
ar
X

iv
:0

90
9.

07
25

v1
  [

m
at

h.
PR

] 
 3

 S
ep

 2
00

9

On the exat asymptotis for the stationary sojourn time

distribution in a tandem of queues with light-tailed servie

times

∗
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Heriot-Watt University, Edinburgh and

Institute of Mathematis, Novosibirsk

We study the asymptotis of the stationary sojourn time Z of a �typial ustomer�

in a tandem of single-server queues. It is shown that, in a ertain �intermediate�

region of light-tailed servie time distributions, Z may take a large value mostly due

to a large value of a single servie time of one of ustomers. Arguments used in the

paper allow us to obtain also an elementary proof of the logarithmi asymptotis for

the tail distribution of the stationary sojourn time in the whole lass of light-tailed

distributions.

Keywords: tandem of queues, sojourn time, large deviations, Cramer ondition, exat

and logarithmi asymptotis, lass Sγ .

1 Introdution and main results

Consider an open queueing network whih is a tandem of two single-server queuesGI/GI/1 →

/GI/1 with ��rst-ome-�rst-served� servie disiplines.

Consider three mutually independent sequenes of non-negative random variables {τn},

{σ
(1)
n } and {σ

(2)
n }, eah of whih is an i.i.d. sequene. Here τn is the inter-arrival time

between the (n−1)st and nth ustomers (with mean a = Eτ1). Customer n reeives servie

in the �rst queue of duration σ
(1)
n ( with distribution funtion G(1)

and positive mean b(1) =

Eσ
(1)
1 ) and then in the seond of duration σ

(2)
n (with distribution funtion G(2)

and positive

mean b(2) = Eσ
(2)
1 ). Is it assumed that the network is stable, i.e. max

(
b(1), b(2)

)
< a. It

is well-known (see, for example, [1℄) that, under this assumption, there exists a unique

stationary (limiting) distribution of the sojourn time Z in the network (i.e. of the duration

of time between a ustomer's arrival to the �rst queue and its departure from the seond

queue) and, for any initial ondition, the distribution of the sojourn time Zn of ustomer

n onverges in the total variation norm to the limiting distribution, as n → ∞.

The following representation is also known (see, e.g., [2℄):

Z = sup
0≤n≤m<∞

(
−n∑

−m

σ
(1)
j +

0∑

−n

σ
(2)
j −

−1∑

−m

τj

)
. (1)

One may interpret formula (1) as follows. Assume that the network has been working for an

in�nitely long time, starting from time −∞. Then Z = Z0 is the sojourn time of ustomer

∗
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0 that arrives at time instant t = 0. Note that Z is a monotone funtion of all variables

in the right-hand side of (1): it monotonially inreases with the growth of any of the σ's

and with the derease of any of the τ 's.

The paper deals with a study of the asymptotis of probability P(Z > x) when x tends to

in�nity. We onsider the ase where servie times distributions in both queues are light-

tailed, i.e.

ϕ
σ
(i)
1
(λ) < ∞ (2)

for i = 1, 2 and for some positive λ. Here we use the standard notation: ϕX(λ) = EeλX

is the exponential moment of a random variable X at point λ. For short, we write in the

sequel ϕ(i)(λ) = ϕ
σ
(i)
1

(λ) for i = 1, 2 and ϕτ (λ) = ϕτ1(λ). For i = 1, 2, denote

γ(i) = sup{λ : ϕ(i)(λ)ϕτ (−λ) ≤ 1} ∈ (0,∞)

and let

γ = min
(
γ(1), γ(2)

)
.

For two positive funtions f1 and f2 and for a onstant d ≥ 0, the notation f1(x) ∼ df2(x)

means that f1(x)/f2(x) → d as x → ∞. In partiular, if d = 0, then f1(x) = o(f2(x)).

The following logarithmi (�rough�) asymptotis holds (see, for example, [3, 4℄):

Theorem 1. Under ondition (2),

− lnP(Z > x) ∼ γx.

All (known to us) proofs of Theorem 1 (see, for example, [3, 4℄) use the tehniques of large

deviations.

Our main result (Theorem 2) provides the exat asymptotis of large deviations, under the

following additional assumption:

R ≡ max
(
ϕ(1)(γ), ϕ(2)(γ)

)
ϕτ (−γ) < 1. (3)

In partiular, (3) implies the �niteness of EeγZ . Indeed,

EeγZ ≤
∑

0≤n≤m

E exp

(
γ

(
−n∑

−m

σ
(1)
j +

0∑

−n

σ
(2)
j −

−1∑

−m

τj

))
≤ (1−R)−2ϕ−2

τ (−γ) < ∞. (4)

In order to state Theorem 2 , we need a number of further de�nitions and notation.

