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Abstract

For a pair of given binary perfect codes C and D of lengths t and m respectively, the Mollard
construction outputs a perfect code M(C,D) of length tm + t +m, having subcodes C1 and D2,
that are obtained from codewords of C and D respectively by adding appropriate number of zeros.
In this work we generalize of a result for symmetry groups of Vasil’ev codes [2] and find the group
StabD2Sym(M(C,D)). The result is preceded by and partially based on a discussion of ”linearity”
of coordinate positions (points) in a nonlinear perfect code (non-projective Steiner triple system
respectively).

1 Introduction

There are not so many results on the structure of automorphism group of perfect codes, even in binary
case. The investigation of automorphism group and symmetry group of any code is important since
these groups are measures of symmetries of the code structure. In the present paper we propose two
invariants for measuring the ”linearity” of coordinate positions and points in a nonlinear perfect code
and non-projective Steiner triple system not necessarily associated with perfect codes. The symmetry
group of a perfect code is very closely related to the authomorphism group of its Steiner triple system.
Beside of the automorphism and symmetry groups, kernel, rank and Steiner triple system of a perfect
code, the proposed in the paper these new invariants will be important tools in further research of
structural properties of perfect codes.

The well-known result by Phelps [15] states that each finite group is isomorphic to the symmetry
group of a perfect binary code, whereas the result of Avgustinovich and Vasil’eva [4] established that
the symmetry group of any perfect binary code of length n is isomorphic to the symmetry group of
the subcode of all its codewords of weight (n− 1)/2. However these results do not give the complete
information on the structure of the symmetry and automorphism groups of perfect binary codes.
The existence of classes of perfect binary codes with trivial automorphism groups (nonsystematic and
systematic) is considered in papers [1, 10, 8]. It is well known [9] that the symmetry group Sym(H)
of the Hamming code H of length n is isomorphic to the general linear group GL(log(n + 1), 2). By
the linearity of the Hamming code H of length n, we have

|Sym(H)| = |GL(log(n+ 1), 2)| = n(n− 1)(n − 3)(n− 7) . . . (n− (n− 1)/2).

The order of the automorphism group of an arbitrary nonlinear perfect binary code was investigated
by several authors, see the papers [19, 20, 11, 6, 7]. The main definitions concerning this paper see in
[9].
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Novosibirsk, Russia (emails: {ivmog,sol}@math.nsc.ru).
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2 Notations and Definitions

A collection C of binary vectors of length n is called a perfect (1-perfect) code if any binary vector
is at distance 1 from exactly one codeword of C. The perfect codes have length n = 2m − 1, 2n−m

codewords and minimum distance 3. For every admissible n up to equivalence there is the unique
linear perfect code of length n, it is called the Hamming code. A Steiner triple system is a collection
of blocks (subsets, called also triples) of size 3 of an n-element set, such that any unordered pair of
distinct elements is exactly in one block. The set of codewords of weight 3 in a perfect code C, that
contains the all-zero codeword is a Steiner triple system, which we denote STS(C). A Steiner triple
system whose linear span is a Hamming code is called projective.

With a Steiner triple system S we associate a Steiner quasigroup (P (S), ·) to be the point set P (S)
of S with a binary operation · such that: i · j = k, if (i, j, k) is a triple of S and i · i = i. A Steiner loop
(0 ∪ P (S), ⋆) with a binary operation ⋆ fulfills properties i ⋆ j = k, if (i, j, k) is a triple of S, i ⋆ i = 0
and i ⋆ 0 = i.

Let C and D be two binary one-error-correcting codes of lengths t and m respectively. Consider a
representation for the Mollard construction [14] for binary codes.

Consider the coordinate positions of the Mollard code M(C,D) of length tm+ t+m to be pairs
(r, s) from the set {0, . . . , t} × {0, . . . ,m} \ (0, 0).

Let f be an arbitrary function from C to the set of binary vectors of the vector space Fm
2 of length

m and p1(z) and p2(z) be the generalized parity check functions:

p1(z) = (

m∑

s=0

z1,s, . . . ,

m∑

s=0

zt,s),

p2(z) = (

t∑

r=0

zr,1, . . . ,

t∑

r=0

zr,m).

