Decoding of Repeated-Root Cyclic Codes up to New Bounds on Their Minimum Distance

Alexander Zeh
Computer Science Department
Technion, Haifa, Israel
alex@codingtheory.eu

Markus Ulmschneider
Institute of Communications and Navigation
German Aerospace Center (DLR), Germany
markus.ulmschneider@dlr.de

Abstract

The well-known approach of Bose, Ray-Chaudhuri and Hocquenghem and its generalization by Hartmann and Tzeng are lower bounds on the minimum distance of simple-root cyclic codes. We generalize these two bounds to the case of repeated-root cyclic codes and present a syndrome-based burst error decoding algorithm with guaranteed decoding radius based on an associated folded cyclic code.

Furthermore, we present a third technique for bounding the minimum Hamming distance based on the embedding of a given repeated-root cyclic code into a repeated-root cyclic product code. A second quadratic-time probabilistic burst error decoding procedure based on the third bound is outlined.

Index Terms

Bound on the minimum distance, burst error, efficient decoding, folded code, repeated-root cyclic code, repeatedroot cyclic product code

I. Introduction

The length of a conventional linear cyclic block code \mathcal{C} over a finite field \mathbb{F}_{q} has to be co-prime to the field characteristic p. This guarantees that the generator polynomial of \mathcal{C} has roots of multiplicity at most one and therefore we refer to these codes as simple-root cyclic codes. The approach of Bose and Ray-Chaudhuri and Hocquenghem '(BCH, [1], [2]) and of Hartmann and Tzeng (HT, [3], [4]) gives a lower bound on the minimum distance of simpleroot cyclic codes. Both approaches are based on consecutive sequences of roots of the generator polynomial. We give-similar to the BCH and the HT bound-two lower bounds on the minimum Hamming distance of a repeatedroot cyclic code, i.e., a cyclic code whose length is not relatively co-prime to the characteristic p of the field \mathbb{F}_{q} and therefore its generator polynomial can have roots with multiplicities greater than one.

Repeated-root cyclic codes were first investigated by Berman [5]. A special class of Maximum Distance Separable (MDS) repeated-root constacyclic codes was treated by Massey et al. in [6], [7] and the advantages of a syndromebased decoding were outlined. An alternative derivation of the minimum Hamming distance of these repeated-singleroot MDS codes and their application to secret-key cryptosystems was given by da Rocha in [8]. Castagnoli et al. [9]-[11] gave an elaborated description of repeated-root cyclic codes including the explicit construction of the parity-check matrix, which was investigated for the case $q=2$ slightly earlier by Latypov [12]. Although the asymptotic badness of repeated-root cyclic codes was shown in [9]-[11], several good binary repeated-root cyclic codes were constructed by van Lint in [13] with distances close to the Griesmer bound. Zimmermann [14] reproved some of Castagnoli's result by cyclic group algebra and Nedeloaia gave a squaring construction of all binary repeated-root cyclic codes in [15]. Recent publications of Ling-Niederreiter-Solé [16] and Dinh [17], [18] consider repeated-root quasi-cyclic codes.

Besides the generalization of the BCH and the HT bound to repeated-root cyclic codes, we provide a third lower bound on the minimum Hamming distance. Similar to the approach [19], [20] for simple-root cyclic codes, this bound is based on the embedding of a given repeated-root cyclic code into a repeated-root cyclic product code.

[^0]Therefore, we recall the relevant theorems of Burton and Weldon [21] and Lin and Weldon [22] for repeated-root cyclic product codes that are the basis for the proof of our third bound, which generalizes the results of our previous work on simple-root cyclic codes [19], [20]. Moreover, we present two burst error decoding schemes based on the derived bounds.

The paper is structured as follows. In Section II, we give necessary preliminaries for repeated-root cyclic codes and introduce our notation. Section III provides the generalizations of the BCH and the HT bound, which are denoted by d_{1} and $d_{\| \mid}$respectively, and in addition a syndrome-based error-correction algorithm with guaranteed decoding radius. The defining set of a repeated-root cyclic product code is given explicitly in Section IV, which is necessary to prove our third bound $d_{\| I I}$ on the minimum Hamming distance of a repeated-root cyclic code in Section V. Section VI gives a probabilistic burst error decoding approach based on the Generalized Extended Euclidean Algorithm (GEEA, [23]). We conclude this paper in Section VII.

II. Repeated-Root Cyclic Codes

A. Notation and Preliminaries

Let q be a power of a prime $p . \mathbb{F}_{q}$ denotes the finite field of order q and characteristic p and $\mathbb{F}_{q}[X]$ the polynomial ring over \mathbb{F}_{q} with indeterminate X. Let n be a positive integer and denote by $[n)$ the set of integers $\{0,1, \ldots, n-1\}$. A vector of length n is denoted by a lowercase bold letter as $\mathbf{v}=\left(v_{0} v_{1} \ldots v_{n-1}\right)$. A set is denoted by a capital letter sans serif like D.

A linear $[n, k, d]_{q}$ code over \mathbb{F}_{q} of length n, dimension k and minimum Hamming distance d is denoted by a calligraphic letter like \mathcal{C}.
Let us recapitulate the definition of the Hasse derivative [24] in the following. Let $a(X)=\sum_{i} a_{i} X^{i}$ be a polynomial in $\mathbb{F}_{q}[X]$, then the j-th Hasse derivative is:

$$
\begin{equation*}
a^{[j]}(X) \stackrel{\text { def }}{=} \sum_{i}\binom{i}{j} a_{i} X^{i-j} . \tag{1}
\end{equation*}
$$

Let $a^{(j)}(X)$ denote the formal j-th derivative of $a(X)$. The fact that $a^{(j)}(X)=j!a^{[j]}(X)$ explains why the Hasse derivative is considered in fields with a prime characteristic p, because then $j!=0$ and hence also $a^{(j)}(X)=0$ for all $j \geq p$. We say a univariate polynomial $a(X) \in \mathbb{F}_{q}[X]$ with $\operatorname{deg} a(X) \geq s$ has a root at γ with multiplicity s if:

$$
a^{[j]}(\gamma)=0, \quad \forall j \in[s) .
$$

B. Defining Set

A linear $[\bar{n}, \bar{k}, \bar{d}]_{q}$ simple-root cyclic code $\overline{\mathcal{C}}$ over \mathbb{F}_{q} with characteristic p is an ideal in the ring $\mathbb{F}_{q}[X] /\left(X^{\bar{n}}-1\right)$ generated by $\bar{g}(X)$, where $\operatorname{gcd}(\bar{n}, p)=1$. The generator polynomial $\bar{g}(X) \in \mathbb{F}_{q}[X]$ has roots with multiplicity at most one in the splitting field $\mathbb{F}_{q^{l}}$, where $\bar{n} \mid\left(q^{l}-1\right)$. A cyclotomic coset $M_{i, \bar{n}, q}$ is denoted by:

$$
M_{i, \bar{n}, q}=\left\{i q^{j} \bmod \bar{n} \mid j \in\left[\bar{n}_{i}\right)\right\},
$$

where \bar{n}_{i} is the smallest integer such that $i q^{\bar{n}_{i}} \equiv i \bmod \bar{n}$. Let γ be an element of order \bar{n} in $\mathbb{F}_{q^{\prime}}$. The minimal polynomial of the element γ^{i} is:

$$
M_{i, \bar{n}, q}(X)=\prod_{j \in M_{i, \overline{,}, q}}\left(X-\gamma^{j}\right) .
$$

Let $\operatorname{gcd}(\bar{n}, p)=1$ and $n=p^{s} \bar{n}$. A linear $[n, k, d]_{q}$ repeated-root cyclic code \mathcal{C} is an ideal in the ring

$$
\mathbb{F}_{q}[X] /\left(X^{n}-1\right)=\mathbb{F}_{q}[X] /\left(X^{\bar{n}}-1\right)^{p^{s}} .
$$

The generator polynomial of an $[n, k, d]_{q}$ repeated-root cyclic code \mathcal{C} is

$$
g(X)=\prod_{i} M_{i, \bar{n}, q}(X)^{s_{i}},
$$

where $s_{i} \leq p^{s}$. The defining set $\mathrm{D}_{\mathcal{C}}$ of an $\left[n=p^{s} \bar{n}, k, d\right]_{q}$ repeated-root cyclic code \mathcal{C} with generator polynomial $g(X)$ is a set of tuples, where the first entry of the tuple is the index of a zero and the second its multiplicity, namely:

$$
\begin{equation*}
\mathrm{D}_{\mathcal{C}}=\left\{i^{\left\langle s_{i}\right\rangle} \mid 0 \leq i \leq \bar{n}-1, \quad g^{[j]}\left(\gamma^{i}\right)=0, \quad \forall j \in\left[s_{i}\right)\right\} \tag{2}
\end{equation*}
$$

Furthermore, we introduce the following short-hand notation for a given $z \in \mathbb{Z}$:

$$
\begin{equation*}
\mathrm{D}_{\mathcal{C}}^{[z]} \stackrel{\text { def }}{=}\left\{(i+z)^{\left\langle s_{i}\right\rangle} \mid i^{\left\langle s_{i}\right\rangle} \in \mathrm{D}_{\mathcal{C}}\right\} . \tag{3}
\end{equation*}
$$

For two given defining sets $D_{\mathcal{A}}$ and $D_{\mathcal{B}}$, define

$$
\begin{equation*}
\mathrm{D}_{\mathcal{A}} \stackrel{\max }{\cup} \mathrm{D}_{\mathcal{B}} \stackrel{\text { def }}{=}\left\{i^{\left\langle s_{i}\right\rangle} \mid s_{i}=\max \left(a_{i}, b_{i}\right), \text { where } i^{\left\langle a_{i}\right\rangle} \in \mathrm{D}_{\mathcal{A}} \text { and } i^{\left\langle b_{i}\right\rangle} \in \mathrm{D}_{\mathcal{B}}\right\} . \tag{4}
\end{equation*}
$$

III. Two Bounds On the Minimum Hamming Distance of Repeated-Root Cyclic Codes And Burst Error Correction

A. Lower Bounds on the Minimum Hamming Distance

In the following, we prove two lower bounds on the minimum Hamming distance of repeated-root cyclic codes. They generalize the well-known BCH [1], [2] and HT [3] approach suited for simple-root cyclic codes.