We use the same symbol F to denote a probability distribution on the real line and also

its distribution funtion. Let F be the tail of distribution F , i.e.. F (x) = 1 − F (x), and

F ∗n
the n-fold onvolution of F . A distribution funtion F belongs to the lass Lβ, β ≥ 0

if

F (x) > 0 for all x and lim
x→∞

F (x− y)

F (x)
= eβy for any �xed y. (5)

Due to the monotoniity of F , the onvergene in (5) is neessarily uniform in y on any

ompat set. Therefore we may �nd suh a funtion h(x) ↑ ∞, h(x) = o(x) that

lim
x→∞

sup
|y|≤h(x)

∣∣∣∣
F (x+ y)

F (x)
eβy − 1

∣∣∣∣ = 0. (6)

2



If h1 and h2 are two funtions satisfying (6), then the funtion h3(x) = h1(x)+h2(x−h1(x))

has the same property.

The distribution funtion F of a random variable X belongs to the lass Sβ , β ≥ 0, if

F ∈ Lβ, ϕX(β) < ∞ and

F ∗2(x) = P(X1 +X2 > x) ∼ 2ϕX(β)F (x) as x → ∞ (7)

where X1 and X2 are two independent opies of X. Here, with neessity,

P(X1 +X2 > x) ∼ P(X1 +X2 > x,X1 ≤ h(x)) +P(X1 +X2 > x,X2 ≤ h(x))

∼ P(X1 +X2 > x,X1 ≥ x− h(x)) +P(X1 +X2 > x,X2 ≥ x− h(x))

where h(x) is any funtion satisfying ondition (6) (see, for example, [5℄).

A typial example of a distribution F ∈ Sβ with β > 0 is a distribution with the tail

F (x) = Cx−αe−βx
for some α > 1, C ∈ (0, 1] and all x ≥ 1.

Theorem 2. Assume that ondition (3) holds. Suppose that

G(i)(x) ∼ c(i)F (x), i = 1, 2 (8)

for some funtion F ∈ Sγ and onstants c(1) ≥ 0 and c(2) ≥ 0. Then

P(Z > x) ∼

2∑

i=1

0∑

j=−∞

P(Z > x, σ
(i)
j > x− h(x)) ∼ KF (x) (9)

where h(x) is any funtion satisfying onditions (6) and the onstant K is determined below

in formula (25).

Remark 1. Sine the exat representation of onstant K is omplex and depends on

harateristis whih are not �omputable�, it seems to be reasonable to provide useful

upper and lower bounds for K. For that, let, for i = 1, 2, Ri = ϕ(i)(γ)ϕτ (−γ) and

R = max(R1, R2). Then

c(1)ϕ(2)(γ)

1−R
+

c(2)ϕ(1)(γ)

1−R2
≤ K ≤

1

(1−R1)(1 −R2)

(
c(1)ϕ(2)(γ)

1−R1
+

c(2)ϕ(1)(γ)

1−R2

)
. (10)

Remark 2. The oe�ients c(1) and c(2) in the statement of Theorem 2 may be either

positive or zero. If both oe�ients are positive, then, with neessity, γ(1) = γ(2) = γ and

� as it follows from Property 1 (see Appendix) � both distributions G(i)
,i = 1, 2, have

to belong to the lass Sγ . If only one of the oe�ients is positive, say if c(1) > 0 and

c(2) = 0, then the distribution G(1)
belongs to the lass Sγ and γ(2) ≥ γ(1) = γ. Finally, if

c(1) = c(2) = 0, then also K = 0, as it follows from (10).

Remark 3. Taking into aount the monotoniity properties (see the omments after

formula (1), we an obtain the following �one-side� analogues of Theorem 2:

If, in the statement of Theorem 2, one replaes ondition (8) by lim supx→∞G(i)(x)/F (x) ≤

c(i), i = 1, 2 (or by lim infx→∞G(i)(x)/F (x) ≥ c(i), i = 1, 2), then the following holds:

lim supx→∞P(Z > x)/F (x) ≤ K (or, respetively, lim infx→∞P(Z > x)/F (x) ≥ K),

with the same K.

Remark 4. A natural analogue of Theorem 2 holds for tandems of any �nite number of

queues and, more generally, for tree-like queueing networks. However, an expliit representation

of the onstant K and even its bounds beome less and less tratable as n inreases.

Therefore we deided to onsider the ase n = 2 only.
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Remark 5. The approah in the �rst part of the proof of Theorem 2 (i.e. the onstrution

of upper and lower bounds) allows us also to obtain a simple proof of Theorem 1 without

use of the tehiques of the large deviations theory (see Subsetion 3.2).

Remark 6. The proposed method of proof is based on ideas developed in [6℄ and applied

therein to obtaining the distributional asymptotis for P(Z > x) in tandems of queues

with subexponential servie times distributions (whih are heavy-tailed). Also, in [6℄, the

asymptotis for the stationary waiting time in the seond queue were obtained. Similar

asymptotis may be found under the onditions of this paper, but by the use of essentially

more ompliated formulae.

Remark 7. In addition to the asymptotis for the tail P(Z > x), x → ∞, one an use results

from [5℄ to obtain the asymptotis for prestationary probabilities P(Zk > x) (whih are

uniform in k). Here

Zk = sup
0≤n≤m≤k

(
−n∑

−m

σ
(1)
j +

0∑

−n

σ
(2)
j −

−1∑

−m

τj

)
.