The binary code M(C,D) = {z ∈ Ftm+t+m
2 : p1(z) ∈ C, p2(z) ∈ f(p1(z)) +D} is called the Mollard

code. In the case when C and D are perfect, the code M(C,D) is perfect. Throughout the paper
we consider the case when f is the zero function, C and D are perfect codes, containing the all-zero
words 0t and 0m respectively.

The Steiner triple system of M(C,D) can be also defined using minimum weight codewords of the
initial codes:

STS(M(C,D)) = {x ∈ Ftm+t+m
2 : p1(x) ∈ STS(C) ∪ 0t, p2(x) ∈ STS(D) ∪ 0m} \ {0tm+t+m}.

We use the following convenient partition for the Steiner triple system of Mollard code

STS(M(C,D)) =
⋃

k,p∈{0,3}

Tkp (1)

where
T00 = {((r, 0), (r, s), (0, s)) : r ∈ {1, . . . , t}, s ∈ {1, . . . ,m}};

T33 = {((r, s), (r′, s′), (r′′, s′′)) : (r, r′, r′′) ∈ STS(C), (s, s′, s′′) ∈ STS(D)};

T30 = {((r, 0), (r′ , s), (r′′, s)) : (r, r′, r′′) ∈ STS(C), s ∈ {0, . . . ,m}};

T03 = {((r, s), (r, s′), (0, s′′)) : (s, s′, s′′) ∈ STS(D), r ∈ {0, . . . , t}}.

Let x and y be codewords of C and D respectively. Denote by x1 and y2 codewords of M(C,D)
such that
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(x1)r0 = xr, for r ∈ {1, . . . , t} and (y2)0s = ys, for s ∈ {1, . . . ,m}

with zeros in all positions from {0, . . . , t} × {1, . . . ,m} and {1, . . . , t} ×{0, . . . ,m} respectively. Note
that M(C,D) contains the codes C and D as the subcodes C1 = {x1 : x ∈ C} and D2 = {y2 : y ∈ D}
respectively.

We also use a traditional representation of the Mollard code M(C,D) using its subcodes C1, D2

and {er,s + e0,s + er,0 : r ∈ {1, . . . , t}, s ∈ {1, . . . ,m}}, where er,s is a vector of weight one with one in
the coordinate position (r, s):

Lemma 1. Given a vector z ∈ M(C,D) there are unique codewords x ∈ C and y ∈ D such that

z = x1 + y2 +
∑

(r,s):zr,s=1

(er,s + e0,s + er,0).

Recall that the dual C⊥ of a code C is a collection of all binary vectors x such that
∑

i=1,...,n xici =
0(mod 2) for any codeword c of C. For perfect codes C and D, the dual of the Mollard code M(C,D)
can be described in the following way:

(M(C,D))⊥ = {z : p1(z) ∈ C⊥, p2(z) ∈ D⊥}. (2)

The rank rk(C) of a code C is defined to be the dimension of its linear span over F2. The kernel
of the code is defined to be the subspace Ker(C) = {x ∈ C : x + C = C}. The rank and kernel are
important code invariants. Due to the construction, the Mollard code preserves many properties and
characteristics of the initial codes C and D, in particular, we have the iterative formulas for the size
of kernel and rank:

dim(Ker(M(C,D))) = dim(Ker(C)) + dim(Ker(D)) + tm

rk(M(C,D)) = rk(C) + rk(D).

The symmetry group Sym(C) of a code C (sometimes being called the permutational automorphism
group or full automorphism group [9]) is the subgroup of permutations on n elements preserving the
code setwise:

Sym(C) = {π ∈ Sn : π(C) = C}.

The automorphism group of a Steiner triple system of order n is the subgroup of permutations on
n elements preserving the collection of blocks of the system.

