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Abstract—We introduce the design of a set of code sequences
tC
pmq
n : n ě 1,m ě 1u, with memory order m and code-length

N “ Opφnq, where φ P p1, 2s is the largest real root of the
polynomial equation F pm, ρq “ ρm´ρm´1

´1 and φ is decreasing
in m. tCpmqn u is based on the channel polarization idea, where
tC
p1q
n u coincides with the polar codes presented by Arıkan in [1]

and can be encoded and decoded with complexity OpN logNq.
tC
pmq
n u achieves the symmetric capacity, IpW q, of an arbitrary

binary-input, discrete-output memoryless channel, W , for any
fixed m and its encoding and decoding complexities decrease with
growing m. We obtain an achievable bound on the probability
of block-decoding error, Pe, of tCpmqn u and showed that Pe “
Op2´N

β

q is achievable for β ă φ´1
1`mpφ´1q

.
Index Terms—Channel polarization, polar codes, capacity-

achieving codes, method of types, successive cancellation decoding

I. INTRODUCTION AND OVERVIEW

Channel polarization [1] is a method to achieve the sym-
metric capacity, IpW q, of an arbitrary binary-input, discrete-
output memoryless channel (B-DMC), W . By applying chan-
nel combining and splitting operations [2], one transforms
N uses of W into another set of synthesized binary-input
channels. As N increases, the symmetric capacities of the
synthesized binary-input channels polarize as IpW q fraction
of them gets close to 1 and 1 ´ IpW q fraction of them gets
close to 0. The resulting code sequences, called polar codes,
have encoding and decoding complexities OpN logNq, and
their block error probabilities scale as 2´N

β

where β ă 1{2
is the exponent of the code [3].

Let W : X Ñ Y denote a B-DMC with binary-input
x P X “ t0, 1u and arbitrary discrete-output y P Y .
Considering Arıkan’s polar codes, let us write Wn to denote
the vector channel, Wn : XN Ñ YN , N “ 2n, n ě 1,
obtained at channel combining level n. The vector channel,
Wn, is obtained from Wn´1 in a recursive manner where one
first injects an independent realization of Wn´1, denoted as
Ŵn´1, and then combines the input of Wn´1 and Ŵn´1 to
obtain Wn, where the recursion starts with W0 “ W . The
injection of Ŵn´1, in a way, creates N{2 diversity paths for
the N{2 inputs of Wn´1, and this allows polarization which
one sees in the synthesized binary-input channels obtained by
splitting Wn. Consequently, at each combining level the code-
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length doubles with respect to the previous step scaling as
N “ 2n.

With higher-order memory in channel polarization, let us
write N “ Npn,mq to denote the code-length at channel
combining level n and memory parameter m, m ě 1, which
we assume to be fixed. The vector channel, Wn, is obtained
by combining the inputs of Wn´1 with Ŵn´m, where one
chooses W0 “ W´1 “ . . . “ W1´m “ W to initiate the
recursion. The number of binary-inputs in Wn´1 and Ŵn´m

are Npn ´ 1q and Npn ´mq, respectively. In turn, with the
controlled memory parameter, m, and at channel combining
level n, one only injects Npn´mq new diversity paths with
Ŵn´m, for the Npn ´ 1q inputs of Wn´1, to obtain Wn.
Because Npn´mq gets smaller compared to Npn´ 1q as m
increases, it is possible to slow the speed at which one inject
new channels to provide polarization. At first glance, it seems
that increasing m will decrease the polarization effect obtained
after each combining and splitting stage, however it will also
allow the code-length to increase less rapidly in n. In order to
see this consider the code-length obeying the recursion

N “ Npn´ 1q `Npn´mq, n ě 1,m ě 1, (1)

with initial conditions

Np0q “ Np´1q “ . . . “ Np1´mq “ 1, m ě 1. (2)

As will be explained in the sequel, the code-length takes the
form

N “ Opφnq, n ě 1 (3)

where φ P p1, 2s is the largest real root of the m-th order
polynomial equation

F pm, ρq “ ρm ´ ρm´1 ´ 1, (4)

and φ decreases with increasing m. Therefore, if we increase
m, it will take more channel combining and splitting stages
to reach a pre-defined code-length, where the ratio of injected
diversity paths to existing paths in each combining stage will
also decrease. The aim of this paper is to understand the
effects of this trade-off on the polarization performance one
can obtain at a fixed code-length N .

The original construction of polar codes by Arıkan is closely
related to the recursive construction of Reed-Muller codes
based on the 2 ˆ 2 kernel F2 “ r 1 0

1 1 s. For these codes the
encoding matrix, GN , is of the form GN “ Fbn2 , where b
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denotes the Kronecker power, suitably defined in [1]. In [4]
Korada et al. generalize the channel polarization idea where
` ě 2 independent uses of Wn´1 are arbitrarily combined to
obtain Wn and code-length scales as N “ `n. Although the
channel combining mechanism is generalized to combining
arbitrary numbers of Wn´1 to obtain Wn, this setup has also
first order memory in the channel combining. The authors
express the combining mechanism by an ` ˆ ` polarization
kernel K`. With an arbitrary K`, the encoding matrix takes the
form GN “ Kbn` . The asymptotic polarization performance is
characterized by the distance properties of the rows of K`.
The encoding and decoding complexities of these polar codes
increases with l scaling as OplN logNq and Op 2l

l N logNq,
respectively. Our work differs from [4] in the sense that
by introducing higher-order memory we modify the channel
combining process. Moreover the encoding matrix of polar
codes with memory m ą 1 can not be obtained by applying
Kronecker power to an arbitrary polarization kernel. As a
result, one needs new mathematical tools to investigate β.