Theorem 1 (Bound I: BCH-like Bound for a Repeated-Root Cyclic Code). Let an $[n, k, d]_{q}$ repeated-root cyclic code \mathcal{C} over \mathbb{F}_{q} with characteristic p and generator polynomial $g(X)$ with $\operatorname{deg} g(X) \geq p^{s}-1$ be given. Let $n=p^{s} \bar{n}$, where $\operatorname{gcd}(\bar{n}, p)=1$. Let γ be an element of order \bar{n} in an extension field of \mathbb{F}_{q}. Furthermore, let three integers f, $m \neq 0$ and $\delta \geq 2$ with $\operatorname{gcd}(\bar{n}, m)=1$ be given, such that for any codeword $c(X) \in \mathcal{C}$

$$
\begin{equation*}
\sum_{i=0}^{\infty} c^{\left[p^{s}-1\right]}\left(\gamma^{f+i m}\right) X^{i} \equiv 0 \quad \bmod X^{\delta-1} \tag{5}
\end{equation*}
$$

holds. Then, the minimum distance of \mathcal{C} is at least $d_{l} \stackrel{\text { def }}{=} \delta$.
Proof: First, let us prove that the left-hand side of (5) cannot be zero. Assume it is the zero polynomial. Then, all $\gamma^{0}, \gamma^{1}, \ldots, \gamma^{\bar{n}-1}$ are roots of the codeword $c(X)$ with multiplicity p^{s}, yielding that $\operatorname{deg} c(X)=p^{s} \bar{n}=n$, which contradicts the fact that the degree of a codeword $c(X)$ of an $[n, k, d]_{q}$ code is smaller than n. Second, we rewrite the expression left-hand side of (5) more explicitly. Let $Y=\left\{i: c_{i} \neq 0\right\}$ be the support of a non-zero codeword. We obtain:

$$
\begin{align*}
\sum_{i=0}^{\infty} c^{\left[p^{s}-1\right]}\left(\gamma^{f+i m}\right) X^{i} & =\sum_{i=0}^{\infty} \sum_{u \in \mathbf{Y}}\binom{u}{p^{s}-1} c_{u}\left(\gamma^{f+i m}\right)^{u-p^{s}+1} X^{i} \\
& =\sum_{u \in \mathrm{Y}}\left(p^{u}-1\right) c_{u} \gamma^{\left(u-p^{s}+1\right) f} \sum_{i=0}^{\infty}\left(\gamma^{\left(u-p^{s}+1\right) m} X\right)^{i} . \tag{6}
\end{align*}
$$

With the geometric series, we get from (6):

$$
\begin{equation*}
\sum_{u \in \mathrm{Y}}\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right) f} \sum_{i=0}^{\infty}\left(\gamma^{\left(u-p^{s}+1\right) m} X\right)^{i}=\sum_{u \in \mathrm{Y}}\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right) f} \frac{1}{1-\gamma^{\left(u-p^{s}+1\right) m} X} \tag{7}
\end{equation*}
$$

and with

$$
\begin{equation*}
\sum_{i \in \mathrm{Y}} \frac{a_{i}}{1-X b_{i}}=\frac{\sum_{i \in \mathrm{Y}} a_{i} \frac{D}{1-X b_{i}}}{D} \tag{8}
\end{equation*}
$$

where $D \stackrel{\text { def }}{=} \operatorname{lcm}\left(\left(1-X b_{i}\right): i \in \mathrm{Y}\right)$, we obtain from (7):

$$
\begin{align*}
\sum_{u \in \mathrm{Y}}\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right) f} \frac{1}{1-\gamma^{\left(u-p^{s}+1\right) m} X} & =\frac{\sum_{u \in \mathrm{Y}}\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right) f} \frac{\operatorname{lcm}\left(1-\gamma^{\left(j-p^{s}+1\right) m} X: j \in \mathrm{Y}\right)}{1-\gamma^{\left(u-p^{s}+1\right) m} X}}{\operatorname{lcm}\left(1-\gamma^{\left(i-p^{s}+1\right) m} X: i \in \mathrm{Y}\right)} \tag{9}\\
& \equiv 0 \bmod X^{\delta-1} \tag{10}
\end{align*}
$$

Obviously, the degree of the numerator of (9) cannot be greater than $|\mathrm{Y}|-1$, and it cannot be smaller than $\delta-1$, since (10) must be fulfilled. Since this is true for all codewords, the minimum distance of \mathcal{C} is not smaller than $|\mathrm{Y}|$. Thus, with $|\mathrm{Y}| \geq \delta$ follows that the true minimum distance of \mathcal{C} is at least δ.

Thm. 1 tells us that a repeated-root cyclic code of length $n=p^{s} \bar{n}$ with generator polynomial $g(X)$ that has $\delta-1$ consecutive zeros of highest multiplicity p^{s}, i.e.,

$$
g^{\left[p^{s}-1\right]}\left(\gamma^{f}\right)=g^{\left[p^{s}-1\right]}\left(\gamma^{f+m}\right)=\cdots=g^{\left[p^{s}-1\right]}\left(\gamma^{f+(\delta-2) m}\right)=0
$$

has at least minimum distance δ. If $s=0$, the repeated-root cyclic code is a simple-root cyclic code and then Thm. 1 coincides with the BCH bound [1], [2].

Remark 2 (Parameters). To obtain the parameters f, m and δ as in Thm. 1 , one needs to check the ($p^{s}-1$)th Hasse derivative of the given generator polynomial (respectively the defining set) of a given repeated-root cyclic code and find f and m that maximize δ. The advantage of the representation as in (5) and in (11) is that a syndrome definition can directly be obtained and an algebraic decoding algorithm can be formulated (see Section III-B).
Theorem 3 (Bound II: HT-like for a Repeated-Root Cyclic Code). Let an $\left[n=p^{s} \bar{n}, k, d\right]_{q}$ repeated-root cyclic code \mathcal{C} over \mathbb{F}_{q} with characteristic p and generator polynomial $g(X)$ with $\operatorname{deg} g(X) \geq p^{s}-1$ be given, where $\operatorname{gcd}(\bar{n}, p)=1$. Let γ be an element of order \bar{n} in an extension field of \mathbb{F}_{q}. Furthermore, let four integers $f, m \neq 0$, $\delta \geq 2$ and $\nu \geq 0$ with $\operatorname{gcd}(\bar{n}, m)=1$ be given, such that for any codeword $c(X) \in \mathcal{C}$

$$
\begin{equation*}
\sum_{i=0}^{\infty} c^{\left[p^{s}-1\right]}\left(\gamma^{f+i m+j}\right) X^{i} \equiv 0 \quad \bmod X^{\delta-1}, \quad \forall j \in[\nu+1) \tag{11}
\end{equation*}
$$

holds. Then, the minimum distance of \mathcal{C} is at least $d_{/ /} \stackrel{\text { def }}{=} \delta+\nu$.
Proof: Let $c(X) \in \mathcal{C}$ and let $\mathrm{Y}=\left\{i_{0}, i_{1}, \ldots, i_{y-1}\right\}$ denote the support of $c(X)$, where $y \geq d$ holds for all codewords except the all-zero codeword. We linearly combine the $\nu+1$ sequences from (11). Denote the scalar factors for each power series as in (11) by $\lambda_{i} \in \mathbb{F}_{q^{l}}$ for $i \in[\nu+1)$. We obtain:

$$
\begin{equation*}
\sum_{i=0}^{\infty} \sum_{j=0}^{\nu} \lambda_{j} c^{\left[p^{s}-1\right]}\left(\gamma^{f+i m+j}\right) X^{i} \equiv 0 \quad \bmod X^{\delta-1} \tag{12}
\end{equation*}
$$

The Hasse derivative (as defined in (1)) of (12) leads to:

$$
\begin{equation*}
\sum_{i=0}^{\infty} \sum_{j=0}^{\nu} \lambda_{j}\left(\sum_{u \in \mathrm{Y}}\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right)(f+i m+j)}\right) X^{i} \equiv 0 \quad \bmod X^{\delta-1} \tag{13}
\end{equation*}
$$