It is well-known that the symmetry group stabilizes the dual of the code, kernel [16] and its Steiner
triple system:

Sym(C) ≤ Sym(Ker(C)), (3)

Sym(C) ≤ Sym(C⊥), (4)

Sym(C) ≤ Aut(STS(C)). (5)

By StabCG and Stab(C)G of a code C we denote the setwise and codeword-wise stabilizers of the
set C by the group G acting on a code C ′, C ⊆ C ′. Let C be a perfect subcode of C ′ on the nonzero
coordinates N(C). We have the following obvious statement.

Proposition 1. We have that for any perfect code C with a perfect subcode C ′ on coordinates N(C):

StabN(C)Sym(C ′) = StabCSym(C ′), Stab(N(C))Sym(C ′) = Stab(C)Sym(C ′).
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3 Fundamental partition

Given a perfect code C of length n, one might define the fundamental partition associated with C
[3], [16] to be the partition of the coordinate set {1, . . . , n} into subsets I0(C), . . . , I2n−rk(C)−1(C)

such that for each j ∈ {0, . . . , 2n−rk(C) − 1} any codeword of the dual code C⊥ has the same values
for coordinates with indices from Ij(C) [3]. By I0(C) we agree to denote the set of coordinates
{i : xi = 0 for all x ∈ C⊥} which is of size (n+ 1)/2n−rk(C) − 1 while |Ij(C)| = (n+ 1)/2n−rk(C) for
nonzero j. For the proof of the main result we essentially need the following fact:

Lemma 2. [16] Let I0(C), . . . , I2n−rk(C)−1(C) be the fundamental partition associated with a perfect
code C, π ∈ Sym(C). Then

π(I0(C)) = I0(C),

for any j ∈ {1, . . . , 2n−rk(C) − 1} there is j′such that π(Ij(C)) = Ij′(C).

Avgustinovich at al. [2] considered a fundamental partition to show that any perfect code of rank
n− log2(n+1)+2 is obtained by Phelps construction. Utilizing a fundamental partition Heden in [6]
established an upper bound on the size of the symmetry group of a perfect code as a function of the
rank of the code. In Section 5 we apply the idea of the work [6] to prove our result on the symmetry
group of a Mollard code.

From the description (2) of (M(C,D))⊥ we obtain the following representation for the fundamental
partition associated with the Mollard code M(C,D):

I0(M(C,D)) = (I0(C) ∪ 0)× (I0(D) ∪ 0) \ (0, 0),

(I0(C) ∪ 0)× Ij′(D),

Ij(C)× (I0(D) ∪ 0),

Ij(C)× Ij′(D), j = 1, . . . , t, j′ = 1, . . . ,m.

We also use the result of Heden (Lemma 8 of [6]), which provides an inside view on the relationship
of the code triples and the elements of the fundamental partition:

Lemma 3. [6] Let I0(C), . . . , I2n−rk(C)−1(C) be the fundamental partition associated with C of length
n, and ({1, . . . , n}, ⋆) be the Steiner loop associated with STS(M(C,D)). Then

1. for any j ∈ {0, . . . , 2n−rk(C) − 1}, r, r′ ∈ Ij(C) we have that r ⋆ r′ ∈ I0(C);
2. for any j, j′ ∈ {0, . . . , 2n−rk(C) − 1} there is a unique j ⋆′ j′ such that for r ∈ Ij(C), r′ ∈ Ij′(C)

we have that r ⋆ r′ ∈ Ij⋆′j′(C);
3. the set {I0(C), . . . , I2n−rk(C)−1(C)} with respect to the operation ⋆′ is an elementary abelian

2-group.

4 Linear coordinates

The topic of this section does not concern symmetries of perfect codes directly. Here we discuss
the idea of linear coordinates in a perfect code. We consider two characteristics for coordinates of
a perfect code or points of a Steiner triple system, which we use later for describing the symmetry
groups of Mollard codes or the automorphism groups of Mollard Steiner triple systems. In this section
we underline some of their properties and derive an important corollary that we use in the study of
the symmetry group of a Mollard code.