The contributions of this paper are as follows: i) We present
a novel polar code family, tCpmqn : n ě,m ě 1u, with code-
length N “ Opφnq, φ P p1, 2s, and arbitrary but fixed memory
parameter m. We show that tCpmqn u achieves the symmetric
capacity of arbitrary BDMCs for any choice of m which
complements Arıkan’s conjecture that channel polarization
is in fact a general phenomenon. ii) By developing a new
mathematical framework, we obtain an asymptotic bound on
the achievable exponent, β, of tCpmqn u. iii) We show that the
encoding and decoding complexities of tCpmqn u decrease with
increasing m. tCpmqn u is the first example of a polar code
family that has lower complexity compared to the original
codes presented by Arıkan.

The outline of the paper is a as follows. Section II provides
the necessary material for the analysis in the sequel. In
Section III we explain the design, encoding and the decoding
of tCpmqn u. In Section IV we develop a probabilistic framework
to investigate tCpmqn u. After showing that tCpmqn u achieves
the symmetric capacity of arbitrary B-DMCs we obtain an
achievable bound on its block-decoding error probability. In
Section V we analyze impact of higher-order memory on the
encoding and decoding complexities of tCpmqn u. Section VI
concludes the paper and provides some future research direc-
tions.

Notation: We use uppercase letter A,B for random vari-
ables and lower cases a, b for their realizations taking values
from sets A, B, where the sets have sizes |A| and |B| respec-
tively. Prpaq denotes the probability of the event A “ a. We
write an “ pa1, a2, . . . , anq to denote a vector and pan,bnq
to denote the concatenation of an and bn. We use standard
Landau notation opnq, OpNq to denote the limiting values of
functions. Note: Proofs, unless stated otherwise, are provided
in the Appendix.

II. PRELIMINARIES

Let W py|xq, x P X , y P Y denote the transition probabili-
ties of W . Throughout the paper we assume that x is uniformly
distributed in X , and use base-2 logarithm. The symmetric
capacity, IpW q, of W is

IpW q
∆
“

ÿ

yPY

ÿ

xPX

1

2
W py|xq log

W py|xq
1
2W py|0q `

1
2W py|1q

. (5)

The Bhattacharyya parameter, ZpW q, of W provides an upper
bound on the probability of error for maximum likelihood
(ML) decoding over W and is defined as

ZpW q
∆
“

ÿ

yPY

a

W py|0qW py|1q. (6)

The symmetric cut-off rate, JpW q, of W is [1]

JpW q
∆
“ log

2

1` ZpW q
. (7)

As Arıkan shows in [1, Prop. 1] ZpW q “ 1 implies IpW q “ 0
and ZpW q “ 0 implies IpW q “ 1. By using this fact and
from (7) we see that if JpW q “ 0 then IpW q “ 0 holds and
JpW q “ 1 indicates IpW q “ 1.

Let W 1 and W 2 be two B-DMCs with inputs x1, x2 P X
and outputs y1 P Y1 and y2 P Y2, respectively. Channel
polarization is based on a single-step channel transformation
where one first combines the inputs of W 1 and W 2 to obtain
a vector channel

W py1, y2|x1, x2q “W 1py1|x1 ‘ x2qW
2py2|x2q. (8)

Next, by choosing a channel ordering, one splits the vector
channel to obtain two new binary-input channels, W´ : X Ñ

Y1 ˆ Y2 and W` : X Ñ X ˆ Y1 ˆ Y2, with transition
probabilities

W´py1, y2|x1q “
ÿ

x2

1

2
W 1py1|x1 ‘ x2qW

2py2|x2q, (9)

W`py1, y2, x1|x2q “
1

2
W 1py1|x1 ‘ x2qW

2py2|x2q, (10)

We use the following short-hand notations for the transforms
in (9) and (10), respectively.

W´ “W 1 aW 2, (11)
W` “W 1 ‘W 2. (12)

The polarization transforms preserve the symmetric capacity
as

IpW´q ` IpW`q “ IpW 1q ` IpW 2q, (13)

and they help polarization by creating disparities in IpW`q

and IpW´q such that

IpW`q ě maxtIpW 1q, IpW 2qu, (14)
IpW´q ď mintIpW 1q, IpW 2qu, (15)



where the above inequalities are strict as long as IpW 1q P

p0, 1q and IpW 2q P p0, 1q. This polarization effect quantita-
tively observed in the Bhattacharyya parameters as they take
the form

ZpW`q “ ZpW 1qZpW 2q, (16)
ZpW´q ď ZpW 1q ` ZpW 2q ´ ZpW 1qZpW 2q, (17)

where the equality in (17) is achieved if ZpW 1q P t0, 1u or
ZpW 2q P t0, 1u, or if W 1 and W 2 are binary erasure channels
(BECs).