We re-order (13) according to the coefficients of the codeword and obtain:

$$
\begin{align*}
\sum_{i=0}^{\infty} \sum_{u \in \mathrm{Y}} \sum_{j=0}^{\nu} \lambda_{j}\left(\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right)(f+i m+j)}\right) X^{i} & \left.=\sum_{i=0}^{\infty} \sum_{u \in \mathrm{Y}}\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right)(f+i m)} \sum_{j=0}^{\nu} \alpha^{u j} \lambda_{j}\right) X^{i} \\
& \equiv 0 \bmod X^{\delta-1} \tag{14}
\end{align*}
$$

We want to annihilate the first ν terms of $c_{i_{0}}, c_{i_{1}}, \ldots, c_{i_{y-1}}$. From (14), the following linear system of equations with $\nu+1$ unknowns is obtained:

$$
\left(\begin{array}{ccccc}
1 & \gamma^{i_{0}} & \gamma^{i_{0} 2} & \ldots & \gamma^{i_{0} \nu} \tag{15}\\
1 & \gamma^{i_{1}} & \gamma^{i_{1} 2} & \ldots & \gamma^{i_{1} \nu} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \gamma^{i_{\nu}} & \gamma^{i_{\nu} 2} & \cdots & \gamma^{i_{\nu} \nu}
\end{array}\right) \cdot\left(\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
\vdots \\
\lambda_{\nu}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

and it is guaranteed to find a unique non-zero solution, because the $(\nu+1) \times(\nu+1)$ matrix in (15) is a Vandermonde matrix.

Let $\widetilde{Y} \stackrel{\text { def }}{=} Y \backslash\left\{i_{0}, i_{1}, \ldots, i_{\nu-1}\right\}$. Then, we can rewrite (14):

$$
\sum_{i=0}^{\infty}\left(\sum_{u \in \tilde{Y}}\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right)(f+i m)} \sum_{j=0}^{\nu} \gamma^{u j} \lambda_{j}\right) X^{i} \equiv 0 \bmod X^{\delta-1}
$$

This leads with the geometric series to:

$$
\sum_{u \in \tilde{\mathbf{Y}}} \frac{\binom{u}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right) f} \sum_{j=0}^{\nu} \gamma^{u j} \lambda_{j}}{1-\gamma^{\left(u-p^{s}+1\right) m} X} \equiv 0 \quad \bmod X^{\delta-1}
$$

and can be expressed with one common denominator using (8) as follows:

$$
\frac{\sum_{u \in \tilde{\mathrm{Y}}}\left(\binom{{ }^{u}}{p^{s}-1} c_{u} \gamma^{\left(u-p^{s}+1\right) f} \sum_{j=0}^{\nu} \gamma^{u j} \lambda_{j} \frac{\operatorname{lcm(1-\gamma ^{(j-p^{s}+1)m}X:j\in \mathrm {Y})}}{1-\gamma^{\left(j-p^{s+1) m} X\right.}}\right)}{\operatorname{lcm}\left(1-\gamma^{\left(i-p^{s}+1\right) m} X: i \in \mathrm{Y}\right)} \equiv 0 \bmod X^{\delta-1}
$$

where the degree of the numerator is smaller than or equal to $y-1-\nu$ and has to be at least $\delta-1$. Therefore for $y \geq d$, we have:

$$
\begin{aligned}
d-1-\nu & \geq \delta-1 \\
d & \geq d_{\| \|} \stackrel{\text { def }}{=} \delta+\nu
\end{aligned}
$$

Note that for $\nu=0$, Thm. $\underline{3}$ becomes Thm. $\underline{1}$. Thm. $\underline{3}$ tells us that an $\left[n=p^{s} \bar{n}, k, d\right]_{q}$ repeated-root cyclic code with generator polynomial $g(X)$ that has $\nu+1$ sequences of $\delta-1$ consecutive zeros of highest multiplicity p^{s}, i.e.,

$$
\begin{aligned}
& g^{\left[p^{s}-1\right]}\left(\gamma^{f}\right)=g^{\left[p^{s}-1\right]}\left(\gamma^{f+m}\right)= \cdots=g^{\left[p^{s}-1\right]}\left(\gamma^{f+(\delta-2) m}\right)=0 \\
& g^{\left[p^{s}-1\right]}\left(\gamma^{f+1}\right)= g^{\left[p^{s}-1\right]}\left(\gamma^{f+m+1}\right)=\cdots=g^{\left[p^{s}-1\right]}\left(\gamma^{f+(\delta-2) m+1}\right)=0 \\
& \vdots \\
& g^{\left[p^{s}-1\right]}\left(\gamma^{f+\nu}\right)=g^{\left[p^{s}-1\right]}\left(\gamma^{f+m+\nu}\right)=\cdots=g^{\left[p^{s}-1\right]}\left(\gamma^{f+(\delta-2) m+\nu}\right)=0,
\end{aligned}
$$

has at least minimum distance $\delta+\nu$. If $s=0$, the repeated-root cyclic code is a simple-root cyclic code and then Thm. 1 coincides with the HT bound [3], [4].

Remark 4 (Alternative Proof of the Two Bounds). An $\left[n=p^{s}, k, d\right]_{q}$ repeated-root cyclic code with considered consecutive set(s) of zeros with multiplicity p^{s} as in Thm. $\underline{1}$ and Thm. $\underline{3}$ is a sub-code of a cyclic code of length \bar{n} over $\mathbb{F}_{q^{p s}}$ with the same zeros (see Lemma 7).

Let us consider an example of a binary repeated-root cyclic code and use Thm. $\underline{3}$ to bound its minimum distance.
Example 5 (Binary Repeated-Root Cyclic Code). Let \mathcal{C} be the binary $[34=2 \cdot 17,18,5]_{2}$ repeated-root cyclic code with defining set as defined in (2):

$$
D_{\mathcal{C}}=\left\{1^{\langle 2\rangle}, 2^{\langle 2\rangle}, 4^{\langle 2\rangle}, 8^{\langle 2\rangle}, 9^{\langle 2\rangle}, 13^{\langle 2\rangle}, 15^{\langle 2\rangle}, 16^{\langle 2\rangle}\right\},
$$

i.e., its generator polynomial is:

$$
g(X)=M_{1,17,2}(X)^{2}
$$

Thm. $\underline{3}$ holds for the parameters $f=1, m=7, \delta=4$ and $\nu=1$ and therefore the minimum distance of \mathcal{C} is at least 5 .

B. Syndrome-Based Burst Error Decoding Algorithm up to Bound I and Bound II

Let $\zeta \in \mathbb{F}_{q^{p^{s}}}$ be such that $\left(1 \zeta \ldots \zeta^{p^{s}-1}\right)$ is an \mathbb{F}_{q}-basis of the extension field $\mathbb{F}_{q^{p}}$. We define the following bijective map:

$$
\begin{aligned}
\phi: \mathbb{F}_{q}^{p^{s}} & \longrightarrow \mathbb{F}_{q^{p^{s}}} \\
\left(\begin{array}{lll}
a_{0} & a_{1} & \ldots \\
a_{p^{s}-1}
\end{array}\right) & \longmapsto a_{0}+a_{1} \zeta+\cdots a_{p^{s}-1} \zeta^{p^{s}-1} .
\end{aligned}
$$

Definition 6 (Folded Code). Let \mathcal{C} be a linear code over \mathbb{F}_{q} of length $n=p^{s} \bar{n}$. The folded code \mathcal{C}^{F} of length \bar{n} over $\mathbb{F}_{q^{p^{s}}}$ is defined by:

$$
\mathcal{C}^{F} \stackrel{\text { def }}{=}\left\{\left(\phi\left(c_{0} \ldots c_{p^{s}-1}\right) \ldots \phi\left(c_{n-p^{s}} \ldots c_{n-1}\right)\right) \mid\left(c_{0} \ldots c_{n-1}\right) \in \mathcal{C}\right\}
$$

Equivalently, we denote the folded polynomial of a given polynomial $c(X) \in \mathbb{F}_{q}[X]$ by $c^{F}(X)$.
Lemma 7 (Folding Repeated-Root Cyclic Code). Let \mathcal{C} be an $\left[n=p^{s} \bar{n}, k=p^{s} \bar{k}, d\right]_{q}$ repeated-root cyclic code over \mathbb{F}_{q} with characteristic p and defining set:

$$
\mathrm{D}_{\mathcal{C}}=\left\{i^{\left\langle p^{s}\right\rangle} \mid i \in \mathrm{D}_{\mathcal{C}^{F}}\right\}
$$

where $\left|\mathrm{D}_{\mathcal{C}^{F}}\right|=\bar{n}-\bar{k}$. Then the folded code \mathcal{C}^{F} as in Def. $\underline{6}$ is an $[\bar{n}, \bar{k}, d]_{q^{p s}}$ simple-root cyclic code with defining set $\mathrm{D}_{\mathcal{C}^{F}}$.

