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Abstract

We consider the problem of frequency estimation by observations

of the periodic diffusion process possesing ergodic properties in two

different situations. The first one corresponds to continuously diffeen-

tiable with respect to parameter trend coefficient and the second -

to discontinuous trend coefficient. It is shown that in the first case

the maximum likelihood and bayesian estimators are asymptotically

normal with rate T
3/2 and in the second case these estimators have

different limit distributions with the rate T
2.
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1 Introduction

Let us consider the model “signal in noise” of the following type

x (t) = S (ϑ, t) + n (t) , 0 ≤ t ≤ T, (1)

where S (ϑ, ·) is the signal transmitting the “information” ϑ and observed
in the presence of additive “noise” n (·). This is a typical model for the
theory of telecommunications. There is a alarge diversity of statistical prob-
lems related to this model. One way is to study the different noises (white
Gaussian, “colored” Gaussian, stationary etc.) and another way is to study
the different types of “modulations”, i.e.; to choose the signals S (·), like
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amplitude modulation S (ϑ, t) = ϑh (t), phase modulation S (ϑ, t) = h (t− ϑ)
or frequency modulation S (ϑ, t) = h (ϑt). Here the function h (·) is usualy
supposed to be periodic. The most developed is the theory of estimation of
periodic signals observed in white Gaussian noise.

The problem of period (or frequency) estimation has particularities which
put it in some sense out of traditional (

√
n) statistical framework. Let us

remind some known properties of the maximum likelihood estimator (MLE)
of the frequency ϑ ∈ (α, β) , 0 < α < β < ∞ obtained by Ibragimov and
Khasminskii [9] for the model signal in white Gaussian noise (SWN) and
some related problems for inhomogeneous Poisson processes.

Suppose that the observed process is

dXt = A sin (ϑt) dt + σdWt, X0 = 0, 0 ≤ t ≤ T

(SWN) and we have to estimate the frequency ϑ by the observations XT =
(Xt, 0 ≤ t ≤ T ). We are interested by the properties of estimators in asymp-
totics of “large samples”: T → ∞. The Fisher information is

IT (ϑ) =
A2

σ2

∫ T

0

t2 cos2 (ϑt) dt =
A2T 3

3σ2
(1 + o (1))

and the MLE ϑ̂T is asymptotically normal with the rate T 3/2, i.e.;

T 3/2
(

ϑ̂T − ϑ
)

⇒ N
(

0,
3σ2

A2

)

, Eϑ

(

ϑ̂T − ϑ
)2

=
3σ2

A2T 3
(1 + o (1)) . (2)

Note that if β = ∞, then the (uniformly in ϑ) consistent estimation is im-

possible. Even if we allow βT → ∞, then for βT < exp
{(

A2

4σ2 − ε
)

T
}

(any

ε > 0) the MLE is consistent and for βT > exp
{(

A2

4σ2 + ε
)

T
}

the uniformly

consistent estimation of ϑ is impossible (see [9], Section 7.1 for exact statemts
and proofs).

If we consider the problem of parameter estimation by observations

dXt = S (t− ϑ) dt + σdWt, X0 = 0, 0 ≤ t ≤ T,

where S (·) is periodic function of period 1 having a discontinuity at points
τ∗ + k, k = 0, 1, 2, . . ., then the rate of convergence of the MLE ϑ̂T is differ-
ent. Let us denote S (τ∗−) and S (τ∗+) the left and right limits, S (τ∗+) −
S (τ∗−) = r 6= 0. Then

T
(

ϑ̂T − ϑ
)

=⇒ η, Eϑ

(

ϑ̂T − ϑ
)2

=
26 σ2

r2 T 2
(1 + o (1)) , (3)
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where η is a random variable (see [9], Section 7.2).
The similar problems of parameter estimation were considered in [10] for

the model of periodic Poisson process. It was supposed that the observed
inhomogeneous Poisson process XT = (Xt, 0 ≤ t ≤ T ) has intensity function

S (ϑ, t) = S (ϑt)

where S (t) is τ -periodic smooth function. It was shown that the MLE ϑ̂T is
asymptotically normal with the rate T 3/2 :

T 3/2
(

ϑ̂T − ϑ
)

=⇒ N
(

0, a2
)

, Eϑ

(

ϑ̂T − ϑ
)2

=
a2

T 3
(1 + o (1)) , (4)

see [10], Section 2.3 for details.
In the case of discontinuous periodic intensity S (t− ϑ) (shift parameter)

the rate is (like (3)) T , i.e.;

T
(

ϑ̂T − ϑ
)

=⇒ ξ, Eϑ

(

ϑ̂T − ϑ
)2

=
c2

T 2
(1 + o (1)) . (5)

See [10], Section 5.1 for details. Moreover, the problem of frequency estima-
tion of periodic discontinuous intensity function S (ϑt) was also considered
and it was shown that the rate of convergence of the MLE is T 2, i.e.; we have
the limits

T 2
(

ϑ̂T − ϑ
)

=⇒ ζ, Eϑ

(

ϑ̂T − ϑ
)2

=
b2

T 4
(1 + o (1)) . (6)

In the present work we consider the problem of frequency estimation
in the case of periodic discontinuous trend coefficient of ergodic diffusion
process. This work is a continuation of our study of parameter estimation
problems for periodic diffusion processes started in [6]-[7]. In all these works
we suppose that the observed diffusion process is given by the equation

dXt = [S (ϑ, t) + b (Xt)] dt + σ (Xt) dWt, X0, 0 ≤ t ≤ T, (7)

where the function S (ϑ, t) , t ≥ 0 is (known) periodic of period τ , i.e.,
S (ϑ, t+ kτ) = S (ϑ, t) the functions b (·) and σ (·) are known and smooth.