Equations (13)-(17) are proved in [1] when W 1 is identi-
cal to W 2. Their generalizations for the case W 1 and W 2

are different channels are straightforward and omitted. The
proposition below will be crucial in the sequel.

Proposition 1.

JpW´q ` JpW`q ě JpW 1q ` JpW 2q,

where equality is achieved only if JpW 1q P t0, 1u or JpW 2q P

t0, 1u.

The above proposition indicates that one can obtain coding
gain by applying channel combining and splitting operations
as long as the symmetric cut-off rate of W 1 and W 2 is in
p0, 1q, where the coding gain manifests itself as an increase
in the sum cut-off rate of channels W´ and W´ compared
to W 1 and W`. In this paper we use the parameters JpW q
and IpW q together to show that tCpmqn u achieves IpW q of an
arbitrary W , whereas the parameter ZpW q will be used to
characterize polarization performance of tCpmqn u.

III. POLARIZATION WITH HIGHER-ORDER MEMORY

We develop a method to design a family of code sequences
tC
pmq
n ;n ě 1,m ě 1u with code-length N “ Npn,mq “

Opφnq, φ P p1, 2s, and fixed memory order m. tCpmqn u is based
on the channel polarization idea of Arıkan in [1]. This section
is devoted to explaining the design, encoding and decoding
of tCpmqn u, while preparing some grounds for investigating its
characteristics in the following sections.

A. Channel Combining

Consider an arbitrary B-DMC, W , where its N independent
uses take the form W pyN |xN q “

śN
i“1W pyi|xiq, xN P XN ,

yN P YN . Let uN P XN be the binary information vector that
needs to be transmitted over N uses of W . Channel combining
phase creates a vector channel Wn : XN Ñ YN of the form

WnpyN |uN q “
N
ź

i“1

W pyi|xiq,

where xN “ uNGN . GN is an NˆN encoding matrix where
encoding takes place in GF(2).

Let Nn “ t1, 2, . . . , Nu, N “ Opφnq, denote the set
of the indices at the channel combining level n. There are
N binary-input channels in Wn to transmit information. We
index those channels as W piq

n , i P Nn, and demonstrate the
channel combining operations in Fig 1. Inspecting this figure
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W
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W
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W
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n´1

W
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n´1

W
pNpn´mq`2q
n´1

W
pNpn´1qq
n´1

Ŵ
p1q
n´m

Ŵ
p2q
n´m

Ŵ
pNpn´mqq
n´m

y1

y2

yNpn´mq

yNpn´mq`1

yNpn´mq`2

yNpn´1q

yNpn´1q`1

yNpn´1q`2

yN

Wn

Fig. 1: Recursive construction of the vector channel Wn

from Wn´1 and Ŵn´m, where W
piq
n , i P Nn, denotes the

binary-input channels in Wn. The arrows on the left show the
directions of flow for the binary-inputs of W piq

n and ‘ is the
XOR operation. The arrows on the right show the outputs of
successive uses of W . The XOR operations that take place on
the dotted arrows within Wn´1 and Ŵn´1 are not shown as
they obey the same recursion.

observe that we index the topmost binary-input channel of
Wn as W

p1q
n and index i of W piq

n increases as one move
downwards. The vector channel Wn is obtained by combining
Wn´1 with Ŵn´m. To accomplish this combining we apply
XOR operations on the binary-inputs of Wn and transmit
the resultant bits through the inputs of Wn´1 and Ŵn´m.
By continuing the same recursion within Wn´1 and Ŵn´m,
the encoded bits are transmitted through independent uses of
W channels because we start the combining recursion by
choosing W0 “ W´1 “ . . . “ W1´m “ W . If we use the
binary-input channels W p1q

n ,W
p2q
n , . . . ,W

pNq
n to transmit the

symbols u1, u2, . . . , uN , respectively, the encoding matrix GN

can be expressed as

GN “

»

–

GNpn´1q
GNpn´mq

02

01 GNpn´mq

fi

fl , n ě 1 (18)



where GNp0q “ GNp´1q “ . . . “ GNp1´mq “ r1s, and 01

and 02 are Npn ´mq ˆNpn ´ 1q and pNpn ´ 1q ´Npn ´
mqq ˆNpn´mq all zero matrices, respectively. Observe that
when m “ 1, 02 matrix vanishes and GN can be represented as
Gn “ pFᵀ

2q
bn, where F2 “ r

1 0
1 1 s is the Kernel used by Arıkan

in [1]. However, when m ą 1, GN can not be represented via
Kronecker power.

B. Channel Ordering

After performing channel combining operation we have to
define an order to split the vector Wn : XN Ñ YN and obtain
N binary-input channels. This ordering is carried out with the
help of a permutation πn : Nn Ñ Nn. The W piq

n channels in
Wn are split in increasing πnpiq values (from 1 to N ) so that
each W piq

n channel is of the form W
piq
n : X Ñ YN ˆX πpiq´1.