A proof of Theorem 2 is given in the next Setion. Setion 3 ontains a useful auxiliary

information about the lass Sβ , a simple proof of Theorem 1 and some further omments.

2 Proof

2.1 Upper and lower bounds for the stationary sojourn time

Lower bound. For i = 1, 2, let

Z(i) = σ
(i)
0 +max

n≥0

−1∑

−n

(
σ
(i)
j − τj

)
(11)

(where

∑−1
0 = 0). Then Z(1) = σ

(1)
0 +W (1)

where W (1) = maxn≥0
∑−1

−n

(
σ
(1)
j − τj

)
. Here

Z(1)
(respetively, W (1)

) is the stationary sojourn (respetively, waiting) time in the �rst

queue. However, it is more onvenient to propose a slightly di�erent interpretation of the

formula above: Z(1)
(respetively, W (1)

) is the stationary sojourn (respetively, waiting)

time in an auxiliary tandem of queues where all servie times in the seond queue are equal

to zero. Similarly, Z(2) = σ
(2)
0 + W (2)

with W (2) = maxn≥0
∑−1

−n

(
σ
(2)
j − τj

)
, and Z(2)

(respetively, W (2)
) is the stationary sojourn (respetively, waiting) time in an auxiliary

tandem of queues where all servie times in the �rst queue and replaed by zero.

The monotoniity of Z in all variables in (1) implies the following bound

Z ≥ max
(
Z(1), Z(2)

)
a.s. (12)

and, in partiular,

P(Z > x) ≥ max(P(Z(1) > x), P(Z(2) > x)). (13)

Upper bound. Let L ≥ 1 be an integer. Introdue an auxiliary single-server queue with

i.i.d. inter-arrival times τ̃n and (independent of them) i.i.d. servie times σ̃n where

τ̃n =
L∑

1

τ(n−1)L+i and σ̃n = max
1≤j≤L




j∑

i=1

σ
(1)
(n−1)L+i

+
L∑

i=j

σ
(2)
(n−1)L+i


 .
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Here the random variable σ̃1 may be viewed as follows. Assume that ustomers 1, . . . , L

arrive simultaneously at time instant t = 0 into an empty network. Then σ̃1 is the time of

the last ompletion of servie of these ustomers in the seond queue. It is not di�ult to

prove (see, for example, [7℄) that Eσ̃1/L → max(b(1), b(2)) as L → ∞. Hene Eσ̃1 < Eτ̃1
for all su�iently large L. We �x suh an L and de�ne

W̃ = max
n≥0

−1∑

−n

(σ̃n − τ̃n) < ∞ a.s.

(respetively Z̃ = σ̃0 + W̃ ), the stationary sojourn (respetively waiting) time of ustomer

0 in this queueing system, whih is a.s. �nite. The monotoniity properties of Z imply (see,

for example, [7, 6℄) that

Z ≤ Z̃ a.s. (14)

2.2 Proof of Theorem 2.

We prove Theorem 2 only for c(1) + c(2) > 0, the statement in the ase c(1) = c(2) = 0

follows by monotoniity.

>From [5, Theorem 1℄ and from inequality (13), we get

lim inf
x→∞

P(Z > x)

F (x)
≥ max(c(1), c(2)). (15)

Now we ould use (14) and obtain the upper bound

lim sup
x→∞

P(Z > x)

F (x)
≤ K0, (16)

for some positive onstant K0. However, we need an expliit representation for events

leading to large values of Z. For that, we �nd it onvenient to work with a more �rough�

upper bound than (14). Namely, take an arbitrary positive number T > 0 and de�ne

random variables σ̂n by the equalities

σ̂n = ΣnI(Σn > T ) + σ̃nI(Σn ≤ T )

where

Σn =
L∑

i=1

(
σ
(1)
(n−1)L+i + σ

(2)
(n−1)L+i

)
≥ σ̃n

and I is the indiator funtion. Clearly, σ̂n ≥ σ̃n a.s. Further, due to Properties 1 and 2

from the Appendix, the ommon distribution funtion of the random variables σ̂n belongs

to the lass Sγ , and P(σ̂1 > x) ∼ CF (x) for some positive C. Indeed, the distribution of Σn

belongs to the lass Sγ by Property 2. Sine, for any x > T , σ̂n > x if and only if Σn > x,

we onlude that P(σ̂n > x) ∼ P(Σn > x) as x → ∞ and, therefore, the distribution σ̂n
also belongs to the lass Sγ , due to Property 1..

We know that Eσ̃ < Eτ̃1 = LEτ1 for all su�iently large L. Also, ϕ̃(γ) = Eeγeσ1 <

1/Ee−γeτ1
for all large L, from (3) and (28). Choose suh an L. Further, Eσ̂ → Eσ̃ and

Eeγbσ1 → Eeγeσ1
as T → ∞. Therefore we an take a su�iently large T for the inequalities

Eσ̂1 < LEτ1 and Eeγbσ1 < 1/Ee−γeτ1
(17)
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to hold. Then the single-server queueing system with i.i.d. inter-arrival times τ̃n (see

Subsetion 2.1 for the de�nition) and servie times σ̂n is stable. Let Ŵ denote the stationary

waiting time in this system,

Ŵ = max
n≥0

−1∑

−n

(σ̂n − τ̃n) < ∞ a.s.