The set of the triples of a Steiner triple system

{(i, j, k), (i, a, b), (c, j, a), (c, k, b)} (6)
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is called a Pasch configuration or, shortly, Pasch.
For a Steiner triple system S on elements {1, . . . , n} and i ∈ {1, . . . , n}, n ≡ 1, 3 (mod 6), define

νi(S) to be the number of different Pasch configurations, incident to i, i. e. such that there are two
triples of the Pasch containing the point i.

For a perfect code C of length n and a coordinate position i we consider µi(C) to be the number
of code triples from Ker(C) containing i:

µi(C) = |{x ∈ STS(C) ∩Ker(C) : i ∈ supp(x)}|.

Obviously, two coordinate positions i, j of S or C are in different orbits by Aut(S) or Sym(C)
respectively if νi(S) 6= νj(S) or µi(C) 6= µj(C) respectively. We say that a coordinate i is µ-linear for
a code C of length n if µi(C) takes the maximal possible value, i. e. (n − 1)/2. We say that a point
i ∈ {1, . . . , n} is ν-linear for a Steiner triple system S of order n if νi(S) takes the maximal possible
value, i. e. (n − 1)(n − 3)/4. By Linν(S) and Linµ(C) denote the sets of ν-linear coordinates of S
and µ-linear coordinates of C respectively.

Lemma 4. Let < {1, . . . , n}, · > be a quasigroup associated with a Steiner triple system S of any
order n. Then the following statements are equivalent:
1. l ∈ Linν(S);
2. for any distinct s, s′ ∈ {1, . . . , n}, s, s′ 6= l we have (l · s) · (l · s′) = s · s′;
3. for any distinct s, s′ ∈ {1, . . . , n}, s, s′ 6= l we have l · (s · s′) = (l · s) · s′.

Proof. A pair of different triples of S, containing l ∈ Linν(S), e.g. (l, s, l · s) and (l, s′, l · s′) induces
the following triples: (s, s′, s · s′) and (l · s, l · s′, s · s′). From the last block we have (l · s) · (l · s′) = s · s′

for any different s and s′ if and only if l is ν-linear.
Now consider the triples (l, s · s′, l · (s · s′)) and (l, s, l · s). The coordinate l is ν-linear for S iff there

are triples (s ·s′, s, s′) and (l · (s ·s′), l ·s, s′) in S for any s and s′. Then we see that l · (s ·s′) = (l ·s) ·s′

iff l is ν-linear.

The second statement of the previous lemma implies that 0 ∪ Linν(S) is the nucleus of a Steiner
loop, associated with a Steiner triple system S, which, in particular implies that if S is nonprojective,
then |Linν(S)| < (n − 1)/2 (see, for example [22]).

Theorem 1. 1. Let C be a perfect code. Then we have

Linµ(C) ⊆ Linν(STS(C)).

2. A subdesign of a Steiner triple system S on Linν(S) is a projective Steiner triple system.
3. A subcode of a perfect code C on the coordinates Linµ(C) is a Hamming code.

Proof. 1. Let i be µ-linear coordinate. Then a pair of triples with the supports {i, s, i ·s} and {i, r, i ·r}
incident to i can be extended to a Pasch configuration. Indeed, since i is µ-linear, a codeword with
the support {s, i · s, r, i · r} is in Ker(C), which, being added with a code triple {r, s, r · s} gives a
triple {i · r, i · s, r · s}. Now it is easy to see that the four considered triples define a Pasch.

2. Let l and l′ be ν-linear coordinates, (l, l′, l · l′) be a triple of S. We show that l · l′ is ν-linear.
Using the equalities from Lemma 4 for any distinct s and s′ we have

((l · l′) · s) · ((l · l′) · s′) = (l · (l′ · s)) · (l · (l′ · s′)) = (l′ · s) · (l′ · s′) = s · s′,

which amounts to the fact that l · l′ is ν-linear. The subdesign on Linν(S) is a projective Steiner triple
system, since it is known that a Steiner triple system with the maximum possible number of Pasch
configurations is projective [21].
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3. Let i and j be two µ-linear coordinates. Then i · j is ν-linear. For any fixed r consider the
following Pasch configuration:

i · j (i · j) · r r

i · j j i .

r · i r · i

A triple (i · j, (i · j) · r, r) is in Ker(C), since three remaining triples in the Pasch-configuration contain
i or j. Now from the proven above we see that a subsystem of STS(C) on the points Linµ(C) is
projective, with all its triples being from Ker(C). Therefore the subcode of Ker(C) generated by
these triples is a Hamming code.