Proof: Length and dimension of \mathcal{C}^{F} follow directly from Def. $\underline{6}$. Let us prove the defining set. Every codeword $c(X)$ of the given repeated-root cyclic root \mathcal{C} can be written as

$$
c(X)=\sum_{i=0}^{p^{s}-1} X^{i} \sum_{j=0}^{\bar{n}-1} c_{i+j p^{s}} X^{j p^{s}}=\sum_{i=0}^{p^{s}-1} X^{i} \sum_{j=0}^{\bar{k}-1} u_{i, j} X^{j p^{s}} g\left(X^{p^{s}}\right)
$$

where $g\left(X^{p^{s}}\right)=g(X)^{p^{s}}$ is the generator polynomial of \mathcal{C} with $\bar{n}-\bar{k}$ distinct roots of multiplicity p^{s}. The corresponding codeword of the folded code \mathcal{C}^{F} over $\mathbb{F}_{q^{p}}$ in vector notation is:

$$
c^{F}(X)=\sum_{j=0}^{\bar{n}-1}\left(\begin{array}{c}
c_{0+j p^{s}} \\
c_{1+j p^{s}} \\
\vdots \\
c_{p^{s}-1+j p^{s}}
\end{array}\right) X^{j}=\sum_{j=0}^{\bar{k}-1}\left(\begin{array}{c}
u_{0, j} \\
u_{1, j} \\
\vdots \\
u_{p^{s}-1, j}
\end{array}\right) g(X)
$$

and has $\bar{n}-\bar{k}$ distinct roots of multiplicity one.
Folding as given in Def. $\underline{6}$ is discussed extensively in the literature, especially for Reed-Solomon codes (see e.g. [25]-[27]). The operation is essential to decode a given repeated-root cyclic code. In the following we describe the decoding approach for p^{s}-phased burst errors, i.e., errors measured in $\mathbb{F}_{q^{p}}$. The transmitted (or stored) codeword $c(X)$ of a given $\left[p^{s} \bar{n}, k, d\right]_{q}$ repeated-root cyclic code \mathcal{C} is affected by an error $e(X) \in \mathbb{F}_{q}[X]$. The received polynomial $r(X) \in \mathbb{F}_{q}[X]$ is $r(X)=c(X)+e(X)$. We fold the received word $r(X)$ as in Def. $\underline{6}$ and obtain

$$
r^{F}(X)=c^{F}(X)+e^{F}(X)
$$

where $e^{F}(X)=\sum_{i \in \mathrm{E}} e_{i}^{F} X^{i}$ and E is the set of p^{s}-phased burst error with cardinality $|\mathrm{E}|=\varepsilon$. We describe a syndrome-based decoding procedure up to $\varepsilon \leq\left\lfloor\left(d_{\|}-1\right) / 2\right\rfloor p^{s}$-phased burst-errors based on a set of $\nu+1$ key equations that can be solved by a modified variant of the Extended Euclidean Algorithm (EEA) similar to the procedure to decode simple-root cyclic codes up to the HT bound (see e.g., [23], [28], [29]). Let us first define syndromes in the corresponding extension field.

Definition 8 (Syndromes). Let \mathcal{C} be an $[n, k, d]_{q}$ repeated-root cyclic code over \mathbb{F}_{q} with characteristic p, where $n=p^{s} \bar{n}$. The integers $f, m \neq 0, \delta \geq 2$ and $\nu \geq 0$ are given as in Thm. 3. Let $\gamma \in \mathbb{F}_{q^{l}}$ be an element of order
\bar{n}. We define $\nu+1$ syndrome polynomials $S^{(0\rangle}(X), S^{\langle 1\rangle}(X), \ldots, S^{\langle\nu\rangle}(X) \in \mathbb{F}_{q^{l p^{s}}}[X]$ for a received polynomial $r(X) \in \mathbb{F}_{q}[X]$, respectively the folded version $r^{F}(X) \in \mathbb{F}_{q^{p}}[X]$, as follows:

$$
\begin{equation*}
S^{(t\rangle}(X) \stackrel{\text { def }}{=} \sum_{i=0}^{\delta-2} r^{F}\left(\gamma^{f+i m+t}\right) X^{i}, \quad \forall t \in[\nu+1) . \tag{16}
\end{equation*}
$$

To obtain an algebraic description in terms of key equations, we define an error-locator polynomial in the following.

Definition 9 (Error-Locator Polynomial). Let γ be an element of order \bar{n} in $\mathbb{F}_{q^{l}}$ and let $m \neq 0$ as in Thm. $\underline{\text { 3 }}$. The support of the additive error is E with $|\mathrm{E}|=\varepsilon$. Define the error-locator polynomial in $\mathbb{F}_{q}[X]$, as:

$$
\begin{equation*}
\Lambda(X) \stackrel{\text { def }}{=} \prod_{i \in \mathbf{E}}\left(1-X \gamma^{i m}\right), \tag{17}
\end{equation*}
$$

with degree ε.
We now connect Def. $\underline{8}$ and Def. 9 . From the expression of the syndrome polynomials as in (16), we obtain with the folded received polynomial $r^{F}(X)=c^{F}(X)+e^{F}(X)$:

$$
\begin{align*}
S^{(t)}(X) & =\sum_{i=0}^{\delta-2} r^{F}\left(\gamma^{f+i m+t}\right) X^{i} \\
& =\sum_{i=0}^{\delta-2} e^{F}\left(\gamma^{f+i m+t}\right) X^{i} \\
& =\sum_{i=0}^{\delta-2}\left(\sum_{j \in \mathrm{E}}\left(\sum_{u=0}^{p^{s}-1} e_{u+j p^{s} \zeta^{u}}\right) \gamma^{(f+i m+t) j}\right) X^{i}, \quad \forall t \in[\nu), \tag{18}
\end{align*}
$$

i.e., the syndromes are independent of the folded codeword $c^{F}(X)$. We use the geometric series and we obtain from (18):

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left(\sum_{j \in \mathrm{E}}\left(\sum_{u=0}^{p^{s}-1} e_{u+j p^{s} \zeta^{u}}^{u}\right) \gamma^{(f+i m+t) j}\right) X^{i} \equiv \sum_{j \in \mathrm{E}}\left(\sum_{u=0}^{p^{s}-1} e_{u+j p^{s} \zeta^{u}}^{u}\right) \frac{\gamma^{(f+t) j}}{1-X \gamma^{j m}} \bmod X^{\delta-1} \tag{19}
\end{equation*}
$$

We need two more steps to obtain a common denominator. From (19), we have:

$$
\begin{align*}
S^{\langle t\rangle}(X) & \equiv \sum_{j \in \mathrm{E}}\left(\sum_{u=0}^{p^{s}-1} e_{u+j p^{s}} \zeta^{u}\right) \frac{\gamma^{(f+t) j}}{1-X \gamma^{j m}} \bmod X^{\delta-1} \\
& \equiv \frac{\sum_{j \in \mathrm{E}}\left(\sum_{u=0}^{p^{s}-1} e_{u+j p^{s} \zeta^{u}}\right) \gamma^{(f+t) j} \prod_{\substack{i \in \mathrm{E} \\
i \neq j}}\left(1-X \gamma^{i m}\right)}{\prod_{i \in \mathbf{E}}\left(1-X \gamma^{i m}\right)} \bmod X^{\delta-1} \\
& \stackrel{\text { def }}{\equiv} \frac{\Omega^{\langle t\rangle}(X)}{\Lambda(X)} \bmod X^{\delta-1}, \quad \forall t \in[\nu), \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega^{\langle t\rangle}(X) \stackrel{\text { def }}{=} \sum_{j \in \mathrm{E}}\left(\sum_{u=0}^{p^{s}-1} e_{u+j p^{s}} \zeta^{u}\right) \gamma^{(f+t) j} \prod_{\substack{i \in \mathrm{E} \\ i \neq j}}\left(1-X \gamma^{i m}\right), \quad \forall t \in[\nu), \tag{21}
\end{equation*}
$$

are the $\nu+1$ error-evaluator polynomials $\Omega^{\langle 0\rangle}(X), \Omega^{\langle 1\rangle}(X), \ldots, \Omega^{\langle\nu\rangle}(X)$ of degree at most $\varepsilon-1$.
The $\nu+1$ key equations as in (20) can be collaboratively solved by a so-called multisequence shift-register synthesis (see e.g., [23], [28]). Algorithm 1 is based on the Generalized Extended Euclidean Algorithm (GEEA) that solves the corresponding multisequence problem.

```
Algorithm 1: Decoding a \(\left[p^{s} \bar{n}, k, d\right]_{q}\) repeated-root cyclic code \(\mathcal{C}\) up to \(\left\lfloor\left(d_{\| I}-1\right) / 2\right\rfloor p^{s}\)-phased burst
errors.
    Input: Received word \(r(X) \in \mathbb{F}_{q}[X]\), element \(\gamma\) of order \(\bar{n}\)
                Parameters \(f, m \neq 0, \delta \geq 2\) and \(\nu \geq 0\) as in Thm. \(\underline{3}\)
Output: Estimated folded codeword \(c^{F}(X)\) or DecodingFailure
Calculate \(S^{\langle 0\rangle}(X), \ldots, S^{\langle\nu\rangle}(X)\) as in (16) using folded \(r^{F}(X)\)
\(\Lambda(X), \Omega^{\langle 0\rangle}(X), \ldots, \Omega^{\langle\nu\rangle}(X)=\operatorname{GEEA}\left(X^{\delta-1}, S^{\langle 0\rangle}(X), \ldots, S^{\langle\nu\rangle}(X)\right)\)
Find all \(i\), where \(\Lambda\left(\gamma_{i}\right)=0 \Rightarrow \mathbf{E}=\left\{i_{0}, i_{1}, \ldots, i_{\varepsilon-1}\right\}\)
```