Then Ŵ oinides in distribution with the supremum of a random walk with inrements

σ̂n − τ̃n. By Property 4 from the Appendix and from (17), P(Ŵ > x) ∼ CF (x) for some

C > 0 and, by Property 2, the distribution of the random variable Ŵ belongs to the lass

Sγ . From the monotoniity properties,

Z ≤ Ẑ ≡ Ŵ + σ
(1)
0 + σ

(2)
0 (18)

where the inrements in the right-hand side are mutually independent, and the tail distribution

of eah of them is asymptotially equivalent to F (x), up to a multipliative non-negative

onstant (where at least one of these onstants is stritly positive). By Property 2 from

the Appendix, the distribution of Ẑ also belongs to the lass Sγ and

P(Ẑ > x) = P

(
2⋃

i=1

{Ẑ > x, σ
(i)
0 > x− h1(x)}

⋃
{Ẑ > x, Ŵ > x− h1(x)}

)
+ o(F (x))

=

2∑

i=1

P(Ẑ > x, σ
(i)
0 > x− h1(x)) +P(Ẑ > x, Ŵ > x− h1(x)) + o(F (x))

for any funtion h1 satisfying (6). Note that if h1 and h are two suh funtions, then

P(Ẑ > x, σ
(i)
0 > x− h1(x)) = P(Ẑ > x, σ

(i)
0 > x− h(x)) + o(F (x)). (19)

Make use of the following simple relations. Let A,B and C be three events. If

P(A) = P(A ∩B) + v,

then

P(A ∩ C) = P(A ∩ C ∩B) + v̂ (20)

where 0 ≤ v̂ ≤ v. In partiular, if C ⊆ A, then the last equality in transformed into

P(C) = P(C ∩B) + v̂.

Applying this to the events A = {Ẑ > x} and C = {Z > x}, we arrive at the equation

P(Z > x) =
2∑

i=1

P(Z > x, σ
(i)
0 ≥ x− h1(x)) +P(Z > x, Ŵ > x− h1(x)) + o(F (x)). (21)

By Property 4 from the Appendix, for any ε > 0, there exists a su�iently large N suh

that

P(Ŵ > x− h1(x)) = P




N⋃

j=1

{Ŵ > x− h1(x), σ̂−j − τ−j > x− h1(x)− h2(x− h1(x))}


 + g1(x)

= P




N⋃

j=1

{Ŵ > x− h1(x), σ̂−j > x− h1(x)− h2(x− h1(x))}


 + g2(x)

=
N∑

j=1

P(Ŵ > x− h1(x), σ̂−j > x− h1(x)− h2(x− h1(x))) + g3(x)

6



where h2 is any funtion satisfying (6) and 0 ≤ gi(x) ≤ εF (x) + o(F (x)) for i = 1, 2, 3.

The latter inequality means that lim supx→∞ gi(x)/F (x) ≤ ε.

Using again (20), this time with A = {Ŵ > x− h1(x)} and C = {Z > x}, we get

P(Z > x, Ŵ > x−h1(x)) =

N∑

j=1

P(Z > x, Ŵ > x−h1(x)), σ̂−j > x−h1(x)−h2(x−h1(x)))+g4(x)

where 0 ≤ g4(x) ≤ εF (x) + o(F (x)).

By hoosing an appropriate h2, the right-hand side of the latter inequality may be made

simpler, by the exlusion the inequality {Ŵ > x− h1(x)}. Indeed, put

P (x) = P(Z > x, Ŵ ≤ x− h1(x)), σ̂−j > x− h1(x)− h2(x− h1(x)))

and note that

P (x) ≤ P(Ẑ > x, Ŵ ≤ x− h1(x)), σ̂−j > x− h1(x)− h2(x− h1(x)))

≤ P(σ
(1)
0 + σ

(2)
0 > h1(x), σ̂−j > x− h1(x)− h2(x− h1(x)))

= (1 + o(1))(c(1) + c(2))F (h1(x)) · CF (x− h1(x)− h2(x− h1(x)))

= (1 + o(1))Ĉeγ(h1(x)+h2(x−h1(x)))F (h1(x))F (x)

where the last equality follows from the remark after formula (6) and Ĉ = C(c(1) + c(2)).

From

∫∞
0 eγtdF (t) < ∞, we get eγtF (t) → 0 as t → ∞ and, therefore, F (h1(x))e

γh1(x) → 0

as x → ∞. Thus, we may take h2 so slowly inreasing to in�nity, that F (h1(x))e
γ(h1(x)+h2(x−h1(x)))

also tends to zero. Then P (x) = o(F (x)) and, therefore,

P(Z > x, Ŵ > x− h1(x)) =

N∑

j=1

P(Z > x, σ̂−j > x− h3(x)) + g5(x)

where 0 ≤ g5(x) ≤ εF (x)+o(F (x)) and the funtion h3(x) = h1(x)+h2(x−h1(x)) satis�es

(6).