Finally, in the case of Mollard codes we have the following formulas for the number of triples in
the kernel of Mollard code.

Lemma 5. [13] Let M(C,D) be a Mollard code obtained from perfect codes C and D of length t and
m respectively. Then

1. µ(r,0)(M(C,D)) = µr(C)(m+ 1) +m;

2. µ(0,s)(M(C,D)) = µs(D)(t+ 1) + t;

3. µ(r,s)(M(C,D)) = 1 + 2(µs(D) + µr(C) + µr(C)µs(D)).

Corollary 1. Let M(C,D) be a Mollard code obtained from perfect codes C and D of length t and m
respectively. Then µ(r,s) = µ(r,0) iff s ∈ Linµ(D) ∪ 0.

5 The group StabD2Sym(STS(M(C,D)))

For a permutation π on the coordinate positions of the code C (the code D), denote by Dub1(π)
(Dub2(π) respectively) a permutation of coordinates of M(C,D) such that

Dub1(π)(r, s) = (π(r), s) if r is nonzero, Dub1(π)(0, s) = (0, s) otherwise;

Dub2(π)(r, s) = (r, π(s)) if s is nonzero, Dub2(π)(r, 0) = (r, 0) otherwise

(see [18], [5]). For a collection Π of permutations we agree that Dubi(Π) denotes {Dubi(π) : π ∈ Π},
i = 1, 2. We have the following statement:

Lemma 6. Let C and D be two perfect codes. Then

StabC1Sym(M(C,D)) ∩ StabD2Sym(M(C,D)) =

Dub1(Sym(C))×Dub2(Sym(D)).

Proof. The inclusion of Dub1(Sym(C))×Dub2(Sym(D)) into the left hand side of the equality is obvi-
ous, see [18]. Let σ be a permutation from StabC1Sym(M(C,D)) ∩ StabD2Sym(M(C,D)). Consider
π to be a restriction of σ on the nonzero coordinates of C1, i.e. for any r ∈ {1, . . . , t} we have

σ(r, 0) = (π(r), 0),

which is equivalent to σ(c1) = (π(c))1 for any c ∈ C. We see that (π(C))1 = σ(C1) = C1 amounts
to π(C) = C, so π ∈ Sym(C). Analogously we have that the restriction of σ on the coordinates of
D2 is a permutation π′ ∈ Sym(D). Note that if (r, 0), (0, s) are fixed by a permutation of coordi-
nates from M(C,D), then the coordinate (r, s) is fixed, since there is a codeword with the support
{(r, 0), (0, s), (r, s)} in M(C,D). This implies that σ must be equal to Dub1(π)Dub2(π

′).
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In this section we consider the structure of the setwise stabilizer StabD2Sym(STS(M(C,D)))
(which we denote in what follows by G) of the subcode D2 in Sym(M(C,D)). The Mollard construc-
tion is a generalization of the Vasil’ev construction. In [2] the group of symmetries of Vasil’ev codes
is investigated. In this section we obtain an extension of the result for Mollard codes.

Let T be a subgroup formed by the collection of symmetries τ of G such that

for any r ∈ {1, . . . , t}, for any s ∈ {0, . . . ,m} there exists s′ : τ(r, s) = (r, s′), (7)

for any s ∈ {1, . . . ,m} we have τ(0, s) = (0, s). (8)

From Corollary 1 we obtain:

Lemma 7. A symmetry τ ∈ T setwise fixes the set of coordinates {(r, s) : s ∈ 0 ∪ Linµ(D)} for any
r ∈ {1, . . . , t}.

Proposition 2. The group T is an elementary abelian 2-group.