// Syndrome calculation
// Generalized EEA
// Chien-like search

```
if \(\varepsilon<\operatorname{deg} \Lambda(X)\) then
    Declare DecodingFailure
    else
        Determine \(e_{i_{0}}^{F}, e_{i_{1}}^{F}, \ldots, e_{i_{\varepsilon-1}}^{F}\) // Forney error-evaluation
        \(e^{F}(X) \leftarrow \sum_{\ell \in \mathrm{E}} e_{\ell}^{F} X^{\ell}\)
        \(c^{F}(X) \leftarrow r^{F}(X)-e^{F}(X)\)
```

For the $\nu+2$ input polynomials $X^{\delta-1}$ and $S^{(0\rangle}(X), S^{\langle 1\rangle}(X), \ldots, S^{\langle\nu\rangle}(X)$ the GEEA returns the polynomials $\Lambda(X), \Omega^{\langle 0\rangle}(X), \ldots, \Omega^{\langle\nu\rangle}(X)$ in $\mathbb{F}_{q^{l}}[X]$, such that (20) holds (as in Line $\underline{2}$ of Algorithm 1). One error-evaluator polynomial $\Omega^{\langle i\rangle}(X)$ as given in (21) is sufficient for the error-evaluation in Line 7.

Clearly, for $\nu=0$ Algorithm 1 decodes up to $\left\lfloor\left(d_{1}-1\right) / 2\right\rfloor p^{s}$-phased burst errors. Then, the GEEA coincides with the EEA.

IV. Defining Sets of Repeated-Root Cyclic Product Codes

Our third lower bound on the minimum distance of a given repeated-root cyclic code \mathcal{A} is based on the embedding of \mathcal{A} into a repeated-root cyclic product code $\mathcal{A} \otimes \mathcal{B}$. Therefore, we explicitly give the defining set of a repeated-root cyclic product code and stress important properties.

Let \mathcal{A} be an $\left[n_{a}=p^{s} \bar{n}_{a}, k_{a}, d_{a}\right]_{q}$ repeated-root cyclic code, where $\operatorname{gcd}\left(\bar{n}_{a}, p\right)=1$, and let \mathcal{B} be an $\left[n_{b}, k_{b}, d_{b}\right]_{q}$ simple-root cyclic code. If $\operatorname{gcd}\left(n_{a}, n_{b}\right)=1$, then the $\left[n=p^{s} \bar{n}_{a} n_{b}, k_{a} k_{b}, d_{a} d_{b}\right]_{q}$ product code $\mathcal{C}=\mathcal{A} \otimes \mathcal{B}$ is (repeated-root) cyclic (see e.g., [30, Ch. 18] for linear product codes). Note that the lengths of two repeated-root cyclic codes over the same field cannot be co-prime and therefore a cyclic product code is not possible.

Let us investigate the defining set of a repeated-root cyclic product code in the following theorem, originally stated by Burton and Weldon [21, Corollary IV].

Theorem 10 (Defining Set and Generator Polynomial of a Cyclic Product Code). Let \mathcal{A} be an $\left[n_{a}=p^{s} \bar{n}_{a}, k_{a}, d_{a}\right]_{q}$ repeated-root cyclic code over \mathbb{F}_{q} with characteristic p, and let α be an element of order \bar{n}_{a} in $\mathbb{F}_{q^{l_{a}}}$. Let \mathcal{B} be an $\left[n_{b}, k_{b}, d_{b}\right]_{q}$ simple-root cyclic code and let β be an element of order n_{b} in $\mathbb{F}_{q^{l_{b}}}$. Let $l=\operatorname{lcm}\left(l_{a}, l_{b}\right)$. The defining sets of \mathcal{A} and \mathcal{B} are denoted by $\mathrm{D}_{\mathcal{A}}$ respectively $\mathrm{D}_{\mathcal{B}}$ and their generator polynomials by $g_{a}(X)$ respectively $g_{b}(X)$. Let two integers a and b be given, such that:

$$
a n_{a}+b n_{b}=1 .
$$

The generator polynomial $g(X)$ of the repeated-root cyclic product code $\mathcal{A} \otimes \mathcal{B}$ is:

$$
\begin{equation*}
g(X)=\operatorname{gcd}\left(X^{n_{a} n_{b}}-1, g_{a}\left(X^{b n_{b}}\right) \cdot g_{b}\left(X^{a n_{a}}\right)\right) . \tag{22}
\end{equation*}
$$

Let $\gamma \stackrel{\text { def }}{=} \alpha \beta$ in $\mathbb{F}_{q^{l}}$ and let:

$$
\begin{equation*}
\overline{\mathrm{D}}_{\mathcal{B}}=\left\{i^{\left\langle p^{s}\right\rangle} \mid i \in \mathrm{D}_{\mathcal{B}}\right\} . \tag{23}
\end{equation*}
$$

Then the defining set of the repeated-root cyclic product code $\mathcal{C}=\mathcal{A} \otimes \mathcal{B}$ is:

$$
\mathrm{D}_{\mathcal{C}}=\left\{\mathrm{D}_{\mathcal{A}} \cup \mathrm{D}_{\mathcal{A}}^{\left[\bar{n}_{a}\right]} \cup \mathrm{D}_{\mathcal{A}}^{\left[2 \bar{n}_{a}\right]} \cup \cdots \cup \mathrm{D}_{\mathcal{A}}^{\left[\left(n_{b}-1\right) \bar{n}_{a}\right]}\right\} \cup{ }^{\max }\left\{\overline{\mathrm{D}}_{\mathcal{B}} \cup \overline{\mathrm{D}}_{\mathcal{B}}^{\left[n_{b}\right]} \cup \overline{\mathrm{D}}_{\mathcal{B}}^{\left[2 n_{b}\right]} \cup \cdots \cup \overline{\mathrm{D}}_{\mathcal{B}}^{\left[\left(\bar{n}_{a}-1\right) n_{b}\right]}\right\}
$$

where $D_{\mathcal{A}}^{\left[\bar{n}_{a}\right]}$ was defined in (3) and the operation in (4).
For the proof we refer to the proof of [21, Thm. 3 and Corollary IV]. We explicitly give the defining set of the repeated-root cyclic product code $\mathcal{A} \otimes \mathcal{B}$ here and we want to emphasize that the roots of the simple-root cyclic code \mathcal{B} have highest multiplicity p^{s} in the defining set of $\mathcal{A} \otimes \mathcal{B}$ (see (23)), because

$$
g_{b}\left(X^{a n_{a}}\right)=g_{b}\left(X^{a \bar{n}_{a}}\right)^{p^{s}}
$$

V. Bound III: Embedding into Repeated-Root Cyclic Product Codes

Similar to Thm. 4 of [31] for a simple-root cyclic code, we embed a given repeated-root cyclic code \mathcal{A} into a repeated-root cyclic product code $\mathcal{A} \otimes \mathcal{B}$ to bound the minimum distance of \mathcal{A}.

Theorem 11 (Bound III: Embedding into a Product Code). Let \mathcal{A} be an $\left[n_{a}=p^{s} \bar{n}_{a}, k_{a}, d_{a}\right]_{q}$ repeated-root cyclic code over \mathbb{F}_{q} with characteristic p, where $\operatorname{gcd}\left(\bar{n}_{a}, p\right)=1$ and let \mathcal{B} be an $\left[n_{b}, k_{b}, d_{b}\right]_{q}$ simple-root cyclic code, respectively, with $\operatorname{gcd}\left(n_{a}, n_{b}\right)=1$. Let α be an element of order \bar{n}_{a} in $\mathbb{F}_{q^{l a}}, \beta$ of order n_{b} in $\mathbb{F}_{q^{l} b}$, respectively, and let two integers f_{a}, f_{b} and two non-zero integers $m_{a} \neq 0, m_{b} \neq 0$ with $\operatorname{gcd}\left(n_{a}, m_{a}\right)=\operatorname{gcd}\left(n_{b}, m_{b}\right)=1$ be given. Assume that for all codewords $a(X) \in \mathcal{A}$ and $b(X) \in \mathcal{B}$

$$
\begin{equation*}
\sum_{i=0}^{\infty} a^{\left[p^{s}-1\right]}\left(\alpha^{f_{a}+i m_{a}}\right) \cdot b\left(\beta^{f_{b}+i m_{b}}\right) X^{i} \equiv 0 \quad \bmod X^{\delta-1} \tag{24}
\end{equation*}
$$

holds for some integer $\delta \geq 2$. Then, we obtain:

$$
\begin{equation*}
d_{a} \geq d_{I I I} \stackrel{\text { def }}{=}\left\lceil\frac{\delta}{d_{b}}\right\rceil \tag{25}
\end{equation*}
$$

Proof: From Thm. 10 we know that (24) corresponds to $\delta-1$ consecutive zeros with highest multiplicity p^{s} of the repeated-root cyclic product code $\mathcal{A} \otimes \mathcal{B}$. By Thm. $\underline{1}$, the minimum distance d of $\mathcal{A} \otimes \mathcal{B}$ is greater than or equal to δ. Therefore:

$$
d=d_{a} d_{b} \geq \delta \quad \Longleftrightarrow \quad d_{a}=\left\lceil\frac{\delta}{d_{b}}\right\rceil
$$