For all su�iently large x, the events {σ̂−j > x− h3(x))} and {Σ−j > x− h3(x))} either

our or do not our simultaneously. Therefore P(Z > x, σ̂−j > x − h3(x)) = P(Z >

x,Σ−j > x − h3(x)). Applying Property 2 from the Appendix to the random variables

Σ−j , we get

P(Z > x, σ̂−j > x− h3(x)) =

2∑

i=1

jL∑

l=(j−1)L+1

P(Z > x, σ̂−j > x− h3(x), σ
(i)
−l > x− h3(x)− h4(x− h3(x)))

+ o(F (x))

where h4 is any funtion satisfying (6). Assuming that h4 satis�es an extra ondition (whih

is analogues to that on h2), we may exlude the inequality {σ̂−j > x − h3(x)} from the

right-hand side of the last relation. Letting h(x) = h3(x) + h4(x− h3(x)), we arrive at the

equality

P(Z > x, σ̂−j > x− h3(x)) =

2∑

i=1

jL∑

l=(j−1)L+1

P(Z > x, σ
(i)
−l > x− h(x)) + o(F (x)).

Substituting the relations obtained into formula (21) and using (19), we get �nally:

P(Z > x) =
2∑

i=1

NL∑

j=0

P(Z > x, σ
(i)
−j > x− h(x)) + g(x) (22)

7



where 0 ≤ g(x) ≤ εF (x) + o(F (x)).

Now we study the asymptotis of eah individual summand in the double sum in the

right-hand side of (22). Let

W
(1)
j = max

(
0, sup

n≥1

n∑

i=1

(σ
(1)
−j−i − τ−j−i)

)

and notie that the distribution of W
(1)
j does not depend on j. Further, let

Y
(1)
j = max

0≤k≤−j




−j+k∑

i=−j+1

σ
(1)
i +

0∑

i=−j+k

σ
(2)
i




and

V
(1)
j = max

(
sup

−j<n≤m<∞

(
−n∑

−m

σ
(1)
i +

0∑

−n

σ
(2)
i −

−1∑

−m

τi

)
, max
0≤n≤m<−j

(
−n∑

−m

σ
(1)
i +

0∑

−n

σ
(2)
i −

−1∑

−m

τi

))
.

Then, for any j ≥ 0,

Z = max


V

(1)
j ,W

(1)
j + σ

(1)
−j + Y

(1)
j −

−1∑

i=−j

τi




where the random variables (W
(1)
j , Y

(1)
j , V

(1)
j ,

∑−1
−j τi) mutually do not depend on σ

(1)
−j . Put

Q
(1)
j = W

(1)
j + Y

(1)
j −

∑−1
−j τi. For any j = 0, . . . , NL,

P(Z > x, σ
(1)
−j > x− h(x)) = P(Q

(1)
j + σ

(1)
−j > x, σ

(1)
−j > x− h(x)) + o(P(Z > x))

=

∫ h(x)

0
P(Q

(1)
j ∈ dt)P(σ

(1)
−j > x− t) + o(P(Z > x)) + o(F (x))

= c(1)F (x)

∫ h(x)

0
P(Q

(1)
j ∈ dt)e−γt + o(P(Z > x) + F (x))

= c(1)F (x)EeγW
(1)
0 EeγY

(1)
j (ϕτ (−γ))j + o(P(Z > x) + F (x))

We larify now eah of four equalities above. The �rst of them follows from

P(Z > x, σ
(1)
−j > x− h(x)) = P(Q

(1)
j + σ

(1)
−j > x, σ

(1)
−j > x− h(x))

+ P(V
(1)
j > x,Q

(1)
j + σ

(1)
−j ≤ x, σ

(1)
−j > x− h(x))

where the seond summand is not bigger than

P(V
(1)
j > x, σ

(1)
−j > x− h(x)) = P(V

(1)
j > x)P(σ

(1)
−j > x− h(x))

≤ P(Z > x)P(σ
(1)
−j > x− h(x)) = o(P(Z > x)).

Further,

P(Q
(1)
j + σ

(1)
−j > x, σ

(1)
−j > x− h(x)) =

∫ h(x)

0
P(Q

(1)
j ∈ dt)P(σ

(1)
−j > x− t)

+ P(Q
(1)
j > h(x))P(σ

(1)
−j > x− h(x))

where

P(Q
(1)
j > h(x)) ≤ P(Z > h(x))
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and

P(σ
(1)
−j > x− h(x)) ∼ c(1)F (x− h(x)) ∼ c(1)eγh(x)F (x).