Proof. We show that τ ∈ T is necessarily of order not more than 2. Indeed, let τ(r, 0) = (r, s),
then, taking into account that τ(0, s) = (0, s), see (8), we have that a triple τ((r, 0), (0, s), (r, s)) =
((r, s), (0, s), (r, s′)) for some s′ must be in STS(M(C,D)). By (1) the triple ((r, s), (0, s), (r, s′)) is
necessarily in T00, so s′ = 0, i.e. τ(r, s) = (r, 0). We see that τ2 fixes (r, 0) and (0, s) for any
r ∈ {1, . . . , t}, s ∈ {1, . . . ,m}. Therefore, τ2 must fix (r, s) for any r ∈ {1, . . . , t}, s ∈ {1, . . . ,m},
because τ2 fixes elements (r, 0) and (0, s) of the triple ((r, 0), (0, s), (r, s)). We have shown that τ2 is
an identity.

We show that any element of the group G could be represented as a composition of the following
three symmetries: Dub2(π

′), for π′ ∈ Sym(D), Dub1(π), for π ∈ Sym(C) and a symmetry τ ∈ T .
Here π′ ∈ Sym(D) is the restriction of σ on the nonzero positions of the subcode D2, π ∈ Sym(C) is
a permutation, induced by the action of σDub2(π

′−1) on the subsets r × {0, . . . ,m}, r = 1, . . . , t.

Lemma 8. It is true that
1. Stab(C1)G = Dub2(Sym(D)) ⊳ G;
2. Stab(D2)G = {Dub1(π)τ : π ∈ Sym(C), τ ∈ T } ⊳ G;
3. G = Dub2(Sym(D))× {Dub1(π)τ : π ∈ Sym(C), τ ∈ T }.

Proof. Let σ be from G. We have that σ(D2) = D2, so the restriction of σ on D2 is a permutation
π′ ∈ Sym(D) (see the proof of Lemma 6).

We now show that σ′ = σDub2(π
′−1) acts on the following subsets of coordinates: r×{0, . . . ,m}, r ∈

{1, . . . , t}. For any s ∈ {1, . . . ,m} let σ′(r, 0) be (r′, s′) and σ′(r, s) be (r′′, s′′) for some s′, s′′ and
nonzero r′, r′′. Since ((r, 0), (r, s), (0, s)) is a triple of M(C,D), so must be (σ′(r, 0),σ′(r, s),σ′(0, s))=
((r′, s′),(r′′, s′′),(0, s)). From (1) the triple ((r′, s′),(r′′, s′′),(0, s)) is in T00 or T03 and both cases
necessarily imply that r′ = r′′.

So, there is a permutation π of coordinate positions of the code C such that

σ′(r × {0, . . . ,m}) = π(r)× {0, . . . ,m}, (9)

for r ∈ {1, . . . , t}. The permutation π is necessarily from Sym(C) since σ′ should act as an element
of Sym(C) on the first coordinates of the subcode C1. For any x ∈ C we have that

p1(σ
′(x1)) = p1(π(x)

1) = π(x) ∈ C,

which is true iff π ∈ Sym(C).
Therefore σ is Dub2(π

′)Dub1(π)τ for some τ ∈ T . By definition of T , see (8), the groups T
and Dub1(Sym(C)) are subgroups of Stab(D2)G, Dub2(Sym(D)) is a subgroup of Stab(C1)G. Since a
pointwise stabilizer of a group G acting on a set is a normal subgroup of G, we obtain the required.
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By Lemma 8 we are now focused on the description of T . In the next lemma we use the idea
similar to that of work [6].

Lemma 9. Let ({Ij(C), j = 0, . . . , 2t−rk(C) − 1}, ⋆′) be a Steiner loop associated with the elements of
the fundamental partition of the code C, (0 ∪ Linµ(D), ⋆) be a subloop of Steiner loop associated with
STS(D) and τ be a symmetry of T . Then there is a group homomorphism
α : ({Ij(C), j = 0, . . . , 2t−rk(C) − 1}, ⋆′) → (0 ∪ Linµ(D), ⋆), such that

τ(r, s) = (r, s ⋆ α(j)),

where r ∈ Ij(C).

