therefore p = 7, is optimal in the right-hand
side of (64), and (64) takes the form (68). Since R < Rs(A), then v(r) > v, for r < R.
Since R > R, then r = R, is optimal in (68), and then from (68) the second of bounds
(I6) follows.

It remains to consider the case Ry < R3(A) < R < R;(A). Since minimum of C'(v) over
0 <wv <1 is attained for v = v; (see ({0)), then

min C('U) = C('Ul) == Esp(Rcrit> A) + Rcrit P (71)

0<v<1

where the formula was used

Eop(Rerit, A) + Ryt = & — lln v — 1111(2 — ).
4 2 2
Now in the right-hand side of (64]) we set r such that v(r) = v; (it is possible when R > R3).
Then again the inequality (66]) is fulfilled and p = 7, is optimal in the right-hand side of
(©4). From (68)) and (1)) the first of upper bounds ([I5]) follows. The upper bound (IH)
can also be proved applying the “straight-line bound” to the sphere-packing bound and the
second of upper bounds (I6) at R = R, and the formula

Aae™?Rs ] —
4ae 2 In(2 — ae™?f)

Esp(Rcritu A) + Rcrit - EI& = 4 9

1
——lna,
2

which is simple to check using the relations (I2]). It completes the proof of theorem 2.
A
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APPENDIX

Proof of formula (B2). Without loss of generality we may assume that
x;, x;,y have the form

a)i:(l’l,l’g,o,...,()), wj:(—l’l,l’g,o,...,()), y:(O,yg,yg,...,yn),
from which we have

d(x;, x;) = 4a7 = 2An(1 — Pij) s

d(xi,y) = 27 + (Y2 — 22)° + Zyg = sn,
k=3

n
x? 22 = An, g yi=rn.
k=2

Solving those equations we get

An(1 — pi; An(1 + pi; Atr—
o A0 [0y (ks

2 2 S VA )

and therefore .
ng—rn— 2—rn——(A+r_s)2n—rn
k=3 ’ » 2A(1 + pij) o

from which the formula (32) follows. A
Optimality of s(p), r(p) from the formulas (B87) also follows from (72).

Proof of formula (B3). For the function f(p) = J(tgr,p) — Ap/4 from (BI))

we have

= Aip{l +tr) A f'(t.p) <0.

f - )
p+/(L+2tg)2p? — dtg(1+tg) 4

Then for p > 7 we have

< :M_é:%_égo,
P=TR TR 4 1-— TR 4
if TR <71(A), which proves the formula (53)). A

Proof of lemma 1. Let {x,...,zy} C S" V' An) be a code such that
mjx(:ci,wj) <0, i.e. H;éll’l |x; — x;]|* > 2A. Then, clearly, M < 2n.
1%£] 7]

In lemma 1 for all i we have (x;,y) = (A4+r—s)n/2. Consider M vectors {x, = x;—ay},
where a = (A + 1 — s)/(2r). Then due to the condition (8] we have

max (x;, ) < [4Arp — (A+71 —s)*| n/(4r) <0,
j

i
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and therefore M < 2n. A

Proof of lemma 2. To prove lemma we reduce it to the case p ~ 0, and then
use lemma 4 (see below). We set some integer m such that 1 < m < M, and introduce the
vector

- p
zZ=a £r aqQ@= —F—7—.
g}k’ 1+ (m—1)p

After simple calculations we get

1
p—o——< |z’ <p+5,
m

p—90 p+9 .
< (@i, z) < , i=m+1,....M
T (1= ) mp) = ) S T = ) (mp)
Consider the normalized vectors
wi= - il M
|z: — 2|
Using the formulas (73)), for any i,7 > m + 1, i # j, we get
(s 1) < —2 <5+1) 1), no (74)
U, u;) < — | =o0(l), N —00,
7T (=) m

if we set m — oo as n — o0o. To upperbound the maximal possible number M — m of
vectors {u;} satistying the condition (4]), we use a modification of [16, Theorem 2.

Lemma 4. Let C = {x1,...,xp} C S" (1) be a code with (x;,x;) < p, i # j. Then
for n > 1 the upper bound holds

M<o®?(1—p)™?, o0<pu<l. (75)

P r oo f. Denote p = cos(2¢), and let M(p) be the maximal cardinality of such a code.
For M(y) the upper bound holds [16, Theorem 2|

o (n—1)aT ("T_l> sin B tan

, 0<p< . (76)
S or <g> [sin”_1 B — f(B,n—2)cos 5} 7

4

where 3 = arcsin(y/2sin ¢) and

B
f(B,n—2)=(n—1) [ sin" ?zdz.
/
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Integrating by parts, for the function f(8,n — 2) we have

B
sin"! g3 sin"*! g3 3 sin"*? z
_9) = - - dz >
f(Bn=2) cos 3 (n+1)cos* 58 (n+1) / costz =
0
sin™ 1 sin™ 1 3 tan*
- 0 2 j(Bn-2).

cos 3 (n+1)cosB  (n+1)

and therefore

3tant g sin"! g3 tan? 3
1/[1+ nQ—I} Sf(ﬁ,n—Q)/{ cos 3 [1_n—l—1]}§1’

if tan? 8 < n + 1, i.e. if 2sin®p < (n +1)/(n + 2). From (76) and (T7) we get

n—1

M) < Vvl ( Qn ) (n?* —1)cos 3 ) ny/mn(l — 2Si1}12_910)
2T (§> sin"1 3 V2 (\/5 sin gp)

Y

since

Z > 0.
F( 5 )(z 1)/F<2)<\/§z e’ z2>0

(77)

(78)

From (78) the inequality (75) follows provided 2sin® ¢ < (n+1)/(n+2),i.e. if p > 1/(n+2).
Since the function M(y) is continuous on the left for ¢ € (0,7, the upper bound (78]
remains valid for = 1/(n + 2) as well. For 4 = 1/(n + 2), n > 1, the right-hand side of
(78) does not exceed n+/me/2, which in turn does not exceed the right-hand side of (73]
for any p > 0, n > 2. Since M () is a decreasing function, it proves the inequality (73]) for

any p > 0, n > 2. Clearly, ({3 remains valid for n =1 as well. A
Now from (74)) and (75]) we get lemma 2. A

The author thanks L.A.Bassalygo, G.A.Kabatyansky and V.V.Prelov for useful

discussions and constructive critical remarks.
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