Skip to main content
Log in

On universal algorithms for adaptive forecasting

  • Large Systems
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

In the last decade, new methods of forecasting were developed different from traditional statistical methods. In particular, it is possible to “efficiently” predict any sequence of outcomes without using any hypothesis on the nature of a source generating it. In the present paper, a modified version of the universal forecasting algorithm is considered. The main part of the paper is devoted to algorithmic analysis of universal forecasting methods and to exploring limits of their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V’yugin V.V. On Sequences with Non-learnable Subsequences, Computer Science-Theory and Applications (Proc. 3rd Int. Computer Science Sympos. in Russia [CSR’2008], Moscow, Russia, 2008), Hirsh, E., Razborov, A., Semenov, A., and Slissenko, A., Eds., Lect. Notes Comp. Sci., vol. 5010, Berlin: Springer, 2008, pp. 302–313.

    Google Scholar 

  2. Dawid, A.P., TheWell-Calibrated Bayesian, J. Amer. Statist. Assoc., 1982, vol. 77, no. 379, pp. 605–613.

    Article  MATH  MathSciNet  Google Scholar 

  3. Foster, D.P. and Vohra, R.V., Asymptotic Calibration, Biometrika, 1998, vol. 85, no. 2, pp. 379–390.

    Article  MATH  MathSciNet  Google Scholar 

  4. Sandroni, A., The Reproducible Properties of Correct Forecasts, Int. J. Game Theory, 2003, vol. 32, no. 1, pp. 151–159.

    Article  MATH  MathSciNet  Google Scholar 

  5. Dekel, E. and Feinberg, Y., Non-Bayesian Testing of a Stochastic Prediction, Rev. Econom. Stud., 2006, vol. 73, no. 4, pp. 893–906.

    Article  MATH  MathSciNet  Google Scholar 

  6. Fortnow, L. and Vohra, R.V., The Complexity of Forecast Testing, Econometrica, 2009, vol. 77, no. 1, pp. 93–105.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dawid, A.P., Calibration-Based Empirical Probability, Ann. Statist., 1985, vol. 13,no. 4, pp. 1251–1285.

    Article  MATH  MathSciNet  Google Scholar 

  8. Uspensky, V.A., Semenov, A.L., and Shen’, A.Kh., Can an Individual Sequence of Zeros and Ones Be Random?, Uspekhi Mat. Nauk, 1990, vol. 45, no. 1, pp. 105–162 [Russian Math. Surveys (Engl. Transl.), 1990, vol. 45, no. 1, pp. 121–189].

    MathSciNet  Google Scholar 

  9. Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and Its Applications, New York: Springer, 1997, 2nd ed.

    MATH  Google Scholar 

  10. Oakes, D., Self-Calibrating Priors Do Not Exist, J. Amer. Statist. Assoc., 1985, vol. 80, no. 390, pp. 339–342.

    Article  MATH  MathSciNet  Google Scholar 

  11. Sandroni, A., Smorodinsky, R., and Vohra, R.V., Calibration with Many Checking Rules, Math. Oper. Res., 2003, vol. 28, no. 1, pp. 141–153.

    Article  MATH  MathSciNet  Google Scholar 

  12. Shiryaev, A.N., Veroyatnost’, Moscow: Nauka, 1980. Translated under the title Probability, New York: Springer, 1984.

    Google Scholar 

  13. Kakade, S. and Foster, D.P., Deterministic Calibration and Nash Equilibrium, Proc. 17th Ann. Conf. on Learning Theory (COLT’2004), Banff, Canada, 2004, Shawe-Taylor, J. and Singer, Y., Eds., Lect. Notes Comp. Sci., vol. 3120, Berlin: Springer, 2004, pp. 33–48.

    Google Scholar 

  14. Lehrer, E., Any Inspection Rule Is Manipulable, Econometrica, 2001, vol. 69, no. 5, pp. 1333–1347.

    Article  MATH  MathSciNet  Google Scholar 

  15. Rogers, H., Theory of Recursive Functions and Effective Computability, New York: McGraw-Hill, 1967. Translated under the title Teoriya rekursivnykh funktsii i effektivnaya vychislimost’, Moscow: Mir, 1972.

    MATH  Google Scholar 

  16. Zvonkin, A.K. and Levin, L.A., Complexity of Finite Objects and the Algorithmic Concepts of Information and Randomness, Uspekhi Mat. Nauk, 1970, vol. 25, no. 6, pp. 85–127 [Russian Math. Surveys (Engl. Transl.), 1970, vol. 25, no. 6, pp. 83–124].

    MathSciNet  Google Scholar 

  17. V’yugin, V.V., Non-Stochastic Infinite and Finite Sequences, Theoret. Comput. Sci., 1998, vol. 207, no. 2, pp. 363–382.

    Article  MATH  MathSciNet  Google Scholar 

  18. Vovk, V., Defensive Forecasting for Optimal Prediction with Expert Advice, arXiv e-print 0708.1503v1, 2007.

  19. Cesa-Bianchi, N. and Lugosi, G., Prediction, Learning, and Games, Cambridge: Cambridge Univ. Press, 2006.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. V’yugin.

Additional information

Original Russian Text © V.V. V’yugin, 2011, published in Problemy Peredachi Informatsii, 2011, Vol. 47, No. 2, pp. 90–116.

The paper is an extended version of a talk [1] given at the Computer Science Symposium in Russia (CSR-2008), Moscow, 2008.

Supported in part by the Russian Foundation for Basic Research, project nos. 09-07-00180a and 09-01-00709a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

V’yugin, V.V. On universal algorithms for adaptive forecasting. Probl Inf Transm 47, 166–189 (2011). https://doi.org/10.1134/S0032946011020074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946011020074

Keywords

Navigation