Proof. For any r ∈ {1, . . . , t} define lr from the condition τ(r, 0) = (r, lr). By Lemma 7, the coordinate
lr must be in 0∪Linµ(D). Consider a triple ((r, s), (0, s), (r, 0)). Since τ((r, s), (0, s), (r, 0)) is a triple
of M(C,D) and τ(r, 0) = (r, lr), τ(r, s) = (r, s′), τ(0, s) = (0, s), we see that p2(er,lr + er,s′ + e0,s) =
elr + es′ + es must be in D, so either one of the elements lr, s

′ is zero and the remaining is equal to s
or (lr, s, s

′) ∈ STS(D). This could be rewritten in the form s′ = s ⋆ lr and we have

τ(r, s) = (r, s ⋆ lr). (10)

If r is zero we set l0 equal to 0 according to (8).
We prove that lr = lr′ , for r, r′ ∈ Ij(C). Consider the restriction τ ′ of τ on the perfect subcode

M(C,Dµ) of the code M(C,D), where Dµ is a linear subcode of D on the positions Linµ(D). The
restriction is correct, i. e. τ ′ is a symmetry of M(C,Dµ), since by Lemma 7 a symmetry τ fixes the set
of the coordinates of M(C,Dµ). We have the following representation for the fundamental partition
associated with M(C,Dµ) (see Section 3):

I0(M(C,Dµ)) = I0(C)× 0,

Ij(C)× s, for all s ∈ {0, . . . ,m},

(I0(C) ∪ 0)× s ∈ {1, . . . ,m}.

By (7) and Lemma 2 we see that τ ′ fixes any element (r, 0) of I0(M(C,Dµ)), so we have that lr is
equal to 0 for all r ∈ I0(C).

For any distinct r, r′, we have r · r′ = r ⋆ r′ and

τ((r, 0), (r′, 0), (r ⋆ r′, 0)) = ((r, lr), (r
′, lr′), (r ⋆ r

′, lr⋆r′)). (11)

If r, r′ ∈ Ij(C), j ∈ {0, . . . , 2t−rk(C) − 1} then r ⋆ r′ = r · r′ is in I0(C) (see Lemma 3) so lr⋆r′ = 0
and (11) implies that lr = lr′ . Therefore the action of τ can be presented as (r, s) → (r, s ⋆ α(j)) if
r ∈ Ij(C) for some mapping α of {Ij(C), j = 0, . . . , 2t−rk(C) − 1} into 0 ∪ Linµ(D).

Moreover, we have that α is an operation-preserving mapping. By Lemma 3 for any j, j′ there is
a unique j ⋆′ j′ such that for r ∈ Ij(C), r′ ∈ Ij′(C), r ⋆ r′ is in Ij⋆j′(C). Because any triple (τ(r, 0),
τ(r′, 0), τ(r ⋆ r′, 0)) = ((r, lr), (r

′, lr′), (r ⋆ r
′, lr⋆r′) must be a triple of STS(M(C,D)) we necessarily

have that α(j) ⋆ α(j′) = lr ⋆ lr′ = lr⋆r′ = α(j ⋆′ j′).

Now from Lemma 9 we immediately obtain an evaluation for the order of T .

Corollary 2. The order of T is not more than (1 + |Linµ(D)|)t−rk(C).
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For a codeword u ∈ C and an element l ∈ Linµ(D), denote by Ortl(u) the permutation on the
coordinates of M(C,D) defined in the following way

Ortl(u)(r, s) = (r, s ⋆ l), for r ∈ supp(u), s ∈ {0, . . . ,m},

Ortl(u)(r, s) = (r, s), otherwise,

where ⋆ is a binary operation in the Steiner loop associated with STS(D).
We agree that OrtA(U) denotes the collection of permutations {Ortl(u) : l ∈ A, u ∈ U}.

Lemma 10. Let C and D be perfect codes. Then < OrtLinµ(D)(C
⊥) >≤ T and < OrtLinµ(D)(C

⊥) >∼=

Z
(log2(1+|Linµ(C)|))t−rk(C)

2 , here t is length of the code C.