Sine EeγZ < ∞, we get P(Z > h(x))eγh(x) → 0 when x → ∞. Therefore, the seond

equality also holds. The third equality follows from the uniform equivalene (6) and from

the assumptions of the theorem:

∫ h(x)

0
P(Q

(1)
j ∈ dt)P(σ

(1)
−j > x−t) ∼ c(1)

∫ h(x)

0
P(Q

(1)
j ∈ dt)F (x−t) ∼ c(1)

∫ h(x)

0
P(Q

(1)
j ∈ dt)eγtF (x).

Finally, as x → ∞,

∫ h(x)

0
P(Q

(1)
j ∈ dt)eγt →

∫ ∞

0
P(Q

(1)
j ∈ dt)eγt = EeγQ

(1)
j ,

and the last equality follows from the mutual independene of the summands in Q
(1)
j .

Hene,

NL∑

j=0

P(Z > x, σ
(1)
−j > x−h(x)) = (1+o(1))c(1)F (x)EeγW

(1)
0

NL∑

j=0

EeγY
(1)
j (ϕτ (−γ))j+o(P(Z > x)).

(23)

Similarly, for any j = 0, 1, 2, . . ., the random variable Z may be represented as

Z = max


V

(2)
J , Y

(2)
j + σ

(2)
−j +

0∑

i=−j+1

σ
(2)
i −

−1∑

i=−j

τi




where

Y
(2)
j = sup

m≥n≥−j

(
−n∑

−m

σ
(1)
i +

−j−1∑

−n

σ
(2)
i −

−j−1∑

−m

τi

)

(and the distribution of Y
(2)
j does not depend on j),

V
(2)
j = sup

m≥−j
max

0≤n<−j

(
−n∑

−m

σ
(1)
i +

0∑

−n

σ
(2)
i −

−1∑

−m

τi

)
,

and random variables (Y
(2)
j ,

∑0
i=−j+1 σ

(2)
i −

∑−1
i=−j τi, V

(2)
j ) are mutually independent of

σ
(2)
−j . Then (with Q

(2)
j = Y

(2)
j +

∑0
i=−j+1 σ

(2)
i −

∑−1
i=−j τi )

P(Z > x, σ
(2)
−j > x− h(x)) = P(Q

(2)
j + σ

(2)
−j > x, σ

(2)
−j > x− h(x)) + o(P(Z > x))

=

∫ h(x)

0
P(Q

(2)
j ∈ dt)P(σ

(2)
−j > x− t) + o(P(Z > x) + F (x))

= c(2)F (x)

∫ h(x)

0
P(Q

(2)
j ∈ dt)eγt + o(P(Z > x) + F (x))

= c(2)F (x)EeγY
(2)
0
(
ϕ(2)(γ)

)j−1
(ϕτ (−γ))j−1 + o(P(Z > x) + F (x))

(where the arguments are similar to those whih were used to obtain the asymptotis for

P(Z > x, σ
(2)
−j > x− h(x))). Thus,

NL∑

j=0

P(Z > x, σ
(2)
−j > x− h(x)) = (1 + o(1))c(2)F (x)EeγY

(2)
0

1−RNL
2

1−R2
+ o(P(Z > x)) (24)
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where R2 = ϕ(2)(γ)ϕτ (−γ) < 1.

Putting together (22), (23) and (24), we get:

P(Z > x)(1 + o(1)) = (1 + o(1))F (x)

×


c(1)EeγW

(1)
0

NL∑

j=0

EeγY
(1)
j (ϕτ (−γ))j + c(2)EeγY

(2)
0

1−RNL
2

1−R2


+ g3(x).

Therefore,

lim sup
x→∞

P(Z > x)

F (x)
≤ c(1)EeγW

(1)
0

∞∑

j=0

EeγY
(1)
j (ϕτ (−γ))j + c(2)EeγY

(2)
0

1

1−R2
+ ε

and

lim inf
x→∞

P(Z > x)

F (x)
≥ c(1)EeγW

(1)
0

NL∑

j=0

EeγY
(1)
j (ϕτ (−γ))j + c(2)EeγY

(2)
0

1−RNL
2

1−R2

for any positive ε (and, respetively, for any positive integer N). Letting ε to zero, we

obtain �nally:

P(Z > x) ∼ F (x)


c(1)EeγW

(1)
0

∞∑

j=0

EeγY
(1)
j (ϕτ (−γ))j + c(2)EeγY

(2)
0

1

1−R2


 . (25)

We prove now the bounds (10). For this, we use repeatedly the following relations: for any

�nite or ountable olletion of random variables Xi,

sup
i

EeXi ≤ Eesupi Xi ≤
∑

i

EeXi .

First,

1 ≤ EeγW
(1)
0 ≤

∞∑

n=0

(
Eeγ(σ

(1)
1 −τ1)

)n
=

1

1−R1

where again R1 = ϕ(1)(γ)ϕτ (−γ) < 1. Further, with ϕ(γ) = max(ϕ(1)(γ), ϕ(2)(γ)),

EeγY
(1)
j ≥ max

0≤k≤−j
E exp


γ

−j+k∑

i=−j+1

σ
(1)
i + γ

0∑

i=−j+k

σ
(2)
i




= max
0≤k≤−j

ϕk
(1)(γ)ϕ

j+1−k
(2) (γ) = ϕj(γ)ϕ(2)(γ)

and

EeγY
(1)
j ≤

−j∑

k=0

E exp


γ

−j+k∑

i=−j+1

σ
(1)
i + γ

0∑

i=−j+k

σ
(2)
i




= ϕ(2)(γ)

j∑

i=0

ϕi
(1)(γ)ϕ

j−i
(2) (γ).