In order to explain this operation we associate a unique state
vector spiqn with each W piq

n channel, which has the form

spiqn “ ps
piq
1 , s

piq
2 , . . . , spiqn q,

where

spiqk P t`,´,‹u, k “ 1, 2, . . . , n

s
piq
k terms will be referred as a “state” and we use `,´,‹

symbols to track down the channel transformations that W piq
n

channels undergo as n “ 1, 2, . . .. States `, ´ will correspond
to the polarization transforms ‘ and a, as defined in (9) and
(10), respectively; whereas state ‹ will correspond to a non-
polarizing transform. We let

Sn “ tspiqn : i P Nnu (19)

to be the set of all possible state vectors at level n. Since
each spiqn P Sn is unique (as we will show shortly) we have
|Sn| “ N and Sn Ă t`,´,‹un. The vectors, spiqn P Sn, are
assigned recursively from spjqn´1 P Sn´1, with a state assigning
procedure ϕn : Sn´1 Ñ Sn. The operation of ϕn is explained
in the following definition.

Definition 1. State Vector Assigning Procedure: Let spjqn´1 P

Sn´1 be the state vector of W pjq
n´1. The state vectors spiqn P Sn,

associated with W piq
n take the form

spjqn “ pspjqn´1,`q,

spj`Npn´1qq
n “ pspjqn´1,´q,

j P Nn´m, (20)

spjqn “ pspjqn´1,‹q, j P Nn´1zNn´m. (21)

Investigating the above definition, as also demonstrated in
Fig. 2, we observe that ϕn appends a new state, t`,´,‹u, to
spjqn´1 P Sn´1 in order to construct spiqn P Sn. For j P Nn´m,
ϕn appends ` and ´ to spjqn´1 to obtain spjqn and spj`Nn´1q

n ,
respectively. For j P Nn´1zNn´m, ϕn appends ‹ to spjqn´1 in
order to construct spjqn . Because of the inherent memory in
the combining procedure, it is difficult to obtain closed form
expressions for spiqn , for any i and m. Nevertheless, with the
above definition one can recursively obtain spiqn , by applying

ϕn´1

.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

psp1qn´1,`q

psp2qn´1,`q

pspNpn´mqqn´1 ,`q

pspNpn´mq`1q
n´1 ,‹q

pspNpn´mq`2q
n´1 ,‹q

pspNpn´1qq
n´1 ,‹q

psp1qn´1,´q

psp2qn´1,´q

pspNpn´mqqn´1 ,´q

sp1qn´1

sp2qn´1

spNpn´mqqn´1

spNpn´mq`1q
n´1

spNpn´mq`2q
n´1

spNpn´1qq
n´1

ϕn

Fig. 2: State labeling procedure ϕn : Sn´1 Ñ Sn. State
vectors spiqn P Sn, are obtained by appending a new state
t`,´,‹u, to the vectors spjqn´1 P Sn´1.

ϕ1, ϕ2, . . . , ϕn. With the following proposition, we give the
formal structure of the possible state vector, spiqn , and thus the
set Sn.

Proposition 2. Let sn, sn P Sn, be a valid state vector one
can obtain after applying ϕ1, ϕ2, . . . , ϕn. Only the transitions
between sk and sk`1, k “ 1, 2, . . . , n, that are shown in
the state transition diagram of Fig. 3 are possible, where the
imposed initial condition is s1 P t`,´u.

The above proposition is a direct consequence of the chan-
nel combining and state vector assigning procedure, ϕn, and
it can be verified by induction through stages ϕ1, ϕ2, . . . , ϕn.

Proposition 3. The state vector spiqn P Sn, i P Nn, assigned
to each W piq

n PWn is unique.

The above proposition will be crucial for the ongoing
analysis as it states that each W

piq
n is uniquely addressable

by spiqn . We will use this fact to obtain the ordering πn.
Before accomplishing this, we obtain binary vectors bpiqn “

pb
piq
1 , b

piq
2 , . . . , b

piq
n q, b

piq
k P X , k “ 1, 2, . . . , n, from spiqn , which

will allows us to sort and provide an order. The mapping
between spiqn and bpiqn is obtained as

b
piq
k “

#

0 if s
piq
k P t´,‹u,

1 if s
piq
k “ `,

k “ 1, 2, . . . , n. (22)

We notice that although both s
piq
k “ ´ and s

piq
k “ ‹ are

mapped as bpiqk “ 0, the bpiqn vectors will also be unique for
each i because every state ´ in spiqn is followed by m ´ 1



´ ‹ ‹ . . . ‹ `

m´ 1 times

Fig. 3: Possible state transitions observed between sk and
sk`1, k “ 1, 2, . . . , n.

occurrences of state ‹, and the distinction between different
spiqn is hidden in the location of ` states in spiqn . The following
definition uses this uniqueness property to obtain the ordering,
πn. It is an adaptation of the bit-reversed order of Arıkan in
[1] to the proposed coding scheme.

Definition 2. Bit-Reversed Order: Let pbpiqn q2 denote value of
bpiqn in Mod-2 as pbpiq1 , b

piq
2 , . . . , b

piq
n q2 where bpiq1 is the most

significant bit. The uniqueness of bpiqn for each i ensures the
existence of a permutation πn : Nn Ñ Nn, so that for some
i, j P Nn, we have πnpiq ă πnpjq if pbpiqn q2 ă pb

pjq
n q2.