Note that the expression of $(\underline{24})$ is in $\mathbb{F}_{q^{l}}[X]$, where $l=\operatorname{lcm}\left(l_{a}, l_{b}\right)$.
Example 12 (Bound by Embedding into a Product Code). Let \mathcal{A} be the $[34=2 \cdot 17,18,5]_{2}$ repeated-root cyclic code with $p=2, \bar{n}_{a}=17$ and defining set:

$$
\mathrm{D}_{\mathcal{A}}=\left\{1^{\langle 2\rangle}, 2^{\langle 2\rangle}, 4^{\langle 2\rangle}, 8^{\langle 2\rangle}, 9^{\langle 2\rangle}, 13^{\langle 2\rangle}, 15^{\langle 2\rangle}, 16^{\langle 2\rangle}\right\}
$$

of Ex. $\underline{5}$ and let \mathcal{B} denote the $[3,2,2]_{2}$ simple-root cyclic parity check code with defining set

$$
\mathrm{D}_{\mathcal{B}}=\left\{0^{\langle 1\rangle}\right\} .
$$

Let $\alpha \in \mathbb{F}_{2^{8}}$ and $\beta \in \mathbb{F}_{2^{4}}$ denote elements of order 17 and 3, respectively. Then, for $f_{a}=-4, f_{b}=-1$ and $m_{a}=m_{b}=1$ Thm. 11 holds for $\delta=10$ and therefore $d_{a} \geq 5$, which is the true minimum distance of \mathcal{A}.

Since $1 \cdot 34-11 \cdot 3=1$, according to Thm. 10, the defining set of the repeated-root cyclic product code $\mathcal{A} \otimes \mathcal{B}$ is:

$$
\begin{aligned}
\mathrm{D}_{\mathcal{A} \otimes \mathcal{B}}= & \left\{\left\{1^{\langle 2\rangle}, 2^{\langle 2\rangle}, 4^{\langle 2\rangle}, 8^{\langle 2\rangle}, 9^{\langle 2\rangle}, 13^{\langle 2\rangle}, 15^{\langle 2\rangle}, 16^{\langle 2\rangle}\right\} \cup\left\{18^{\langle 2\rangle}, 19^{\langle 2\rangle}, 21^{\langle 2\rangle}, 25^{\langle 2\rangle}, 26^{\langle 2\rangle}, 30^{\langle 2\rangle}, 32^{\langle 2\rangle}, 33^{\langle 2\rangle}\right\}\right. \\
& \left.\left.\cup\left\{35^{\langle 2\rangle}, 36^{\langle 2\rangle}, 38^{\langle 2\rangle}, 42^{\langle 2\rangle}, 43^{\langle 2\rangle}, 47^{\langle 2\rangle}, 49^{\langle 2\rangle}, 50^{\langle 2\rangle}\right\}\right\} \cup \cup \cup\left\{0^{\langle 2\rangle}\right\} \cup\left\{3^{\langle 2\rangle}\right\} \cup \cdots \cup\left\{48^{\langle 2\rangle}\right\}\right\} \\
= & \left\{0^{\langle 2\rangle}, 1^{\langle 2\rangle}, 2^{\langle 2\rangle}, 3^{\langle 2\rangle}, 4^{\langle 2\rangle}, 6^{\langle 2\rangle}, 8^{\langle 2\rangle}, 9^{\langle 2\rangle}, 12^{\langle 2\rangle}, 13^{\langle 2\rangle}, 15^{\langle 2\rangle}, 16^{\langle 2\rangle}, 18^{\langle 2\rangle}, 19^{\langle 2\rangle}, 21^{\langle 2\rangle}, 24^{\langle 2\rangle}, 25^{\langle 2\rangle}, 26^{\langle 2\rangle}, 27^{\langle 2\rangle},\right. \\
& \left.30^{\langle 2\rangle}, 32^{\langle 2\rangle}, 33^{\langle 2\rangle}, 35^{\langle 2\rangle}, 36^{\langle 2\rangle}, 38^{\langle 2\rangle}, 39^{\langle 2\rangle}, 42^{\langle 2\rangle}, 43^{\langle 2\rangle}, 45^{\langle 2\rangle}, 47^{\langle 2\rangle}, 48^{\langle 2\rangle}, 49^{\langle 2\rangle}, 50^{\langle 2\rangle}\right\} .
\end{aligned}
$$

VI. Probabilistic Decoding up to Bound III

In contrast to the decoding approach for p^{s}-phased burst errors in Section III-B, we do not use folding (as in Def. 6) in the following. Instead we decode a given $\left[n_{a}=p^{s} \bar{n}_{a}, k_{a}, d_{a}\right]_{q}$ repeated-root cyclic code \mathcal{A} (embedded in a repeated-root cyclic product code $\mathcal{A} \otimes \mathcal{B}$ via an associated single-root cyclic code \mathcal{B} as in Thm. 11) as a p^{s}-interleaved code and apply a probabilistic decoder (as e.g. analyzed in [25], [32], [33]). Note that this decoding method also corrects p^{s}-phased burst errors. Let $a(X) \in \mathcal{A}$ and let the received polynomial be $r(X)=a(X)+e(X)$.

Let p^{s} polynomials $r^{\langle 0\rangle}(X), r^{\langle 1\rangle}(X), \ldots, r^{\left\langle p^{s}-1\right\rangle}(X) \in \mathbb{F}_{q}[X]$ of degree smaller than \bar{n}_{a} be given, such that

$$
\begin{equation*}
r(X)=\sum_{i=0}^{p^{s}-1} r^{\langle i\rangle}\left(X^{p^{s}}\right) X^{i} \tag{26}
\end{equation*}
$$

where E_{i} denotes the corresponding error-positions in $r^{\langle i\rangle}(X)$. The set $\mathrm{E}=\cup_{i=0}^{p^{s}-1} \mathrm{E}_{i}$ with $\varepsilon=|\mathrm{E}|$ is the set of p^{s}-phased burst-errors.

In the following the set of p^{s} key equations is derived and the decoding procedure up to $\varepsilon \leq\left\lfloor\frac{p^{s}}{p^{s}-1}\left(d_{\text {III }}-1\right)\right\rfloor$ p^{s}-phased burst errors is described.

Definition 13 (Syndromes). Let \mathcal{A} be an $\left[n_{a}=p^{s} \bar{n}_{a}, k_{a}, d_{a}\right]_{q}$ repeated-root cyclic code over \mathbb{F}_{q} with characteristic p, where $\operatorname{gcd}\left(\bar{n}_{a}, p\right)=1$, and \mathcal{B} an $\left[n_{b}, k_{b}, d_{b}\right]_{q}$ simple-root cyclic code, respectively, with $\operatorname{gcd}\left(n_{a}, n_{b}\right)=1$. Let α, β be elements of order \bar{n}_{a} in $\mathbb{F}_{q^{l} a}$ and of order n_{b} in $\mathbb{F}_{q^{l_{b}}}$ respectively. The integers $f_{a}, f_{b}, m_{a} \neq 0, m_{b} \neq 0$ with $\operatorname{gcd}\left(n_{a}, m_{a}\right)=\operatorname{gcd}\left(n_{b}, m_{b}\right)=1$ and $\delta \geq 2$ are given as in Thm. 11. Furthermore, let $b(X) \in \mathcal{B}$ be a codeword of weight d_{b}. We define p^{s} syndrome polynomials $S^{\langle 0\rangle}(X), S^{\langle 1\rangle}(X), \ldots, S^{\left\langle p^{s-1}\right\rangle}(X) \in \mathbb{F}_{q^{l}}[X]$, where $l=\operatorname{lcm}\left(l_{a}, l_{b}\right)$ for the received polynomials $r^{\langle 0\rangle}(X), r^{\langle 1\rangle}(X), \ldots, r^{\left\langle p^{s}-1\right\rangle}(X) \in \mathbb{F}_{q}[X]$ as in (26):

$$
\begin{equation*}
S^{\langle t\rangle}(X) \stackrel{\text { def }}{=} \sum_{i=0}^{\delta-2} r^{\langle t\rangle}\left(\alpha^{f_{a}+i m_{a}}\right) \cdot b\left(\beta^{f_{b}+i m_{b}}\right) X^{i}, \quad \forall t \in\left[p^{s}\right) . \tag{27}
\end{equation*}
$$

To obtain an algebraic description in terms of a key equation, we define an error-locator polynomial in the following.
Definition 14 (Error-Locator Polynomial). Let $b(X)=\sum_{i \in \mathrm{Y}} b_{i} X^{i}$ be a codeword of weight $|\mathrm{Y}|=d_{b}$ of the associated $\left[n_{b}, k_{b}, d_{b}\right]_{q}$ simple-root cyclic code \mathcal{B}. Let α and β be elements of order \bar{n}_{a} in $\mathbb{F}_{q^{l a}}$ and of order n_{b} in $\mathbb{F}_{q^{l_{b}}}$, respectively, and let $m_{a} \neq 0$ and $m_{b} \neq 0$ be as in Thm. 11 .