Sine R = ϕ(γ)ϕτ (−γ),

ϕ(2)(γ)

1−R
≤

∞∑

j=0

EeγY
(1)
j ϕτ (−γ)j ≤ ϕ(2)(γ) ·

1

(1−R1)(1−R2)
.

Similarly,

ϕ(1)(γ) ≤ EeγY
(2)
0 ≤ ϕ(1)(γ) ·

1

(1−R1)(1−R2)
.

Substituting all obtained inequalities into (25), we arrive at (10).
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3 Appendix

3.1 Properties of distributions from the lass Sβ, β > 0.

We present here a number of known properties (Properties 1�3) of the lass Sβ with β > 0

� see, for example, [11℄ and the omments in [5℄, and also Property 4 whih follows from

results of [5℄.

Property 1. (Closure of the lass Sβ with respet to the tail equivalene)

If F ∈ Sβ and F (x) ∼ cG(x) for some onstant c ∈ (0,∞), then G ∈ Sβ. If, in partiular,

random variables X and Y are independent, Y is a.s. non-negative and. F (x) = P(X ≤

x) ∈ Sβ , then

G(x) = P(X − Y > x) ∼

∫ h(x)

0
G(dt)F (x+ t) ∼ F (x)

∫ h(x)

0
G(dt)e−βt ∼ F (x)Ee−βY

as x → ∞ and, therefore, G ∈ Sβ.

The following more general result also holds.

Property 2. Assume that F ∈ Sβ for some β ≥ 0. Assume also that random variables

Xi, i = 1, . . . , n are mutually independent and their distribution funtions Fi satisfy the

relations P(Xi > x) = Fi(x) ∼ ciF (x) as x → ∞, for some ci ≥ 0,
∑n

1 c
(i) > 0. Then

ϕi = EeβXi < ∞ for all i = 1, . . . , n. The distribution of the sum

∑n
i=1 Xi also belongs to

the lass Sβ and

P(
n∑

i=1

Xi > x) ∼
n∑

j=1

P




n⋃

j=1

{
∑

i 6=j

Xi ≤ h(x),
n∑

i=1

Xi > x}




∼

n∑

j=1

P


∑

i 6=j

Xi ≤ h(x),

n∑

i=1

Xi > x




∼
n∑

j=1

P




n⋃

j=1

{Xj > x− h(x),
n∑

i=1

Xi > x}




∼

n∑

j=1

P

(
Xj > x− h(x),

n∑

i=1

Xi > x

)
∼

n∏

i=1

ϕi

n∑

i=1

ci
ϕi

F (x)

where h(x) is any funtion satisfying (6).

Property 3. Assume that F ∈ Sβ for some β ≥ 0. Assume that random variables V, ξ and

η are mutually independent, η ≥ 0 a.s., P(V > x) ∼ c1F (x) and P(ξ > x) ∼ c2F (x) where

c1 ≥ 0 and c2 > 0. Then, for any funtion h satisfying (6),

P(V + ξ − η > x, V ≤ h(x)) ∼ P(V + ξ − η > x, V − η ≤ h(x))

∼ P(V + ξ − η > x, ξ − η ≥ x− h(x))

∼ P(V + ξ − η > x, ξ ≥ x− h(x))

∼ c2F (x)EeβV Ee−βη.

Property 4. Consider a sequene of i.i.d. random variables {Xn} with a ommon distribution

funtion F and assume that EXi = −a < 0, F ∈ Sβ and EeβX1 < 1. Let Mk =

max0≤n≤k

∑n
i=1Xi and M = supn≥0

∑n
i=1 Xi. It follows from [5, 1 and Remark 3℄ that

lim
x→∞

P(M > x)

F (x)
=

EeβM

1−EeβX1
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(see also [12℄) and, moreover, for any (as small as possible) ε ∈ (0, 1), there exists a

su�iently large N suh that, as x → ∞ and for any funtion h(x) satisfying (6),

P(M > x) ≥ P

(
M > x,

N⋃

n=1

{Xn > x− h(x)}

)
+ o(F (x))

=

N∑

n=1

P(M > x,Xn > x− h(x)) + o(F (x))

≥ P(M > x) + o(F (x))− εF (x)

(reall that the notation f(x) ≥ g(x) + o(f(x)) means lim supx→∞ g(x)/f(x) ≤ 1; in our

ase o(F (x)) = o(P(M > x))).

If we assume in addition that the random variables Xn are represented as di�erenes

Xn = ξn − ηn where {ξn} and {ηn} are two mutually independent sequenes of i.i.d.

random variables and random variables ξn are non-negative a.s., then the relations above

stay valid if we replae the events {Xn > x− h(x)} by {ξn > x− h(x)}.