This problem of parameter estimation can be considered as particular
case of (1) with “diffusion noise” n (t) = b (Xt) + σ (Xt) Ẇt. Therefore once
more we have a problem of the theory of telecommunication (transmission of
signals) but this model of observations is as well interesting in some biolog-
ical experiments related to membrane potential data sets (see Höpfner [3]).
We suppose that the diffusion process has ergodic properties and describe
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the asymptotics of the MLE and BE in regular and singular (discontinuous)
situations. The existance of periodic solution for Markov processes with pe-
riodic coefficients were studied by Khasminskii [3] and the ergodic properties
(law of large numbers, periodic invariant density...) used in the present work
were obtained by Höpfner and Löcherbach [8].

We have to note that if the diffusion coefficient is a deterministic function,
say, σ (x) ≡ σ > 0, then the simple transformation (we suppose always that
b (x) is known)

Yt = X0 −
∫ t

0

b (Xs) ds

reduces the equation (7) to the well known signal in WGN model

dYt = S (ϑ, t) dt+ σ dWt, Y0 = 0, 0 ≤ t ≤ T,

and for this model all mentioned above problems are already well studied.

Let us denote by
{

P
(T )
ϑ , ϑ ∈ Θ

}

the family of measures induced by the

solutions of (7) in the measurable space (C [0, T ] ,B [0, T ]) and put

L
(

ϑ,XT
)

=
dP

(T )
ϑ

dP(T )

(

XT
)

,

where P(T ) is the measure corresponding to the process (7) with S (ϑ, t) ≡ 0.
The likelihood ratio is

L
(

ϑ,XT
)

= exp

{

∫ T

0

S (ϑ, t)

σ (Xt)
2dXt −

∫ T

0

S (ϑ, t)2 + 2S (ϑ, t) b (Xt)

2σ (Xt)
2 dt

}

(8)

and the estimators are defined by the usual formulas: for the MLE ϑ̂T we
have

L
(

ϑ̂T , X
T
)

= sup
θ∈Θ

L
(

θ,XT
)

, (9)

and for Bayesian estimator ϑ̃T we write

ϑ̃T =

∫

Θ
θp (θ)L

(

θ,XT
)

dθ
∫

Θ
p (θ)L (θ,XT ) dθ

, (10)

i.e., we suppose that the loss function is quadratic and the density a pripory
p (·) is given. We study the asymptotic properties of these estimators with
the help of the methode by Ibragimov and Khasminskii [9] which consists in
the establishing some properties of the normalized likelihod ratio process

ZT (u) =
L
(

ϑ+ ϕTu,X
T
)

L (ϑ,XT )
, u ∈ UT =

[

α− ϑ

ϕT

,
β − ϑ

ϕT

]
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where ϑ is the true value and the choice of the normalizing function ϕT → 0
depends on the “smoothness” of the problem.

In the first work [6] we supposed that the function S (ϑ, t) = S (t− ϑ)
and S (t) , t ≥ 0 is periodic function having a jump r = S (τ∗+)−S (τ∗−) 6= 0
at the point τ∗ ∈ (0, τ). It is shown that the choice of the function ϕT = T−1

provides the limit

ZT (u) =⇒ Z (u) = exp

{

γW (u)− |u|
2
γ2

}

, u ∈ R (11)

with some constant γ. Here W (u) is double sided Wiener process. The
estimators have the following properties. Let us put

Z (û) = sup
u

Z (u) , ũ =

∫∞

−∞
uZ (u) du

∫∞

−∞
Z (u) du

, (12)

then we can write

T
(

ϑ̂T − ϑ
)

=⇒ û, T
(

ϑ̃T − ϑ
)

=⇒ ũ, (13)

and convergence of all polynomial moments of these estimators (like (3)) take
place (see [6]).

In the second work [5] we considered the usual (regular) estimation prob-
lem with smooth periodic function S (ϑ, t) such that its derivative is periodic
too. It is shown that with classical normalization ϕT = T−1/2 the corre-
sponding family of measures is LAN :

ZT (u) =⇒ Z (u) = exp

{

u∆− u2

2
I (ϑ)

}

, (14)

where I (ϑ) is the Fisher information (on one period) and ∆ ∼ N (0, I (ϑ)).
For the estimators we obtain, as usual, asymptotic normality

√
T
(

ϑ̂T − ϑ
)

=⇒ ∆

I (ϑ)
,

√
T
(

ϑ̃T − ϑ
)

=⇒ ∆

I (ϑ)
(15)

and convergence of all polynomial moments

Eϑ

(

ϑ̂T − ϑ
)2

=
1

T I (ϑ)
(1 + o (1)) .