The support of the additive error is E with $|\mathrm{E}|=\varepsilon$. Define the error-locator polynomial in $\mathbb{F}_{q^{l}}[X]$, where $l=\operatorname{lcm}\left(l_{a}, l_{b}\right)$, as:

$$
\begin{equation*}
\Lambda(X) \stackrel{\text { def }}{=} \prod_{i \in \mathrm{E}}\left(\prod_{j \in \mathrm{Y}}\left(1-X \alpha^{i m_{a}} \beta^{j m_{b}}\right)\right) \tag{28}
\end{equation*}
$$

with degree $\varepsilon \cdot d_{b}$.
For some $j \in \mathrm{Y}$, let \bar{n}_{a} distinct roots of the error-locator polynomial $\Lambda(X)$, as defined in (28), be denoted as:

$$
\begin{equation*}
\gamma_{i} \stackrel{\text { def }}{=} \beta^{-j m_{b}} \alpha^{-i m_{a}}, \quad \forall i \in\left[\bar{n}_{a}\right) \tag{29}
\end{equation*}
$$

We pre-calculate \bar{n}_{a} roots as in (29) and identify the error positions of a given error-locator polynomial $\Lambda(X)$ as in Def. 14.

We now connect Def. 13 and Def. 14. From the expression of the syndromes in (27), we obtain:

$$
\begin{align*}
S^{\langle t\rangle}(X) & =\sum_{i=0}^{\delta-2} r^{\langle t\rangle}\left(\alpha^{f_{a}+i m_{a}}\right) \cdot b\left(\beta^{f_{b}+i m_{b}}\right) X^{i} \\
& =\sum_{i=0}^{\delta-2} e^{\langle t\rangle}\left(\alpha^{f_{a}+i m_{a}}\right) \cdot b\left(\beta^{f_{b}+i m_{b}}\right) X^{i} \\
& =\sum_{i=0}^{\delta-2}\left(\sum_{j \in \mathrm{E}_{t}} e_{j}^{\langle t\rangle} \alpha^{\left(f_{a}+i m_{a}\right) j} \cdot \sum_{l \in \mathrm{Y}} b_{l} \beta^{\left(f_{b}+i m_{b}\right) l}\right) X^{i}, \quad \forall t \in\left[p^{s}\right) . \tag{30}
\end{align*}
$$

As in (19), we use the geometric series and we obtain from (30):

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left(\sum_{j \in \mathrm{E}_{t}} e_{j}^{\langle t\rangle} \alpha^{\left(f_{a}+i m_{a}\right) j} \cdot \sum_{l \in \mathrm{Y}} b_{l} \beta^{\left(f_{b}+i m_{b}\right) l}\right) X^{i} \equiv \sum_{j \in \mathrm{E}_{t}} e_{j}^{\langle t\rangle} \alpha^{f_{a} j} \sum_{l \in \mathrm{Y}} \frac{b_{l} \beta^{f_{b} l}}{1-X \alpha^{j m_{a}} \beta^{l m_{b}}} \quad \bmod X^{\delta-1} \tag{31}
\end{equation*}
$$

We need two more steps to obtain a common denominator. From (31), we have:

$$
\begin{align*}
S^{\langle t\rangle}(X) & \equiv \sum_{j \in \mathrm{E}_{t}} e_{j}^{\langle t\rangle} \alpha^{f_{a} j} \sum_{l \in \mathrm{Y}} \frac{b_{l} \beta^{f_{b} l}}{1-X \alpha^{j m_{a}} \beta^{l m_{b}}} \bmod X^{\delta-1} \\
& \equiv \sum_{j \in \mathrm{E}_{t}} e_{j}^{\langle t\rangle} \alpha^{f_{a} j} \frac{\sum_{l \in \mathrm{Y}} b_{l} \beta^{f_{b} l} \prod_{\substack{i \in \mathrm{Y} \\
i \neq l}}\left(1-X \alpha^{j m_{a}} \beta^{i m_{b}}\right)}{\prod_{i \in \mathrm{Y}}\left(1-X \alpha^{j m_{a}} \beta^{i m_{b}}\right)} \bmod X^{\delta-1} \\
& \equiv \frac{\sum_{j \in \mathrm{E}_{t}}\left(e_{j}^{\langle t\rangle} \alpha^{f_{a} j} \sum_{l \in \mathrm{Y}}\left(b_{l} \beta^{f_{b} l} \prod_{\substack{i \in \mathrm{Y} \\
i \neq l}}\left(1-X \alpha^{j m_{a}} \beta^{i m_{b}}\right)\right) \prod_{\substack{s \in \mathrm{E} \\
s \neq j}} \prod_{\iota \in \mathrm{Y}}\left(1-X \alpha^{s m_{a}} \beta^{\iota m_{b}}\right)\right)}{\prod_{i \in \mathrm{E}_{t}}\left(\prod_{j \in \mathrm{Y}}\left(1-X \alpha^{i m_{a}} \beta^{j m_{b}}\right)\right)} \\
& \stackrel{\operatorname{def}}{\equiv} \frac{\Omega^{\langle t\rangle}(X)}{\Lambda(X)} \bmod X^{\delta-1}, \quad \forall t \in\left[p^{s}\right), \tag{32}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega^{\langle t\rangle}(X) \stackrel{\text { def }}{=} \sum_{j \in \mathrm{E}_{t}}\left(e_{j}^{\langle t\rangle} \alpha^{f_{a} j} \sum_{l \in \mathrm{Y}}\left(b_{l} \beta^{f_{b} l} \prod_{\substack{i \in \mathrm{Y} \\ i \neq l}}\left(1-X \alpha^{j m_{a}} \beta^{i m_{b}}\right) \prod_{\substack{s \in E \\ s \neq j}} \prod_{c \in \mathrm{Y}}\left(1-X \alpha^{s m_{a}} \beta^{\iota m_{b}}\right)\right), \quad \forall t \in\left[p^{s}\right)\right. \tag{33}
\end{equation*}
$$

are the p^{s} error-evaluator polynomials $\Omega^{\langle 0\rangle}(X), \Omega^{\langle 1\rangle}(X), \ldots, \Omega^{\left\langle p^{s}-1\right\rangle}(X)$ of degree at most $\varepsilon d_{b}-1$. We skip the explicit error-evaluation and refer to [19, Proposition 4].

Algorithm $\underline{2}$ summarizes the syndrome-based decoding procedure up to $\left\lfloor\frac{p^{s}}{p^{s}-1}\left(d_{I I I}-1\right)\right\rfloor p^{s}$-phased burst errors with high probability based on the key equations as in (32) and (33).

```
Algorithm 2: Decoding a \(\left[p^{s} \bar{n}_{a}, k_{a}, d_{a}\right]_{q}\) repeated-root cyclic code \(\mathcal{A}\) up to \(\left[\frac{p^{s}}{p^{s}-1}\left(d_{\| I I}-1\right)\right\rfloor p^{s}\)-phased
burst errors.
    Input: Received word \(r(X)\), codeword \(b(X)=\sum_{i \in \mathrm{Y}} b_{i} X^{i} \in \mathcal{B}\),
        Elements \(\alpha\) and \(\beta\) of order \(n_{a}\) and \(n_{b}\),
            Parameters \(f_{a}, f_{b}, m_{a} \neq 0, m_{b} \neq 0\) and \(\delta \geq 2\) as in Thm. 11
    Output: Estimated codeword \(a(X) \in \mathcal{A}\) or DecodingFailure
    Preprocess:
        for all \(i \in\left[\bar{n}_{a}\right)\) : calculate \(\gamma_{i}=\beta^{-j m_{b}} \alpha^{-i m_{a}}\), where \(j \in \mathrm{Y}\)
1 Calculate \(S^{\langle 0\rangle}(X), \ldots, S^{\left\langle p^{s}-1\right\rangle}(X)\) as in (27) using \(r^{\langle 0\rangle}(X), \ldots, r^{\left\langle p^{s}-1\right\rangle}(X) \quad / /\) Syndrome calculation
    \(\Lambda(X), \Omega^{\langle 0\rangle}(X), \ldots, \Omega^{\left\langle p^{s}-1\right\rangle}(X)=\operatorname{GEEA}\left(X^{\delta-1}, S^{\langle 0\rangle}(X), \ldots, S^{\left\langle p^{s}-1\right\rangle}(X)\right) \quad / /\) Generalized EEA
    Find all \(i\), where \(\Lambda\left(\gamma_{i}\right)=0 \Rightarrow \mathrm{E}=\left\{i_{0}, i_{1}, \ldots, i_{\varepsilon-1}\right\} \quad\) // Chien-like search
    if \(\varepsilon|\mathrm{Y}|<\operatorname{deg} \Lambda(X)\) then
        Declare DecodingFailure
    else
        for all \(i \in\left[p^{s}\right)\) : Determine \(e^{\langle i\rangle}(X)\) using \(\Omega^{\langle i\rangle}(X)\) as in [19, Proposition 4] // Forney-like
        error-evaluation
            \(e^{\langle i\rangle}(X) \leftarrow \sum_{j \in \mathrm{E}_{i}} e_{j}^{\langle i\rangle} X^{j}\)
    \(a(X) \leftarrow \sum_{i=0}^{p^{s}-1}\left(r^{\langle i\rangle}\left(X^{p^{s}}\right)-e^{\langle i\rangle}\left(X^{p^{s}}\right)\right) X^{i}\)
```

All error-evaluator polynomials $\Omega^{\langle 0\rangle}(X), \Omega^{\langle 1\rangle}(X), \ldots, \Omega^{\left\langle p^{s}-1\right\rangle}(X)$ as defined in (21) are needed for the errorevaluation in Line 7.