Therefore the bit-reversed order πn is obtained in terms of
increasing pbpiqn q2 values.

Notice that the binary input channels Ŵ pjq
n´m, j P Nn´m, of

Fig. 1 have no effect in the recursive state assigning procedure,
ϕn, and thus in the bit-reversed order. Their sole purpose is to
provide auxiliary channels for the combining process. In fact,
the Npn ´ mq inputs of Ŵn´m can be combined with the
Npn´1q inputs of Ŵn´1 in Npn´1q!

Npn´mq! different ways. However,
we deliberately align the inputs of Wn´1 and Ŵn´m so that
the first Npn´mq inputs of Wn´1 are combined, respectively,
with the the first Npn´mq inputs of Ŵn´m as shown in Fig. 1.
This alignment in the combining process will be crucial in the
next section when we investigate the evolution of binary-input
channels in a probabilistic setting, because the channel pairs,
W
pjq
n´1 and Ŵ

pjq
n´m, share the same state history as explained

in the following proposition.

Proposition 4. Let spjqn´1 “ ps1, s2, . . . , sn´1q P Sn´1

be the state vector of W pjq
n´1. Channel Ŵ pjq

pn´mq shares the

same state history with W
pjq
pn´1q, through combining stages

1, 2, . . . , n ´m, in the sense that its state vector is spjqn´m “
ps1, s2, . . . , sn´mq P Sn´m.

C. Channel Splitting

We assume a genie-aided decoding mechanism where the
W
piq
n channels are decoded successively in increasing πnpiq

values, from 1 to N , and the genie provides the true values of
already decoded bits. The decoder has no knowledge of the
future bits that it will decode. With these assumptions W piq

n

is the effective bit-channel that this genie-aided decoder faces

while trying to decode its next bit. Let us define upiqn P X as

upiqn “ binary input of the channel W piq
n ,

and for i, j P Nn let

upiqn,b
∆
“ pupjqn : πnpjq ă πnpiqq,

upiqn,a
∆
“ pupjqn : πnpjq ą πnpiqq.

(23)

upiqn,b and upiqn,a are the information vectors that are decoded,
by the genie-aided decoder, before and after upiqn , respectively.
The length of upiqn,b is πnpiq ´ 1 and the length of upiqn,a is
N ´ πnpiq so that upiqn,b P X πnpiq´1 and upiqn,a P XNn´πnpiq.
The following definition formalizes the transition probabilities
of the W piq

n channels.

W piq
n

∆
“

ÿ

upiqn,a

Pr
´

yN ,u
piq
n,a,u

piq
n,b|u

piq
n

¯

. (24)

The above definition indicates that W
piq
n is the posterior

probability of an arbitrary B-DMC obtained at channel com-
bining and splitting level n. The genie-aided decoder has no
knowledge of upiqn,a, therefore it averages the joint probability
of all outputs and all inputs over upiqn,a and takes yN and
upiqn,b as the effective output (observation) of the combined
channels. Hence each W

piq
n has input upiqn P X and output

pyN ,u
piq
n,bq P YN ˆ X πnpiq´1.

Proposition 5. The transition probabilities of W piq
n channels

take the following forms

W pjq
n “ Ŵ

pjq
n´m ‘W

pjq
n´1,

W pj`Nn´1q
n “ Ŵ

pjq
n´m aW

pjq
n´1,

j P Nn´m, (25)

W pjq
n “ γpnqW

pjq
n´1, j P Nn´1zNn´m, (26)

where γpnq “ PrpyNpn´1q`1, yNpn´1q`2, . . . , yN q and W0 “

W´1 “ . . . “W1´m “W .

The above proposition is illustrated in Fig. 4. In order to
provide a proof for the above proposition and explain the
underlying idea behind the bit-reversed order we make the
following analysis. Investigating Fig. 4, we see that the overall
effect of XOR operations, after channel splitting, is to provide
diversity paths for the Npn´mq inputs of Wn´1 in the sense
that for j P Nn´m we have W pjq

n “ Ŵ
pjq
n´m‘W

pjq
n´1. Therefore

the input of W pjq
n is transmitted through both Ŵ

pjq
n´m and

Ŵ
pjq
n´m. Notice that in order to provide this diversity, the inputs

of W pj`Nn´1q
n must be decoded, by the genie-aided decoder,

before the inputs of W pjq
n indicating πnpjq ą πnpj`Npn´1qq

must hold. Thanks to the bit-reversed order, as explained in
Definition. 2, this requirement can be easily accomplished. To
see this consider the state vectors spjqn´1 of W pjq

n´1 to which one
appends ` and ´ in order to construct spjqn and spj`Npn´1qq

n ,
respectively. After this operation, the mapping between spiqn
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Ŵ
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Ŵ
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Ŵ
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Ŵ
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Ŵ
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Ŵ
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Fig. 4: Transition probabilities of W piq
n channels after com-

bining and splitting Wn´1 and Ŵn´m.