The last work is devoted to the study of the local structure of the family
of measures corresponding to the observations (7) with S (ϑ, t) = S (ϑt)
where S (t) is a periodic function. We describe the asympptotic behavior of
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the normalized likelihood ratio ZT (u) in two situations: when the periodic
function S (t) is smooth and when it is discontinuous. It is shown that in the
first case the normalizing function ϕT = T−3/2 and the limit is like (14) and
in the second case ϕT = T−2 and the limit is like (11). In the present work we
descride the properties of the MLE and Bayesian estimators of the frequency
in the same two situations. We show that in the smooth case the MLE and
BE are asymptotically normal similar to (4) and in the discontinuous case
we have convergence like (6) but with the different limit distributions.

2 Main results

The observed diffusion processXT = (Xt, 0 ≤ t ≤ T ) satisfies the stochastic
differential equation

dXt = [S (ϑt) + b (Xt)] dt + σ (Xt) dWt, X0, 0 ≤ t ≤ T, (16)

and we study the properties of estimators of the parameter ϑ in two situations
: when the function S (t) is smooth (regular estimation problem) and when
the function S (t) has a discontinuity (singular estimation problem).

In both cases we suppose that the following conditions are fulfilled.

A1. The function S (t) is bounded and periodic of period τ = 1. The
functions b (·) , σ (·) ∈ C3

b , i.e.; have three continuous bounded derivatives.
The parameter ϑ ∈ (α, β) = Θ.

Let us introduce the constants m,M by the relation

m ≤ S (t) ≤ M, t ∈ [0, 1] ,

and put S− = min (m, 0) and S+ = max (M, 0).
A2. There exist constants A > 0 and ε > 0 such that for |x| > A we

have
2x1I{x<−A}S− + 2x1I{x>A}S+ + 2xb (x) + σ (x)2 < −ε.

Note that by condition A1 these functions satisfy the global Lipshitz
condition

|b (x)− b (y)|+ |σ (x)− σ (y)| ≤ L |x− y|
and the linear growth condition

|b (x)|+ |σ (x)| ≤ L1 (1 + |x|) .

Therefore the equation (16) has a unique strong solution [12].
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A3. The diffusion coefficient is a bounded function separated from zero :
there exist two constants k,K such that

0 < κ ≤ σ (x)2 ≤ K (17)

Under conditions A1,A2,A3 the diffusion process has ergodic properties
(Höpfner and Löcherbach, [8] ), i.e., there exists an invariant (periodic) den-
sity function fϑ (t, x) such that for any absolutely integrable τ = 1/ϑ-periodic
in time function h (ϑ, t, x) we have (with probability 1) the following limits

1

T

∫ T

0

h (ϑ, t,Xt) dt −→
1

τ

∫ ∞

−∞

∫ τ

0

h (ϑ, t, x) fϑ (t, x) dt dx, (18)

1

n

n
∑

k=1

h (ϑ, t∗ + kτ,Xt∗+kτ) −→
∫ ∞

−∞

h (ϑ, t∗, x) fϑ (t∗, x) dx. (19)

To prove the asymptotic efficiency we need the following uniform law of
large numbers.

A4. The convergence in (18), (8) is uniform on compacts K ∈ Θ.

A sufficient forA4 condition is given in the Section 3. Below the condition
A= (A1,A2,A3,A4).

2.1 Smooth trend

We consider the problem of frequency ϑ estimation by observations XT of
the periodic diffusion process (16).

B. The periodic function S (t) , t ≥ 0 is nonconstant and continuously
differentiable.

The role of Fisher information in our problem plays the quantity

I (ϑ) =
1

3τ

∫ τ

0

Ṡ (ϑt)2
∫ ∞

−∞

fϑ (t, x)

σ (x)2
dx dt,

where dot means derivation : Ṡ (t) = dS (t) /dt.
Introduce the lower bound on the meansquare risk of all estimators ϑ̄T :

lim
δ→0

lim
T→∞

sup
|ϑ−ϑ0|≤δ

T 3Eϑ

∣

∣ϑ̄T − ϑ
∣

∣

2 ≥ I (ϑ0)
−1 . (20)

This is a version of the well-known Hajek-Le Cam lower bound (see for ex-
ample [9]). We call an estimator ϑ⋆

T asymptotically efficient if for all ϑ0 ∈ Θ
we have the equality

lim
δ→0

lim
T→∞

sup
|ϑ−ϑ0|≤δ

T 3Eϑ |ϑ⋆
T − ϑ|2 = I (ϑ0)

−1 . (21)
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Theorem 1 Let the conditions A and B be fulfilled. Then the MLE ϑ̂T and
BE ϑ̃T have the following properties uniformly on compacts K ⊂ Θ.

• These estimators are consistent: for any δ > 0

sup
ϑ∈K

Pϑ

{
∣

∣

∣
ϑ̂T − ϑ

∣

∣

∣
> δ
}

→ 0, sup
ϑ∈K

Pϑ

{
∣

∣

∣
ϑ̃T − ϑ

∣

∣

∣
> δ
}

→ 0.

