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INFORMATION-GEOMETRIC EQUIVALENCE OF

TRANSPORTATION POLYTOPES

MLADEN KOVAČEVIĆ, IVAN STANOJEVIĆ, AND VOJIN ŠENK

Abstract. This paper deals with transportation polytopes in the probability simplex (that is,
sets of categorical bivariate probability distributions with prescribed marginals). Information
projections between such polytopes are studied, and a sufficient condition is described under
which these mappings are homeomorphisms.

1. Preliminaries

Let Γn denote the set of probability distributions with alphabet {1, . . . , n}:

(1.1) Γn =
{

(pi) ∈ R
n : pi ≥ 0,

∑

i
pi = 1

}

.

The support of a probability distribution P = (pi) is denoted by supp(P ) = {i : pi > 0}, and its
size by | supp(P )|. The support of a set P of probability distributions is defined as supp(P) =
⋃

P∈P
supp(P ). If P is convex, then there must exist P ∈ P with supp(P ) = supp(P). We will

also write P (i) for the masses of P .
Let C(P,Q) denote the set of all bivariate probability distributions with marginals P ∈ Γn and

Q ∈ Γm:

(1.2) C(P,Q) =
{

(si,j) ∈ R
n×m : si,j ≥ 0,

∑

j
si,j = pi ,

∑

i
si,j = qj

}

.

Such sets are special cases of the so-called transportation polytopes, and have been studied exten-
sively in probability, statistics, geometry, combinatorics, etc. (see, e.g., [2, 14]). In information-
theoretic approaches to statistics, and in particular to the analysis of (multidimensional) con-
tingency tables, a basic role is played by the so-called information projections, see [7] and the
references therein. This motivates our study, presented in this note, of some formal properties of
information projections (I-projections for short) over domains of the form C(P,Q). I-projections
onto C(P,Q) also arise in binary hypothesis testing, see [13]. Further information-theoretic results
(in a fairly different direction) regarding transportation polytopes can be found in [12].

Relative entropy (information divergence, Kullback-Leibler divergence) of the distribution P
with respect to the distribution Q is defined by:

(1.3) D(P ||Q) =
∑

i
pi log

pi
qi
,

with the conventions 0 log 0
q
= 0 and p log p

0 = ∞ for every q ≥ 0, p > 0, being understood. The

functional D is nonnegative, equals zero if and only if P = Q, and is jointly convex in its arguments
[6].

For a probability distribution S and a set of distributions T , the I-projection [3, 4, 5, 15, 8]
of S onto T is defined as the unique minimizer (if it exists) of the functional D(T ||S) over all
T ∈ T . We shall study here I-projections as mappings between sets of the form C(P,Q). Namely,
let Iproj : C(P1, Q1) → C(P2, Q2) be defined by:

(1.4) Iproj(S) = arg inf
T∈C(P2,Q2)

D(T ||S).

(Above and in the sequel we assume that P1, P2 ∈ Γn and Q1, Q2 ∈ Γm.) The definition is slightly
imprecise in that Iproj(S) can be undefined for some S ∈ C(P1, Q1), i.e., the domain of Iproj can
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in fact be a proper subset of C(P1, Q1). This is overlooked for notational simplicity. Another
simplification is the omission of the dependence of the functional Iproj on Pi, Qi; this will not cause
any ambiguities.

Note that Iproj(S) is undefined only when D(T ||S) = ∞ for all T ∈ C(P2, Q2). If D(T ||S) < ∞
for some T ∈ C(P2, Q2), then existence of Iproj(S) follows easily from the properties of C(P2, Q2) and
the convexity of D(·||·) [6]. Therefore, Iproj(S) exists if and only if there exists T ∈ C(P2, Q2) with
supp(T ) ⊆ supp(S). Furthermore, it is clear that the I-projection is defined for all S ∈ C(P1, Q1)
if and only if it is defined for all vertices of C(P1, Q1).