and bpiqn , as given by (22), indicates that bpjqn “ pbpjqn´1, 1q and
bpj`Npn´1qq
n “ pbpjqn´1, 0q holds. Therefore

pbpjqn q2 ą pb
pj`Npn´1qq
n q2, n “ 1, 2, . . .

and by Definition 2, πnpjq ą πnpj ` Npn ´ 1qq holds for
all n ě 1. On the other hand, in order to decode W pj`Nn´1q

n

correctly, the inputs of W pjq
n´1 and Ŵ

pjq
n´m must be decoded

correctly indicating we must have W pj`Npn´1qq
n “ Ŵ

pjq
n´m a

W
pjq
n´1. The above analysis, by induction through combining

and splitting stages 1, 2, . . . , n proves (25). In order to prove
(26), we inspect that for j P Nn´1zNn´m the channel W pjq

n is
as good as W pjq

n´1 in the sense that the genie-aided decoder can
always decode W pjq

n´1 instead of W pjq
n . Inspecting Fig. 4 we

notice that the binary-input of W pjq
n is not transmitted through

the inputs of Ŵn´m. Therefore, the combining of Ŵn´m with
Wn´1 does not provide any new information regarding the
input of W pjq

n . This, in turn, indicates that W pjq
n is the same

as W pjq
n´1 except for a scaling factor γpnq, as in (26).

D. Effects of Channel Combining and Splitting on the Sym-
metric Capacity

Let us define Ipiqn “ IpW
piq
n q and analyze the implications

of Proposition 5. Equation (25) states that the channel pairs,

Ŵ
pjq
n´m and W

pjq
n´1, j P Nn´m, undergo a polarization trans-

form, a and ‘, from which two new channels, W pjq
n and

W
pj`Nn´1q
n , emerge. In the light of (14) we have

Ipjqn ě maxtI
pjq
n´1, I

pjq
n´mu, j P Nn´m. (27)

Therefore, the injection of Ŵ pjq
n´m allows W pjq

n to be superior
channel compared to Ŵ pjq

n´m and W pjq
n´1. This comes with the

expense that now W
pj`Npn´1q
n is an inferior channel compared

to Ŵ pjq
n´m and W pjq

n´1 because, from (15), one has

Ipj`Npn´1qq
n ď mintI

pjq
n´1, I

pjq
n´mu, j P Nn´m. (28)

Although I
pjq
n and I

pj`Npn´1qq
n move away from I

pjq
n´1 and

I
pjq
n´m, the transformations preserve the symmetric capacity

because, as indicated by (13), we have

Ipjqn ` Ipj`Nn´1q
n “ I

pjq
n´1 ` I

pjq
n´m, j P Nn´m. (29)

The remaining channels W
pjq
n , j P Nn´1zNn´m, in Equa-

tion (26), do not see any polarization transforms as their
transition probabilities are scaled by PrpyNpn´1q`1, . . . , yN q

with respect to W pjq
n´1. This scaling, in turn, results in

Ipjqn “ I
pjq
n´1, j P Nn´1zNn´m. (30)

All in all, the combining and splitting of Wn´1 and Wn´m

preserves the sum symmetric capacity as
ÿ

iPNn

Ipiqn “
ÿ

jPNn´1

I
pjq
n´1 `

ÿ

kPNn´m

I
pkq
n´m, (31)

E. Decoding

We will take successive cancellation decoding (SCD) of
[1] as the default decoding method for tCpmqn u. The genie-
aided decoder that we have explained in Section III.B and
the definition of W piq

n as given by (24) already provide us
a guideline for SCD. The only difference is, during the
calculation of (24), SCD uses its own estimates for the vector
upiqn,b, which we denote as ûpiqn,b.

Likelihood ratios (LRs) should be preferred in SCD so that
one can eliminate the P pyNn´1`1, yNn´1`1, . . . , yNnq term in
(26). The LR for the channel W piq

n is defined as

Lpiqn
∆
“

ř

upiqn,a
Pr

´

yN ,u
piq
n,a, ûpiqn,b|0

¯

ř

upiqn,a
Pr

´

yN ,u
piq
n,a, ûpiqn,b|1

¯ .

By using the LR relations given in [1] for ‘ and a transfor-
mations and from Proposition 5 we obtain

Lpjqn “ L
pjq
n´1pL

pjq
n´mq

1´2û
pj`Nn´1q
n ,

Lpj`Nn´1q
n “

L
pjq
n´1L

pjq
n´m 1̀

L
pjq
n´1 ` L

pjq
n´m

,
j P Nn´m, (32)

Lpjqn “ L
pjq
n´1, j P Nn´1zNn´1. (33)

Therefore, while decoding W
piq
n one only needs to calculate

2Npn ´ mq LRs as given by (32) while the remaining



N ´ Npn ´ mq LRs for (33) are the same as the previous
level. This fact can be exploited to avoid unnecessary decoding
complexity in hardware implementation.

F. Code-Length

Recall that the code-length N “ Npn,mq obeys the
recursion in (1) with initial conditions of (2). It is easy to
show that N can be calculated as

N “

m
ÿ

i“1

cipρiq
n, (34)

where each ρi, i “ 1, 2, . . . ,m, is a root of the mth order
polynomial equation

F pm, ρq “ ρm ´ ρm´1 ´ 1, (35)

and constants, ci, are calculated by using the initial conditions
in (2) together with (34).