• These estimators are asymptotically normal

T 3/2
(

ϑ̂T − ϑ
)

=⇒ ζ, T 3/2
(

ϑ̃T − ϑ
)

=⇒ ζ, ζ ∼ N
(

0, I (ϑ)−1) .

• We have the convergence of moments : for any p > 0

lim
T→∞

T
3p
2 Eϑ

∣

∣

∣
ϑ̂T − ϑ

∣

∣

∣

p

= Eϑ |ζ |p , lim
T→∞

T
3p
2 Eϑ

∣

∣

∣
ϑ̂T − ϑ

∣

∣

∣

p

= Eϑ |ζ |p ,

• The both estimators are asymptotically efficient in the sense (21) .

Proof. Let us introduce the normalized likelihood ratio

ZT (u) =
L
(

ϑ+ T−3/2u,XT
)

L (ϑ,XT )
, u ∈ UT =

(

T 3/2 (α− ϑ) , T 3/2 (β − ϑ)
)

.

According to (8) it has the form (below ϑu = ϑ+ T−3/2u)

lnZT (u) =

∫ T

0

S (ϑut)− S (ϑt)

σ (Xt)
dWt −

1

2

∫ T

0

(

S (ϑut)− S (ϑt)

σ (Xt)

)2

dt.

This proces can be written as

lnZT (u) =
u

T 3/2

∫ T

0

t Ṡ (ϑt)

σ (Xt)
dWt −

u2

2T 3

∫ T

0

(

t Ṡ (ϑt)

σ (Xt)

)2

dt+ rT .

It was shown (see [7]) that

1

T 3

∫ T

0

(

t Ṡ (ϑt)

σ (Xt)

)2

dt −→ I (ϑ) , rT → 0

and

∆T (ϑ) =
1

T 3/2

∫ T

0

t Ṡ (ϑt)

σ (Xt)
dWt =⇒ ∆(ϑ) ∼ N (0, I (ϑ)) .
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Moreover, as we suppose uniform law of large numbers (8), this conver-
gence is uniform on compacts K ⊂ Θ. Therefore, if we introduce the random
process (see (14))

Z (u) = exp

{

u∆(ϑ)− u2

2
I (ϑ)

}

, u ∈ R,

then the following result take place.

Lemma 1 The finite dimensional distributions of the random process ZT (·)
converge to the finite dimensional distributions of the process Z (·) uniformly
in ϑ ∈ K.

For the proof see [7], Theorem 1.1. Just note that in [7] we do not
supposed the uniformity of this convergence and at present it follows from
the uniform law of large numbers.

Lemma 2 For any R > 0 the following inequaulity holds

sup
ϑ∈K

sup
|u1|+|u2|≤R

|u2 − u1|−2
Eϑ

∣

∣

∣
Z

1/2
T (u2)− Z

1/2
T (u1)

∣

∣

∣

2

≤ C
(

1 +R2
)

. (22)

Proof. Let us put ϑ1 = ϑ+ T−3/2u1, ϑ2 = ϑ+ T−3/2u2 and δ (t, x) is defined
below in (27). Then the estimate (28) with m = 1 allows us to write

Eϑ

∣

∣

∣
Z

1/2
T (u2)− Z

1/2
T (u1)

∣

∣

∣

2

≤ C1Eϑ1

(
∫ T

0

Vt δ (t, Xt)
2 dt

)2

+ C2Eϑ1

∫ T

0

V 2
t δ (t, Xt)

2 dt

≤ C1T

∫ T

0

Eϑ1
V 2
t δ (t, Xt)

4 dt + C2

∫ T

0

Eϑ1
V 2
t δ (t, Xt)

2 dt

= C1T

∫ T

0

Eϑ2
δ (t, Xt)

4 dt + C2

∫ T

0

Eϑ2
δ (t, Xt)

2 dt.

As the derivative of the function S (t) is bounded and we have (17) we
can write

T

∫ T

0

Eϑ2
δ (t, Xt)

4 dt ≤ CT (u2 − u1)
4 T−6

∫ T

0

t4dt ≤ C |u2 − u1|4

and similary
∫ T

0

Eϑ2
δ (t, Xt)

2 dt ≤ C (u2 − u1)
2 T−3

∫ T

0

t2dt ≤ C |u2 − u1|2 .

Therefore this lemma is proved.
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Lemma 3 For sufficiently large T we have

sup
ϑ∈K

EϑZ
1/2
T (u) ≤ e−κ|u|2/3 (23)

Proof. Let us put ϑ2 = ϑ+ T−3/2u, ϑ1 = ϑ. We can write

EϑZ
1/2
T (u)

= Eϑ exp

{

∫ T

0

δ (t, Xt)

2
dWt −

∫ T

0

δ (t, Xt)
2

8
dt−

∫ T

0

δ (t, Xt)
2

8
dt

}

≤ exp

{

− 1

8K

∫ T

0

[

S
(

ϑt+ T−3/2ut
)

− S (ϑt)
]2

dt

}

because

Eϑ exp

{

∫ T

0

δ (t, Xt)

2
dWt −

1

2

∫ T

0

δ (t, Xt)
2

4
dt

}

= 1

and by condition (17) we have as well
∫ T

0

δ (t, Xt)
2 dt ≥ 1

K

∫ T

0

[

S
(

ϑt + T−3/2ut
)

− S (ϑt)
]2

dt.