2. Geometric equivalence of transportation polytopes

The vertices of transportation polytopes are uniquely determined by their supports and can be
characterized as follows: U is a vertex of C(P1, Q1) if and only if the associated bipartite graph
GU with “left” nodes {1, . . . , n}, “right” nodes {1, . . . ,m}, and edges {(i, j) : U(i, j) > 0}, is a
forest, i.e., contains no cycles [11]. In fact, every face of the polytope C(P1, Q1) is determined by
its support [2]. Apart from identifying faces, the condition for two vertices being adjacent can
also be expressed in terms of supports, as can many other geometric and combinatorial properties
of transportation polytopes (see [9] and the references therein). This motivates the following
definition.

Definition 2.1. We say that the polytopes C(P1, Q1) and C(P2, Q2) are geometrically equivalent if
for every S ∈ C(P1, Q1) there exists T ∈ C(P2, Q2) with supp(S) = supp(T ), and vice versa. This
is equivalent to saying that for every vertex U ∈ C(P1, Q1) there exists a vertex V ∈ C(P2, Q2)
with supp(U) = supp(V ), and vice versa. N

Further justification of the term “geometrically equivalent”, in a certain information-geometric
sense, is given in Theorem 3.3 below.

Example 2.2. To give an example of two geometrically equivalent transportation polytopes,
consider some C(P1, Q1) that is generic (nondegenerate) [9], implying that the bipartite graphs
defining its vertices are spanning trees, and assume that Q1 has only two masses (m = 2). In this
case for every vertex U ∈ C(P1, Q1), GU has n + 1 edges and therefore necessarily contains edges
(i, 1) and (i, 2) for some i ∈ {1, . . . , n} (Fig. 1). Then it is not hard to see that C(P1, Q2) where
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Figure 1. Graphs of the vertices of C(P1, Q1) and C(P1, Q2).

Q2(1) = Q1(1) + ε, Q2(2) = Q1(2)− ε, has vertices with identical supports as those of C(P1, Q1),
for small enough ε. Thus, C(P1, Q1) and C(P1, Q2) are geometrically equivalent. N

The following claim is straightforward.

Proposition 2.3. If C(P1, Q1) and C(P2, Q2) are geometrically equivalent, then they are combi-
natorially equivalent, i.e., they have isomorphic face lattices. �

3. I-projections between transportation polytopes

It is easy to see from the above discussion that Iproj maps the vertices of C(P1, Q1) to the
vertices of C(P2, Q2). In the study of probability distributions with fixed marginals there are two
particularly important vertices called Fréchet-Hoeffding (F-H for short) upper and lower bounds
[14]. Both of them are uniquely determined by their supports, namely, F ∈ C(P,Q) is the F-H
upper bound for the family C(P,Q) if and only if its associated bipartite graph has no crossings
(when the nodes {1, . . . , n} on the left and {1, . . . ,m} on the right are drawn in increasing order,
see Fig. 1), while F ∈ C(P,Q) is the F-H lower bound if and only if its associated graph, after
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reversing the order of the “right” nodes, has no crossings (in other words, the support of the lower

bound for C(P,Q) is the same as that of the upper bound for C(P, Q̃), where Q̃ is the inverse

permutation of Q, i.e., Q̃(i) = Q(m+ 1− i)). We then have:

Proposition 3.1. Let F i, F i ∈ C(Pi, Qi), i ∈ {1, 2}, be the F-H upper and lower bounds. If the
I-projection of F 1 (resp. F 1) onto C(P2, Q2) exists, it is necessarily F 2 (resp. F 2). �

Another particular case that can be derived directly is that Iproj(P1 ×Q1) = P2 ×Q2, whenever
supp(P2) ⊆ supp(P1) and supp(Q2) ⊆ supp(Q1). To prove this, it is by [7, Thm 3.2] enough to
show that:

(3.1) D(T ||P1 ×Q1) = D(P2 ×Q2||P1 ×Q1) +D(T ||P2 ×Q2)

for all T ∈ C(P2, Q2), which follows from:

(3.2)
∑

i,j

T (i, j) log
P2(i)Q2(j)

P1(i)Q1(j)
= D(P2||P1) +D(Q2||Q1) = D(P2 ×Q2||P1 ×Q1).