Proposition 6. For m ě 1, let φ P p1, 2s be a real root of
F pm, ρq.

i) φ is unique, i.e., there is only one real root in P p1, 2s.
ii) If ρi ‰ φ we have

a

ρiρ
˚
i {φ ă 1 indicating φ is the the

largest magnitude root of F pm, ρq.
iii) φ is decreasing in increasing m.

Part ii of the above proposition indicates that, as n gets
large, the summation in (34) will be dominated by φn term
therefore the code-length will scale as N “ κφn “ Opφnq
where κ ą 0 is the constant scaler of φn in (34). Part iii
of Proposition 6 implies that as m increases the code-length
increases less rapidly in n which we have mentioned in the
beginning of the paper.

G. Code Construction

The following proposition is a generalization of [1, Prop.
5] and it’s proof is omitted.

Proposition 7. If W is a BEC, then W
piq
n channels obeying

the transition probabilities as given by Proposition 5 are also
BECs.

In order to use tCpmqn u one has to fix a code parameter
vector pW,N,K,Aq, where W is the underlying B-DMC, N
is the code-length, K is the dimensionality of the code, and
A Ď Nn is the set of information carrying symbols. We have
|A| “ K and K{N “ R, where R P r0, 1s is the rate of the
code.

Let P piqe,n, i P Nn, denote the bit-error probability of W piq
n

with SCD. Code construction problem is choosing the set A so
that

ř

iPA P
piq
e,n is minimum. This problem can be analytically

solved only when W is a BEC [1] since for this case the W piq
n

channels are also BECs (Proposition 7) and the Bhattacaryya
parameters of W piq

n , which we denote as Zpiqn , obey P
piq
e,n “

Z
piq
n . In this case, in the light of (16)-(17) and Proposition 5,

Z
piq
n terms can be recursively calculated as

Zpjqn “ Z
pjq
n´1Z

pjq
n´m,

Zpj`Nn´1q
n “ Z

pjq
n´1 ` Z

pjq
n´m ´ Z

pjq
n´1 ` Z

pjq
n´m,

j P Nn´m,

Zpjqn “ Z
pjq
n´1 j P Nn´1zNn´1.

The case when W is not a BEC is a well-studied problem,
where one approximates a suitable reliability measure for W piq

n

channels and uses this measure to choose the set A. We refer
the reader to [5] for an overview.

IV. CHANNEL POLARIZATION

Channel polarization should be investigated by observing
the evolution of the set tW piq

n : i P Nnu as n increases. To
track this evolution we use the state vectors spiqn P Sn assigned
to W piq

n because each W piq
n is uniquely addressable by its spiqn .

A. Probabilistic Model for Channel Evolution

We define a random process tSnu and a random vector
Sn “ pS1, S2, . . . , Snq obtained from the process tSnu where
the state vectors, sn “ ps1, s2, . . . , snq, sn P Sn, of Section II,
are the realizations of Sn. The process tSnu can be regarded
as a tree process where sn form the branches of the tree where
we illustrate it in Fig. 5 for the case m “ 2. Since |Sn| “
N “ Npnq, there are Npnq different branches at tree level
n. The process tSnu starts with the initial conditions S1 P

t`,´u. At tree level n, Npnq new branches emerge from
Npn´1q branches of level n´1. We assume that each branch
is observed with identical probability

PrpSn “ snq “
1

Npnq
. (36)

This, in turn, implies that each valid state transition of
Fig. 3, between sn´1 and sn, has probability Npn´1q{Npnq.
Investigating this figure, consider the case m “ 1, which
coincides with Arıkan’s setup in [1], where there are two
possible states as Sn P t`,´u and |Sn| “ Npnq “ 2n. Since
transitions between Sn´1 and Sn are valid if Sn P t`,´u
and Sn´1 P t`,´u, each possible transition has probability
Npn ´ 1q{Npnq “ 1{2. Consequently, the process tSnu
is composed of independent realizations of Bernoullip1{2q
random variables as PrpSn “ `q “ PrpSn “ ´q “ 1{2. On
the other hand, when m ą 1, there exists a memory in the state
transition model as depicted in Fig. 3. Therefore, the process
tSnu can be modeled as a Markov process with order m´ 1
in the sense that

PrpSn|Sn´1q “ PrpSn|Sn´1, Sn´2, . . . , Sn´pm´1qq.

Throughout the paper we find it easier to work with the random
vector Sn keeping in mind the Markovian property of the
process tSnu.

We define a random channel process tKnu, driven by
tSnu, as Kn “ WS1,S2,...,Sn . The realizations of Kn are
kn “ Ws1,s2,...,sn and they correspond to the binary-input
channels, W piq

n , with state vectors sn “ ps1, s2, . . . , snq P Sn.



n “ 0

n “ 1

n “ 2

n “ 3

`´

´ `‹

‹ `´´ `

Fig. 5: Illustration of the evolution of tSnu as a tree for the
case m “ 2, where each branch is a state vector sn P Sn.