For the last integral according to (29) we have (z = ϑ−1T−1/2u)

∫ T

0

[

S
(

ϑt + T−3/2ut
)

− S (ϑt)
]2

dt ≥ c T
u2

ϑ2T

1 + u2

ϑ2T

.

Further, if u2 ≤ ϑ2T , then

T
u2

ϑ2T

1 + u2

ϑ2T

≥ u2

2ϑ2
,

and if u2 > ϑ2T , then

T
u2

ϑ2T

1 + u2

ϑ2T

≥ T

2
≥ |u|2/3

2 (β − α)2/3

because |u| ≤ T 3/2 (β − α). Therefore

1

8K

∫ T

0

δ (t, Xt)
2 dt ≥ κ |u|2/3

with some positive κ.
The properties of the likelihood ratio process established in Lemmas 1-3

allow us to apply the Theorems 3.1.1, 3.1.3 and 3.2.1 in [9] and to obtain all
properties of the MLE and BE announced in the Theorem 1.
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2.2 Discontinuous trend

We have the same model of observed periodic diffusion process (16) but the
function S (t) , t ≥ 0 is now discontnuous. More precizely, the following
condition holds.

C. The function S (·) is periodic with period 1, is continuously differen-
tiable everywhere except the points τ∗ + k (τ∗ ∈ (0, 1) , k = 0, 1, 2, . . .) and at
the points τ∗ + k it has the left and right limits S (τ∗−) and S (τ∗+) respec-
tively, S (τ∗+)− S (τ∗−) = r 6= 0.

The likelihood ratio random function L
(

ϑ,XT
)

, ϑ ∈ Θ is continuous with
probability 1 (see Lemma 5 below), hence the solution of equation (9) exists
and the both estimators ϑ̂T and ϑ̃T are well defined.

The limit distributions of these estimators are described with the help of
the random variables û and ũ defined in (12) where Z (u) is given by (11)
with

γ2 = [S (τ∗+)− S (τ∗−)]2
∫ ∞

−∞

fϑ (τ∗, x)

2 σ (x)2
dx.

The lower bound on the meansquare risk of all estimators is similar to
(20) :

lim
δ→0

lim
T→∞

sup
|ϑ−ϑ0|≤δ

T 4Eϑ

∣

∣ϑ̄T − ϑ
∣

∣

2 ≥ Eϑ0
ũ2.

For the proof of more general result see [9], Section 1.9. In our case this
inequality can be prooved in three lines if we suppose that we have already
proved the uniform convergence of moments of the BE

T 4Eϑ

∣

∣

∣
ϑ̃T − ϑ

∣

∣

∣

2

−→ Eϑ |ũ|2

(Theorem 2 below) as follows. Let us denote pδ (θ) , θ ∈ [ϑ0 − δ, ϑ0 + δ] a
density function and θ̃T the corresponding bayesian estimator. Then we can
write

sup
|ϑ−ϑ0|≤δ

T 4Eϑ

∣

∣ϑ̄T − ϑ
∣

∣

2 ≥ T 4

∫ ϑ0+δ

ϑ0−δ

Eθ

∣

∣ϑ̄T − θ
∣

∣

2
pδ (θ) dθ

≥ T 4

∫ ϑ0+δ

ϑ0−δ

Eθ

∣

∣

∣
θ̃T − θ

∣

∣

∣

2

pδ (θ) dθ −→
∫ ϑ0+δ

ϑ0−δ

Eθ |ũ|2 pδ (θ) dθ = Eϑ0
|ũ|2 .

This bound allows us to call an estimator ϑ⋆
T asymptotically efficient if

for all ϑ0 ∈ Θ we have the equality

lim
δ→0

lim
T→∞

sup
|ϑ−ϑ0|≤δ

T 4Eϑ |ϑ⋆
T − ϑ|2 = Eϑ0

|ũ|2 . (24)

11



Remind that the last value is known : Eϑ |ũ|2 ≈ 19, 3 γ−4 [13] and is less
than the similar quantity for the MLE Eϑ |û|2 = 26 γ−4 [14].

Theorem 2 Let the conditions A and C be fulfilled. Then the MLE ϑ̂T and
BE ϑ̃T have the following properties uniformly on compacts K ⊂ Θ :

• The both estimators are consistent.

• They have different limit distributions

T 2
(

ϑ̂T − ϑ
)

=⇒ û, T 2
(

ϑ̃T − ϑ
)

=⇒ ũ.

• The convergence of moments take place : for any p > 0

lim
T→∞

T 2p Eϑ

∣

∣

∣
ϑ̂T − ϑ

∣

∣

∣

p

= Eϑ |û|p , lim
T→∞

T 2p Eϑ

∣

∣

∣
ϑ̃T − ϑ

∣

∣

∣

p

= Eϑ |ũ|p ,

• BE are asymptotically efficient in the sense (24).