We now restrict our attention to geometrically equivalent polytopes.

Proposition 3.2. C(P1, Q1) and C(P2, Q2) are geometrically equivalent if and only if every vertex
U ∈ C(P1, Q1) has an I-projection onto C(P2, Q2) and every vertex V ∈ C(P2, Q2) has an I-
projection onto C(P1, Q1).

Proof. The “only if” part is straightforward. For the “if” part, take some vertex U ∈ C(P1, Q1);
let its I-projection onto C(P2, Q2) be U∗, and let the I-projection of U∗ onto C(P1, Q1) be U ′.
We know that supp(U ′) ⊆ supp(U∗) ⊆ supp(U), but in fact none of the inclusions can be strict
because there can be no two vertices of a transportation polytope such that the support of one of
them contains the support of the other. �

The main result that we wish to report in this note is stated in the following theorem. It is a
direct consequence of the propositions proved subsequently.

Theorem 3.3. If C(P1, Q1) and C(P2, Q2) are geometrically equivalent, then they are homeomor-
phic under information projections. �

We first give a simple proof of continuity of information projections by using a well known
identity obeyed by these functionals. See also [10] for a slightly different proof (obtained for the
more general notion of f -projections). The assumed topology is the one induced by the ℓ1 norm,
and in what follows Pn → P means that ‖Pn − P‖1 ≡

∑

i |Pn(i)− P (i)| → 0.

Proposition 3.4. Iproj is continuous in its domain.

Proof. Let Sn, S ∈ C(P1, Q1) with Sn → S. Let S∗ = Iproj(S), S
∗
n = Iproj(Sn); we need to show

that S∗
n → S∗. Since C(P2, Q2) is compact, S∗

n must have a convergent subsequence S∗
kn

(kn is
an increasing function in n). Suppose that S∗

kn

→ R for some R ∈ C(P2, Q2). The set of all

distributions T ∈ C(P2, Q2) with supp(T ) ⊆ supp(Skn
) is a linear family1 [7], and therefore the

following identity holds [7, Thm 3.2]:

(3.3) D(T ||Skn
) = D(S∗

kn

||Skn
) +D(T ||S∗

kn

)

for all T ∈ C(P2, Q2) with supp(T ) ⊆ supp(Skn
). Taking the limit when n → ∞ and using the fact

that D(·||·) is continuous in its second argument (in the finite alphabet case), we obtain:

(3.4) D(T ||S) = lim
n→∞

D(S∗
kn

||Skn
) +D(T ||R).

Evaluating (3.4) at T = R we conclude that limn→∞ D(S∗
kn

||Skn
) = D(R||S). Substituting this

back into (3.4) and evaluating at T = S∗ we get:

(3.5) D(S∗||S) = D(R||S) +D(S∗||R),

wherefrom D(S∗||S) ≥ D(R||S). But since S∗ is by assumption the unique minimizer of D(·||S)
over C(P2, Q2), we must have R = S∗. �

1A linear family of (two-dimensional) probability distributions is a set of the form
{

T :
∑

i,j T (i, j)fk(i, j) = αk

}

,

where fk, 1 ≤ k ≤ K, are real functions defined on the alphabet of the distributions T , and αk are real numbers.
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Proposition 3.5. Let C(P1, Q1) and C(P2, Q2) be geometrically equivalent. Then Iproj is a bijec-
tion2.

Proof. 1.) Iproj is injective (one-to-one). Observe that every distribution S ∈ C(P1, Q1) maps to a
distribution with the same support, i.e., supp(Iproj(S)) = supp(S); this follows from [7, Thm 3.1]
(that such a distribution exists follows from geometric equivalence of C(P1, Q1) and C(P2, Q2)).
We conclude that a vertex V ∈ C(P1, Q1) maps to the corresponding vertex V ∗ ∈ C(P2, Q2)
with supp(V ∗) = supp(V ), and no other distribution from C(P1, Q1) can map to V ∗ because
vertices are uniquely determined by their supports. Assume now, for the sake of contradiction,
that Iproj(S1) = Iproj(S2) = S∗, where S1, S2 ∈ C(P1, Q1) are not vertices. As commented above,
we necessarily have supp(S1) = supp(S2) = supp(S∗). Furthermore, by [7, Thm 3.2] we have:

(3.6)
D(T ||S1) = D(S∗||S1) +D(T ||S∗)

D(T ||S2) = D(S∗||S2) +D(T ||S∗)

and by subtracting these equations we get:

(3.7) D(T ||S1)−D(T ||S2) = D(S∗||S1)−D(S∗||S2)

for all T ∈ C(P2, Q2) with supp(T ) ⊆ supp(S∗). By writing out all terms of (3.7) we obtain:

(3.8)
∑

i,j

T (i, j) log
S2(i, j)

S1(i, j)
=

∑

i,j

S∗(i, j) log
S2(i, j)

S1(i, j)
.

Define ǫ(i, j) = S2(i, j) − S1(i, j). We can evaluate (3.8) at T = S∗ + δǫ for some small enough
constant δ > 0, because

∑

i ǫ(i, j) =
∑

j ǫ(i, j) = 0 and supp(S∗) = supp(S1) = supp(S2), which

ensures that S∗ + δǫ ∈ C(P2, Q2) and supp(T ) ⊆ supp(S∗). This gives:

(3.9)
∑

i,j

ǫ(i, j) log
S2(i, j)

S1(i, j)
= 0.

But ǫ(i, j) and log S2(i,j)
S1(i,j)

always have the same sign, which means that the left-hand side of (3.9)

is strictly positive and cannot equal zero, a contradiction.
2.) Iproj is surjective (onto). Let Fk ⊆ C(P1, Q1) be a k-dimensional face of C(P1, Q1), k ≤

(n − 1)(m − 1), determined uniquely by its support supp(Fk), namely, Fk = {S ∈ C(P1, Q1) :
supp(S) ⊆ supp(Fk)}. We can regard Fk as a convex and compact subset of its affine hull, denoted
aff(Fk). When regarded this way, the interior of Fk is nonempty and consists of distributions with
full support, namely, int(Fk) = {S ∈ Fk : supp(S) = supp(Fk)}. The boundary of Fk, denoted
∂Fk, is the union of the proper faces of Fk. Distributions in ∂Fk have supports strictly contained
in supp(Fk). Now, let F

∗
k be the corresponding face of C(P2, Q2) with supp(F∗

k ) = supp(Fk). We
know that Iproj maps distributions from Fk to distributions from F∗

k (Iproj(Fk) ⊆ F∗
k ) because,

for S ∈ Fk, D(·||S) is finite only over F∗
k . We will show that in fact Iproj(Fk) = F∗

k , i.e., that
Iproj is surjective over Fk, which will establish the desired claim. The proof is by induction on the
dimension of the faces (k). We first observe, again by analyzing supports, that Iproj(int(Fk)) ⊆
int(F∗

k ), and Iproj(∂Fk) ⊆ ∂F∗
k (in fact, the image of every proper face of Fk is contained in the

corresponding face of F∗
k having the same support). We can now start the induction. Assume that

Iproj is surjective over every face of C(P1, Q1) of dimension < k (we know that it is surjective over
zero-dimensional faces, i.e., vertices, and so the induction is justified). Therefore, the assumption
is that Iproj(∂Fk) = ∂F∗

k , and we need to show that also Iproj(int(Fk)) = int(F∗
k ). We will use the

following simple claim.

Claim 1. Let A and B be open sets (in arbitrary topological space) with A ⊆ B, and B
connected. If A and B have the same boundaries (∂A = ∂B) then they are equal.

Proof: Assume that A 6= B, and let x ∈ B \ A. There must exist a neighborhood of x,
denoted V (x), such that V (x) ⊆ B \ A for otherwise we would have that x ∈ ∂A = ∂B
which is impossible since B is open and cannot contain its boundary points. This proves
that B \ A is open and hence B is a union of two disjoint open sets (A and B \ A). This
is a contradiction because B is connected. N

2Note that this follows from a stronger statement given in Proposition 3.6, but we also give here a direct proof
that we believe is interesting in its own right.
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We know that Iproj(int(Fk)) ⊆ int(F∗
k ), and that int(F∗

k ) is open (in aff(F∗
k )) and connected.