Bound III simplifies to the BCH-like generalization of Bound I (as stated in Thm. 1) if the associated code \mathcal{B} is the trivial $\left[n_{b}, n_{b}, 1\right]_{q}$ code and decoding up to $\frac{p^{s}-1}{p^{s}}\left\lfloor\left(d_{1}-1\right) / 2\right\rfloor p^{s}$-phased burst errors with high probability is possible. Then the p^{s} parallel operations (as e.g., the syndrome calculation) are computed over $\mathbb{F}_{q^{l}}$ instead in $\mathbb{F}_{q^{p^{s}}}$.
Note that the p^{s} cyclic subcodes can be collaboratively list decoded with the approach of Gopalan [34] up to the q-ary Johnson radius with relative distance d_{1} / n_{a}.

VII. Conclusion

We have proved three lower bounds on the minimum distance of a repeated-root cyclic code, i.e., a cyclic code whose length is not relatively prime to the field characteristic. The two first bounds are generalizations of the BCH and the HT bound to repeated-root cyclic codes. A syndrome-based decoding algorithm with a guaranteed radius was developed. The third bound is similar to a previous published technique for simple-root cyclic codes and is based on the embedding of a given repeated-root cyclic code into a repeated-root cyclic product code. A syndrome-based probabilistic decoding algorithm based on a set of key equations using the third bound was proposed.

Acknowledgments

The authors are grateful to Antonia Wachter-Zeh, Johan S. R. Nielsen and Ron M. Roth for stimulating discussions.

References

[1] R. C. Bose and D. K. Ray-Chaudhuri, "On A Class of Error Correcting Binary Group Codes," Inf. Control, vol. 3, no. 1, pp. 68-79, 1960.
[2] A. Hocquenghem, "Codes correcteurs d'Erreurs," Chiffres (Paris), vol. 2, pp. 147-156, 1959.
[3] C. R. P. Hartmann, "Decoding Beyond the BCH Bound," IEEE Trans. Inform. Theory, vol. 18, no. 3, pp. 441-444, 1972.
[4] C. R. P. Hartmann and K. K. Tzeng, "Generalizations of the BCH Bound," Inf. Control, vol. 20, no. 5, pp. 489-498, 1972.
[5] S. D. Berman, "Semisimple Cyclic and Abelian Codes," Cybernetics, vol. 3, no. 3, pp. 17-23, 1967.
[6] J. L. Massey, D. Costello, and J. Justesen, "Polynomial Weights and Code Constructions," IEEE Trans. Inform. Theory, vol. 19, no. 1, pp. 101-110, 1973.
[7] J. L. Massey, N. von Seemann, and P. Schöller, "Hasse Derivatives and Repeated-Root Cyclic Codes," in IEEE International Symposium on Information Theory (ISIT), 1986, p. 39.
[8] V. C. da Rocha Jr., "On Repeated-Single-Root Constacyclic Codes," in Communications and Cryptography, ser. The Springer International Series in Engineering and Computer Science. Springer US, 1994, no. 276, pp. 93-99.
[9] G. Castagnoli, "On the Minimum Distance of Long Cyclic Codes and Cyclic Redundancy Check Codes," in PhD Thesis, ETH Zürich, 1989.
[10] ——, "On the Asymptotic Badness of Cyclic Codes with Block-Lengths Composed from a Fixed Set of Prime Factors," in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, vol. 357. Springer Berlin/Heidelberg, 1989, pp. 164-168.
[11] G. Castagnoli, J. L. Massey, P. A. Schöller, and N. von Seemann, "On Repeated-Root Cyclic Codes," IEEE Trans. Inform. Theory, vol. 37, no. 2, pp. 337-342, 1991.
[12] R. K. Latypov, "Checking Matrix of a Cyclic Code Generated by Multiple Roots," Journal of Soviet Mathematics, vol. 43, no. 3, pp. 2492-2495, 1988.
[13] J. van Lint, "Repeated-Root Cyclic Codes," IEEE Trans. Inform. Theory, vol. 37, no. 2, pp. 343-345, 1991.
[14] K.-H. Zimmermann, "On Generalizations of Repeated-Root Cyclic Codes," IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 641-649, 1996.
[15] C.-S. Nedeloaia, "Weight Distributions of Cyclic Self-Dual Codes," IEEE Trans. Inform. Theory, vol. 49, no. 6, pp. 1582-1591, 2003.
[16] S. Ling, H. Niederreiter, and P. Solé, "On the Algebraic Structure of Quasi-cyclic Codes IV: Repeated Roots," Des. Codes Cryptogr., vol. 38, no. 3, pp. 337-361, 2006.
[17] H. Q. Dinh, "Repeated-Root Constacyclic Codes of Length $2 p^{s}$," Finite Fields Th. App., vol. 18, no. 1, pp. 133-143, 2012.
[18] -_, "Structure of Repeated-Root Constacyclic Codes of Length $3 p^{s}$ and Their Duals," Discrete Math., vol. 313, no. 9, pp. 983-991, 2013.
S. Ling, H. Niederreiter, and P. Solé, "On the Algebraic Structure of Quasi-cyclic Codes IV: Repeated Roots," Des. Codes Cryptogr, vol. 38, no. 3, pp. 337-361, 2006.
[19] A. Zeh and S. V. Bezzateev, "A New Bound on the Minimum Distance of Cyclic Codes Using Small-Minimum-Distance Cyclic Codes," Des. Codes Cryptogr., vol. 71, no. 2, pp. 229-246, 2014.
[20] A. Zeh, A. Wachter-Zeh, and S. V. Bezzateev, "Decoding Cyclic Codes up to a New Bound on the Minimum Distance," IEEE Trans. Inform. Theory, vol. 58, no. 6, pp. 3951-3960, 2012.
[21] H. Burton and E. J. Weldon, "Cyclic Product Codes," IEEE Trans. Inform. Theory, vol. 11, no. 3, pp. 433-439, 1965.
[22] S. Lin and E. J. Weldon, "Further Results on Cyclic Product Codes," IEEE Trans. Inform. Theory, vol. 16, no. 4, pp. 452-459, 1970.
[23] G.-L. Feng and K. K. Tzeng, "A Generalized Euclidean Algorithm for Multisequence Shift-Register Synthesis," IEEE Trans. Inform. Theory, vol. 35, no. 3, pp. 584-594, 1989.
[24] H. Hasse, "Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik," Journal für die Reine und Angewandte Mathematik, no. 175, pp. 50-54, 1936.
[25] V. Y. Krachkovsky and Y. X. Lee, "Decoding for Iterative Reed-Solomon Coding Schemes," IEEE Trans. Magn., vol. 33, no. 5, pp. 2740-2742, 1997.
[26] V. R. Sidorenko, G. Schmidt, and M. Bossert, "Decoding Punctured Reed-Solomon Codes up to the Singleton Bound," in International ITG Conference on Source and Channel Coding (SCC), 2008.
[27] V. Guruswami, "Linear-Algebraic List Decoding of Folded Reed-Solomon Codes," in IEEE Annual Conference on Computational Complexity (CCC), 2011, pp. 77-85.
[28] G.-L. Feng and K. K. Tzeng, "A Generalization of the Berlekamp-Massey Algorithm for Multisequence Shift-Register Synthesis with Applications to Decoding Cyclic Codes," IEEE Trans. Inform. Theory, vol. 37, no. 5, pp. 1274-1287, 1991.
[29] A. Zeh and A. Wachter, "Fast Multi-Sequence Shift-Register Synthesis with the Euclidean Algorithm," Adv. Math. of Comm., vol. 5, no. 4, pp. 667-680, 2011.
[30] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. North Holland Publishing Co., 1988.
[31] A. Zeh, A. Wachter-Zeh, M. Gadouleau, and S. V. Bezzateev, "Generalizing Bounds on the Minimum Distance of Cyclic Codes Using Cyclic Product Codes," in IEEE International Symposium on Information Theory (ISIT), 2013, pp. 126-130.
[32] V. Y. Krachkovsky, "Decoding of Parallel Reed-Solomon Codes with Applications to Product and Concatenated Codes," in IEEE International Symposium on Information Theory (ISIT), 1998, p. 55.
[33] G. Schmidt, V. R. Sidorenko, and M. Bossert, "Collaborative Decoding of Interleaved Reed-Solomon Codes and Concatenated Code Designs," IEEE Trans. Inform. Theory, vol. 55, no. 7, pp. 2991-3012, 2009.
[34] P. Gopalan, V. Guruswami, and P. Raghavendra, "List Decoding Tensor Products and Interleaved Codes," SIAM J. Comput., vol. 40, no. 5, pp. 1432-1462, 2011.

[^0]: This work has been supported by the German research council (Deutsche Forschungsgemeinschaft, DFG) under grants Bo867/22-1 and Ze1016/1-1 and was initiated when both authors were affiliated with the Institute of Communications Engineering, University of Ulm, Ulm, Germany.