Proof. The normalized likelihood ratio is now

ZT (u) =
L
(

ϑ+ T−2u,XT
)

L (ϑ,XT )
, u ∈ UT =

(

T 2 (α− ϑ) , T 2 (β − ϑ)
)

.

We have the following result (see [7], Theorem 1.2)

Lemma 4 The finite dimensional distributions of the random process ZT (u)
converge to the finite dimensional distributions of the process Z (u) uniformly
on compacts K ∈ Θ.

To explain this convergence we can write the log-likelihood ratio as follows:
(below ϑu = ϑ+ T−2u, u > 0)

lnZT (u) =

∫ T

0

S (ϑut)− S (ϑt)

σ (Xt)
dWt −

1

2

∫ T

0

(

S (ϑut)− S (ϑt)

σ (Xt)

)2

dt

=

[Tϑ]
∑

k=0

∫ τ∗+k
ϑ

τ∗+k
ϑu

S (ϑut)− S (ϑt)

σ (Xt)
dWt −

[Tϑ]
∑

k=0

∫ τ∗+k
ϑ

τ∗+k
ϑu

(S (ϑut)− S (ϑt))2

2 σ (Xt)
2 dt+ o (1)

=

[Tϑ]
∑

k=0

[

r

∫ τ∗+k
ϑ

τ∗+k
ϑu

dWt

σ (Xt)
− r2

2

∫ τ∗+k
ϑ

τ∗+k
ϑu

dt

σ (Xt)
2

]

+ o (1) =⇒ γ W (u)− γ2

2
|u|

12



because

[Tϑ]
∑

k=0

∫
τ∗+k

ϑ

τ∗+k
ϑu

dt

σ (Xt)
2 =

u

ϑ2T 2

[Tϑ]
∑

k=0

k

σ
(

X τ∗+k
ϑ

)2 + o (1)

−→ u

2

∫ ∞

−∞

fϑ
(

τ∗
ϑ
, x
)

σ (x)2
dx =

u

2

∫ ∞

−∞

f1 (τ∗, x)

σ (x)2
dx

Here [Tϑ] is the integer part of Tϑ. The asymptotic normality of the stochas-
tic integral follows from this convergence (central limit theorem). For the
details see [7].

Lemma 5 The following inequaulity holds

sup
ϑ∈K

Eϑ

∣

∣

∣
Z

1/4
T (u2)− Z

1/4
T (u1)

∣

∣

∣

4

≤ C |u2 − u1|2 (25)

Proof. According to (28) with m = 2 we have

Eϑ

∣

∣

∣
Z

1/4
T (u2)− Z

1/4
T (u1)

∣

∣

∣

4

≤ C1Eϑ1

(
∫ T

0

Vt δ (t, Xt)
2 dt

)4

+ C2Eϑ1

(
∫ T

0

V 2
t δ (t, Xt)

2 dt

)2

.

Let us put ϑu1
= ϑ + T−2u1, ϑu2

= ϑ + T−2u2, N = [Tϑu1
] and consider

the case 0 < u1 < u2. Then we can write

∫ T

0

Vt δ (t, Xt)
2 dt =

N−1
∑

k=0

[

∫ τ∗+k
ϑu2

k
ϑu1

+

∫ τ∗+k
ϑu1

τ∗+k
ϑu2

+

∫ k+1

ϑu1

τ∗+k
ϑu1

]

Vt δ (t, Xt)
2 dt.

The function δ (t, Xt)
2 on the intervals

[

k

ϑu1

,
τ∗ + k

ϑu2

]

and

[

τ∗ + k

ϑu1

,
k + 1

ϑu1

]

is continuously differentiable on ϑ and therefore is majorated as follows

δ (t, Xt)
2 ≤ C t2

(u2 − u1)
2

T 4
.

Further, we have

∫ τ∗+k
ϑu1

τ∗+k
ϑu2

Vt δ (t, Xt)
2 dt ≤ C [S (τ∗+)− S (τ∗−)]2

∫ τ∗+k
ϑu1

τ∗+k
ϑu2

Vt dt.

13



Hence

Eϑ1

(

N−1
∑

k=0

∫ τ∗+k
ϑu1

τ∗+k
ϑu2

Vt dt

)4

≤ C N3

N−1
∑

k=0

Eϑ1

(

∫ τ∗+k
ϑu1

τ∗+k
ϑu2

Vt dt

)4

≤ C N3
N−1
∑

k=0

(τ∗ + k)3 (u2 − u1)
3

T 6

∫
τ∗+k
ϑu1

τ∗+k
ϑu2

Eϑ1
V 4
t dt

≤ C N3
N−1
∑

k=0

(τ∗ + k)4 (u2 − u1)
4

T 8
≤ C (u2 − u1)

4 .

Remind that Eϑ1
V 4
t = 1. For the second integral the similar arguments

provide

Eϑ1

(
∫ T

0

V 2
t δ (t, Xt)

2 dt

)2

≤ C (u2 − u1)
2 .

Now (25) follows from the last two estimates.