Hence, to prove that Iproj(int(Fk)) = int(F∗
k ) (by using Claim 1), we need to show that Iproj(int(Fk))

is open, and that ∂Iproj(int(Fk)) = ∂ int(F∗
k ) ≡ ∂F∗

k . Since Iproj is an injective and continuous
function from a compact to a metric space, it is a homeomorphism onto its image [1, Thm 7.8, Ch
I]. In particular, it is both open and closed. Therefore, Iproj(int(Fk)) is indeed open in aff(F∗

k ).
Furthermore, Iproj(Fk) = Iproj(int(Fk))∪∂F

∗
k is closed in aff(F∗

k ), which implies that the boundary
of Iproj(int(Fk)) is contained in ∂F∗

k . But in fact it must be equal to ∂F∗
k because any T ∗ ∈ ∂F∗

k

is a limit point of Iproj(int(Fk)). Namely, T ∗ must be the image of some T ∈ ∂Fk by the induc-
tion hypothesis, and if Tn → T , Tn ∈ int(Fk), then Iproj(Tn) → T ∗ by continuity. The proof is
complete. �

In the above proof we used the fact that the inverse of the I-projection from C(P1, Q1) to
C(P2, Q2) is continuous. The following proposition precisely identifies this inverse. The statement
is somewhat counterintuitive due to the asymmetry of the functional D(·||·).

Proposition 3.6. Let C(P1, Q1) and C(P2, Q2) be geometrically equivalent. Then the inverse of
the I-projection from C(P1, Q1) to C(P2, Q2) is the I-projection from C(P2, Q2) to C(P1, Q1).

Proof. The linear families C(P1, Q1) and C(P2, Q2) are translates3 of each other in the sense of
[7]. Let S ∈ C(P1, Q1) and let S∗ be its I-projection onto C(P2, Q2). By [7, Lemma 4.2], the
I-projections of S and S∗ onto C(P1, Q1) must be identical, and this is trivially S. (Apart from
being translates of each other, the additional condition of [7, Lemma 4.2] dealing with supports is
also satisfied due to geometric equivalence of C(P1, Q1) and C(P2, Q2).) �

We conclude the paper by illustrating that the converse of Theorem 3.3 does not hold. The
following example exhibits two transportation polytopes that are not geometrically equivalent, but
are homeomorphic under information projection.

Example 3.7. Let P1 = (1/2, 1/2), Q1 = (1/3, 2/3), and P2 = Q2 = (1/2, 1/2). Both C(P1, Q1)
and C(P2, Q2) are one-dimensional polytopes, but clearly not geometrically equivalent because
their vertices are:

(3.10) U1 =

(

1/3 1/6
0 1/2

)

, U2 =

(

0 1/2
1/3 1/6

)

for C(P1, Q1) and

(3.11) V1 =

(

1/2 0
0 1/2

)

, V2 =

(

0 1/2
1/2 0

)

for C(P2, Q2). Let Iproj denote the I-projection from C(P1, Q1) to C(P2, Q2), as before. Iproj is
continuous by Proposition 3.4. By using [7, Lemma 4.2] in the same way as in Proposition 3.6,
one can show that it is bijective over the interior of C(P1, Q1) (which consists of distributions from
C(P1, Q1) having full support), and that its inverse over this domain is precisely the I-projection
from C(P2, Q2) to C(P1, Q1). Since Iproj(Ui) = Vi, i ∈ {1, 2}, Iproj is bijective over the entire
C(P1, Q1), and hence it is a homeomorphism. Its inverse is guaranteed to be continuous by [1,
Thm 7.8, Ch I], but note that this inverse is not the I-projection from C(P2, Q2) to C(P1, Q1)
because the I-projection of Vi onto C(P1, Q1) is undefined. N
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