Proof. Let u be an arbitrary nonzero vector from C⊥, l ∈ Linµ(D), z be an arbitrary codeword of
M(C,D). We show that Ortl(u) is in Sym(M(C,D)).

By definition of Ortl(u), p1(Ortl(u)(z)) = p1(z). Using Lemma 1,

z = x1 + y2 +
∑

(r,s):zr,s=1

(er,s + e0,s + er,0)

for some x ∈ C and y ∈ D. Therefore we have the following equality:

p2(Ortl(u)(z)) = p2(Ortl(u)(x
1)) + p2(Ortl(u)(y

2)) + p2(
∑

(r,s):zr,s=1

(er,s + e0,s + er,0)). (12)

We show that the righthanded side of (12) is a codeword of D. By definition of Ortl(u), we have that
Ortl(u)(y

2) = y2 and therefore p2(Ortl(u)(y
2)) = y. Since u ∈ C⊥, there is the vector with the support

supp(u)×{0, . . . ,m} in (M(C,D))⊥, see (2). Then the size of supp(x1)∩ (supp(u)×{0, . . . ,m}) must
be even. Since supp(x1) = supp(x)× 0tm, we have that

supp(x1) ∩ (supp(u)× {0, . . . ,m}) = (supp(x) ∩ supp(u))× 0tm.

Since Ortl(u)(x
1) is obtained from x1 by interchanging the subset of zero coordinates supp(u)× i and

the coordinates from the subset supp(u) × 0tm, we see that p2(Ortl(u)(x
1)) is zero, since the block

supp(u)× i contains even number of ones in Ortl(u)(x
1). So, p2(Ortl(u)(x

1)) is zero.
Now, by definition of Ortl(u) the triple er,s + e0,s + er,0 is fixed by Ortl(u) for any r /∈ supp(u)

and any s ∈ {1, . . . ,m} and therefore p2(σ(er,s + e0,s + er,0)) = 0m. If r is in supp(u), then σ(er,s +
e0,s + er,0) = er,s⋆l + e0,s + er,l and so we have that

p2(σ(er,s + e0,s + er,0)) = es⋆l + es + el ∈ D

by definition of the operation ⋆. Combining the obtained values for the righthand side of the equality
(12) we have

p2(Ortl(u)(z)) = y +
∑

zr,s=1,r∈supp(u)

(es⋆l + es + el).

Any triple in the last sum is from Ker(D), since it contains l ∈ Linµ(D), so we obtain that
p2(Ortl(u)(z)) is in D. Therefore Ortl(u) is a symmetry of M(C,D).

By Proposition 2, we see that < OrtLinν(D)(C
⊥) > is an elementary abelian 2-group. A minimum

set of generators for this group could be chosen to consist of symmetries Ortl(c), where l runs through
a minimal generator set for the elementary abelian 2-group associated to the projective Steiner triple
subsystem of STS(D), defined on the points Linµ(D), and c runs through a set of generators of the
code C⊥. Therefore we have that

< OrtLinµ(D)(C
⊥) >∼= Z

(log2(1+|Linµ(C)|))t−rk(C)

2 .
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By Corollary 2 and Lemma 10 we have the description for G:

Theorem 2. Let C and D be two reduced perfect codes. Then

G = (Dub1(Sym(C))⋌ < OrtLinµ(D)(C
⊥) >)×Dub2(Sym(D)).

With a slightly shorter proof than that for the previous theorem we obtain the analogous result
for Steiner triple systems:

Theorem 3. Let S1 and S2 be arbitrary two Steiner triple systems, M(S1, S2) be a Steiner triple
system obtained from S1 and S2 by applying the Mollard construction. Then
StabS2

2
Aut(M(S1, S2)) = (Dub1(Aut(S1))⋌ < OrtLinν(S2)(S

⊥
1 ) >)×Dub2(Aut(S2)).

In work [13] a class of Mollard codes with symmetry groups, fixing D2 fulfilling special algebraic
properties was obtained. By Theorem 2 we have a description for the symmetry groups of this class.
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