Lemma 6 For sufficiently large T we have

sup
ϑ∈K

EϑZ
1/2
T (u) ≤ e−κ|u|1/2 (26)

Proof. Following the proof of Lemma 3 (with ϑu = ϑ+T−2u) we obtain the
estimates

EϑZ
1/2
T (u) ≤ exp

{

− 1

8K

∫ T

0

[

S
(

ϑt + T−2ut
)

− S (ϑt)
]2

dt

}

and
∫ T

0

δ (t, Xt)
2 dt ≥ 1

K

∫ T

0

[

S
(

ϑt + T−2ut
)

− S (ϑt)
]2

dt.

Further, the estimate (30) allows us to write (z = ϑ−1T−1u)

∫ T

0

[

S
(

ϑt + T−2ut
)

− S (ϑt)
]2

dt ≥ c T
|u|
ϑT

1 + |u|
ϑT

.

If |u| ≤ ϑT , then

T
|u|
ϑT

1 + |u|
ϑT

≥ |u|
2ϑ

,

and if |u| > ϑT , then

T
|u|
ϑT

1 + |u|
ϑT

≥ T

2
≥ |u|1/2

2 (β − α)1/2

14



because |u| ≤ T 2 (β − α). Therefore

1

8K

∫ T

0

δ (t, Xt)
2 dt ≥ κ |u|1/2

with some positive κ.

The convergence of the finite-dimensional distributions of the random
function ZT (·) together with (25) and (26) allow us to cite the Theorems
1.10.1, 1.10.2, where the mentioned in the Theorem 2 properties of estimators
are proved.

3 Auxiliary results

Two lemmae. We remind here one estimate for the increaments of the
likelihood ratio and two lemmae which allowed us to prove the Lemma 2,3,5,6.

Let us introduce three diffusion processes

dXt = [S (ϑit) + b (Xt)] dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T, i = 0, 1, 2,

and denote by P
(T )
ϑi

, i = 0, 1, 2, the corresponding measures induced by these
processes in (C [0, T ] ,B [0, T ]). The Radon-Nikodym derivatives are denoted
as

Zi =
dP

(T )
ϑi

dP
(T )
ϑ0

(

XT
)

, i = 1, 2, Vt =

(

dP
(t)
ϑ2

dP
(t)
ϑ1

(

X t
)

)1/2m

where m ≥ 1 is some integer. Below we put

δ (t, x) =
S (ϑ2t)− S (ϑ1t)

σ (x)
. (27)

Remind that we suppose (17) and that the function S (t) , t ≥ 0 is bounded,
hence the function δ (t, x) is bounded too and by Lemma 1.13 in [11] we have
the following result.

There exist constants C1 (m) and C2 (m) such that

Eϑ0

∣

∣

∣
Z

1/2m
2 − Z

1/2m
1

∣

∣

∣

2m

≤ C1 (m)Eϑ1

(
∫ T

0

Vt δ (t, Xt)
2 dt

)2m

+ C2 (m)Eϑ1

(
∫ T

0

V 2
t δ (t, Xt)

2 dt

)m

(28)

The exponential decreasing of the tails of ZT (u) are verified with the help
of the following two lemmas.
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Lemma 7 (Ibragimov and Khasminskii) Let h (t) be a nonconstant contin-
uously differentiable periodic function. Then for all T sufficiently large and
for some constant c > 0, the inequality

1

T

∫ T

0

[

h
(

t+
z

T
t
)

− h (t)
]2

dt ≥ c
z2

1 + z2
(29)

is valid.

For the proof see [9], Lemma 3.5.3.

The similar result for discontinuous function is given in the following
Lemma.

Lemma 8 Let S (t) satisfies the condition B. Then for all T sufficiently
large and for some constant c > 0, the inequality

1

T

∫ T

0

[

S
(

t+
z

T
t
)

− S (t)
]2

dt ≥ c
|z|

1 + |z| (30)

is valid.

The proof of this lemma is a modification of the proof of lemma 7, which can
be found in [10], Lemma 5.7.

On uniform convergence. The uniform in ϑ ∈ Θ convergence (condi-
tion A4)

1

T

∫ T

0

h (ϑ, t,Xt) dt −→ 1

τ

∫ ∞

−∞

∫ τ

0

h (ϑ, t, x) fϑ (t, x) dt dx ≡ A (ϑ) .

means, that for any ε > 0 we have

sup
ϑ∈Θ

Pϑ

{
∣

∣

∣

∣

1

T

∫ T

0

[h (ϑ, t,Xt)− A (ϑ)] dt

∣

∣

∣

∣

> ε

}

−→ 0. (31)

Let us denote by H (ϑ, t, x) the solution of the following equation

∂H

∂t
+ [S (ϑt) + b (x)]

∂H

∂x
+

σ (x)2

2

∂2H

∂x2
= h (ϑ, t, x)− A (ϑ)

Then we can write

1

T

∫ T

0

[h (ϑ, t,Xt)−A (ϑ)] dt =
H (ϑ, T,XT )−H (ϑ, 0, X0)

T

− 1

T

∫ T

0

H ′
x (ϑ, t,Xt) σ (Xt) dWt
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Hence

Eϑ

(

1

T

∫ T

0

[h (ϑ, t,Xt)− A (ϑ)] dt

)2

≤ 2
Eϑ (H (ϑ, T,XT )−H (ϑ, 0, X0))

2

T 2

+
2

T 2

∫ T

0

Eϑ (H
′
x (ϑ, t,Xt)σ (Xt))

2
dt

It is sufficient to suppose that the last expectations are bounded uniformly
in ϑ ∈ Θ and apply in (31) the Tchebyshev inequality.