3.2 A simple proof of Theorem 1 by the use of upper and lower bounds

from Subsetion 2.1.

Reall again that the stationary waiting time in a single-server queue with servie times

σn and inter-arrival times τn has the same distribution as the supremum M = supn Sn of a

random walk Sn =
∑n

1 Xi with inrements Xn = σn − τn. Apply the following well-known

result for a random walk Sn =
∑n

i=1 Xi with negative drift:

Theorem 3. If

λ0 = sup{λ : ϕX1(λ) ≤ 1} > 0,

then

− lnP(M > x) ∼ λ0x.

Remark 8. We are aware of only one publiation ([8℄, p. 17) where Theorem 3 is formulated

without extra assumptions. Usually authors assume in addition (see, for example, [10,

Setion 21, Theorem 11℄) the so-alled Cramer ondition

ϕX1(λ0) = 1 and d = EX1e
λ0X1 < ∞ (26)

or even stronger onditions. The theorem may be obtained also as a orollary of more

general results, for instane, from [10℄. We provide in Subsetion 3.3 a methodologial

omment on how one an prove the general result of Theorem 3 given that it is already

proven under the onditions (26).

It follows from Theorem 3 that

− lnP(W (i) > x) ∼ γ(i)x,

and sine Z(i) ≥ W (i)
a.s.,

lim sup
x→∞

− lnP(Z > x)

x
≤ γ. (27)
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On the other hand, for any λ > 0,

ϕ̃(λ) ≡ Eeλeσ1 ≤

L∑

j=1

E exp




j∑

i=1

σ
(1)
i +

L∑

i=j

σ
(2)
i




=

L∑

j=1

ϕj
(1)(λ)ϕ

L−j+1
(2) (λ) ≡ ϕ∗(λ).

Using again the notation ϕ(λ) = max(ϕ(1)(λ), ϕ(2)(λ)), we get

min((ϕ(1)(λ), ϕ(2)(λ)) · ϕ
L(λ) ≤ ϕ̃(λ) ≤ ϕ∗(λ) ≤ (L+ 1)ϕL+1(λ)

and therefore

(ϕ̃(λ))1/L → ϕ(λ) and (ϕ∗(λ))
1/L → ϕ(λ) as L → ∞. (28)

Let γ̃ = sup{λ : ϕ̃(λ)ϕL
τ (−λ) ≤ 1}. Sine σ̃1 ≥ max

(∑L
1 σ

(1)
i ,
∑L

1 σ
(2)
i

)
, we may onlude

that γ ≥ γ̃. >From (28), γ̃ → γ. By Theorem 3, for any su�iently large L,

− lnP(W̃ > x) ∼ γ̃x.

>From E exp (γσ̃0) < ∞, we get

− lnP(Z̃ > x) ∼ γ̃x.

Letting L to in�nity, we obtain

lim inf
x→∞

− lnP(Z > x)

x
≥ γ. (29)

The statement of Theorem 1 follows now from the inequalities (27) and (29).

Remark 9. A natural analogue of Theorem 1 holds for a tandem of any �nite number of

queues, with a similar proof.

3.3 A omment on a proof of Theorem 3.

Assume that the statement of the theorem has been already proved under the additional

assumptions (26). Note that there are several versions of suh a proof (by the use of, say,

(a) martingale tehniques, (b) exponential hange of measure and elements of the renewal

theory, et.)

Assume now that onditions (26) do not hold. For any r > 0, de�ne random variables

Xn,+r = max(Xn,−r) and Xn,−r = min(Xn, r).

Denote the orresponding sums, maxima and moments by Sn,+r, Sn,−r,M+r,M−r, ϕX,+r

and ϕX,−r where M+r ≥ M ≥ M−r a.s. For all su�iently large values of r, the maximum

M+r is a.s. �nite. From the monotoniity and ontinuity of ϕX,+r and ϕX,−r as funtions

of r and from the boundedness from above of random variables Xn,−r, it follows, �rstly,

that the roots λ+r < λ0 < λ−r of equations ϕX,+r(λ+r) = 1 and ϕX,−r(λ−r) = 1 exist for

any r, the orresponding derivatives are �nite and therefore

− lnP(M+r > x) ∼ λ+rx and − lnP(M−r > x) ∼ λ−rx,

13



and, seond, both λ+r and λ−r onverge to λ0 as r → ∞.

If ϕX(λ0) < 1, then there is r < ∞ suh that ϕX,+r(λ0) = 1 and ϕ
′

X,+r(λ0) < ∞. Then,

for this r,

− lnP(M+r > x) ∼ λ0x,

and the statement of Theorem 3 follows.

The ase ϕX(λ0) = 1 and d = ∞ is left for a reader.

The author would like to thank Stan Zahary for improving the style of the English

translation, and the referee for a number of important omments and remarks.

Remark (added at the proofreading): in the paper [13℄, the author develops the approah

from [7℄ to obtain the logarithmi asymptotis in a wide lass of stohasti networks.
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