4 Discussion

Choice of the signal. Let us consider the equation (7) with two types of
modulation : p) phase S (ϑ, t) = S (t− ϑ) and f) frequency S (ϑ, t) = S (ϑt)
in two situations : smooth and discontinuous. Then from the results obtained
in [5]-[7] and presented in this work it follows that we have four problems
with four different rates

smooth (p) Eϑ

(

ϑ̂T − ϑ
)2

∼ c

T
, (f) Eϑ

(

ϑ̂T − ϑ
)2

∼ c

T 3

discontinuous (p) Eϑ

(

ϑ̂T − ϑ
)2

∼ c

T 2
, (f) Eϑ

(

ϑ̂T − ϑ
)2

∼ c

T 4
.

It is natural to ask: how far can we go in the rate of convergence? What is
the best choice of the signal and what is the best rate?

The similar statement for the signal in white Gaussian noise problem

dXt = S (ϑ, t) dt + dWt, X0 = 0, 0 ≤ t ≤ T, ϑ ∈ [0, 1]

was considered by M. Burnashev [1]. It was shown that for signals satisfying

1

T

∫ T

0

S (ϑ, t)2 dt ≤ L (32)

the best choice yields (T → ∞)

inf
S,ϑ̄T

sup
ϑ∈[0,1]

Eϑ

(

ϑ̂T − ϑ
)2

= exp

{

−L

6
T (1 + o (1))

}

.

Therefore the rate can be even exponential. The similar result was obtained
for inhomogenneous Poisson processes too [2]. It follows that if the diffusion
coefficient σ (x)2 ≡ 1 and the signal S (ϑ, t) in the equation (7) satisfies the
condition (32), then we have the same result with exponential rate.
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Generalisations. There are several generalisations which can be done
by the direct calculations similar to one given above.

If the function S (t) has jumps in k points 0 < τ1, . . . , τk < τ and is
continuously differentiable between these points, then the estimators have the
same asymptotic properties as described in the Theorem 2 but the constant
is

γ2 =

k
∑

l=1

∫

[S (τl+)− S (τl−)]2

σ (x)2
fϑ (τl + ϑ, x) dx.

The problem becames a bit more complicate if

dXt =
k
∑

l=1

Sl (t− ϑl) dt+ b (Xt) dt+ σ (Xt) dWt

and ϑ = (ϑ1, . . . , ϑk) but can be done too. The limit likelihood ratio is a
product of k one-dimensional likelihood ratios. See the details in [10], where
the similar problems were considered for periodic Poisson processes.

Three-dimensional parameter. In both problems studied above we
supposed that the unknown parameter is one-dimensional. It is interesting
to see the properties of estimators, say, in smooth case when the we have
three dimensional parameter ϑ = (ρ, ω, ϕ) in the model of observations

dXt = ρ sin (2πω t+ ϕ) dt + b(Xt)dt+ σ (Xt) dWt, X0 = 0, 0 ≤ t ≤ T,

i.e.: we have to estimate the amplitude ρ, frequency ω and phase ϕ of the
signal S (ϑ, t) = ρ sin (ω t+ ϕ).

The functions b (·) and σ (·) satisfy the condition A. This problem of
parameter estimation is regular and the technique developped in this work
together with calculus presented in Example 4 Section 3.5 in [9] allows us to
show that the MLE ϑ̂T is consistent and asymptotically normal :

√
T (ρ̂T − ρ) =⇒ η, T 3/2 (ω̂T − ω) =⇒ ξ,

√
T (ϕ̂T − ϕ) =⇒ ζ
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[8] Höpfner, R., Löcherbach, E. (2010) On some ergodic properties of
time inhomogeneous Markov processes with T-periodic semigroup.
Preprint(arXiv:1012.4916v3).

[9] Ibragimov, I.A. and Khasminskii, R.Z. (1981). Statistical Estimation.
Springer, New York.

[10] Kutoyants, Yu.A. (1998) Statistical Inference for Spatial Poisson Pro-

cesses. Springer, New York.

[11] Kutoyants, Yu.A. (2004) Statistical Inference for Ergodic Diffusion Pro-

cesses, Springer, London.

[12] Liptser, R.S. and Shiryayev, A.N. (2001) Statistics of Random Processes.

II. Applications, (2nd ed.) Springer, N.Y.

[13] Rubin, H., Song, K. (1995) Exact computation of the asymptotic effi-
ciency of maximum likelihood estimators of a dicontinuous signal in a
Gaussian white noise. Ann. Statist. 23, 732–739.

[14] Terent’yev, A.(1968) Probability distribution of a time location of an ab-
solute maximum at the output of a synchronized filter. Radioengineering
and Electronics, 13, 652–657.

19

http://arxiv.org/abs/1012.4916


Reinhard Höpfner
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