In order to obtain a characterization for the process tKnu

we fix ps1, s2, . . . , sn´1q to be the state vector associated
with W

pjq
n´1, j P Nn´m and let kn´1 “ W

pjq
n´1. In the

light of Proposition 4, we know that the state vector of
Ŵ
pjq
n´m is ps1, s2, . . . , sn´mq indicating kn´m “ Ŵ

pjq
n´m.

Investigating the operation of ϕn : Sn´1 Ñ Sn in Fig. 2,
we observe that the state vectors of W pjq

n and W pj`Nn´1q
n are

ps1, s2, . . . , sn´1,`q and ps1, s2, . . . , sn´1,´q, respectively.
From Proposition 5 we notice that W pjq

n “ Ŵ
pjq
n´m‘W

pjq
n´1 and

W
pj`Npn´1qq
n “ Ŵ

pjq
n´m aW

pjq
n´1 holds. These observations,

in turn, indicate kn “ kn´1 ‘ kn´m holds when sn “ `,
and kn “ kn´1 a kn´m holds when sn “ ´. Next, we
fix ps1, s2, . . . , sn´1q to be the state vector associated with
W
pjq
n´1, j P Nn´1zNn´m and hence kn´1 “ W

pjq
n´1. From

the operation of ϕn : Sn´1 Ñ Sn we know that the
state vector of W pjq

n is ps1, s, . . . , sn´1,‹q and Proposition 5
tells us W pjq

n “ γpnqW
pjq
n´1. Combining these facts tells us

kn “ γpnqkn´1 holds if sn “ ‹. The above analysis relates
kn to kn´1 and kn´m for all sn P t`,´,‹u, which we
formally present with the below recursion.

Kn “

$

’

&

’

%

Kn´m ‘Kn´1 if Sn “ `,

Kn´m aKn´1 if Sn “ ´,

γpnqKn´1 otherwise,
(37)

where Kn “W for n ă 1.

B. Polarization:
We define the processes tIn : n ě 1u and tJn : n ě 1u

where In “ IpKnq P r0, 1s and Jn “ JpKnq P r0, 1s. In [1]
Arıkan shows that In converges to a random variable I8 as
PrpI8 “ 1q “ IpW q and PrpI8 “ 0q “ 1 ´ IpW q. This
result indicates that the synthesized binary-input channels,
W
piq
n , either become error-free or useless. We will show that

the same holds for polar codes with higher-order memory as
well. This result is presented with the following theorem.

Theorem 1. For any fixed m ě 1 and for some δ P p0, 1q
as n tends to infinity, the probability of In P p1 ´ δ, 1s goes
to IpW q and the probability of having In P r0, δq goes to
1´ IpW q.

Proof: We investigate the polarization of tJnu towards 0
and 1 as it will imply the polarization of tInu as well. We
write ErJns “

ř

sn PrpSn “ snqJn “ 1
Npnq

ř

sn Jn to denote
the expected value of Jn and tErJns : n ě 1u to denote the
deterministic sequences obtained from ErJns. The following
lemma will be crucial for the proof

Lemma 1.

ErJns ě µErJn´1s ` p1´ µqErJn´ms, (38)

where µ “ Npn´1q{Npnq and the above equality is achieved
only if Jn´1 P t0, 1u or Jn´m P t0, 1u holds for all Sn P
t`,´u

We apply a decimation operation on the sequence tErJnsu
and obtain a subsequence tErĴks : k “ 1, 2, . . . , tn{muu,
where the decimation operation is performed as

ErĴks “ min
iPt0,1,...,m´1u

tErJkm´isu . (39)

The elements of tErĴksu are obtained by choosing the min-
imum of m consecutive and non-overlapping elements of
tErJnsu.

Lemma 2. The sequence tErĴksu is monotonically increasing
in the sense that

ErĴks ě ErĴk´1s.

We know that ErĴks is bounded in r0, 1s and since tErĴksu
is monotonically increasing, from the monotone convergence
theorem [6, p. 21.] we conclude that there exists a unique limit
for tErĴksu in the sense that

lim
kÑ8

ErĴks “ suptErĴksu. (40)

Next, we let n “ km´ i in Lemma 1 to obtain

ErJkm´is ě µErJkm´pi`1qs ` p1´ µqErJpk´1qm´is. (41)

We fix i such that ErJkm´is “ ErĴks is satisfied. For any
choice of i observe that ErJpk´1qm´iqs ě ErĴk´1s and
ErJkm´pi`1qs ě mintErĴks, ErĴk´1su ě ErĴk´1s hold.
Using these results in (41) gives

ErĴks ě µErĴk´1s ` p1´ µqErĴk´1s ě ErĴk´1s (42)

Therefore, the monotonic increase in ErĴks will continue
until the inequality in Lemma 1 is achieved with equality.
This fact, together with the convergence of ErĴks, indicates
that conditioned on the event tSn : Sn P t`,´uu either
limnÑ8 Jn´1 P t0, 1u or limnÑ8 Jn´m P t0, 1u holds,
indicating

lim
nÑ8

Jn P t0, 1u, Sn P t`,´u. (43)

Investigating the operation of ϕn : Sn´1 Ñ Sn in Fig.2 we
see that

Pr pSn P t`,´uq “
2Npn´mq

Npnq
ě 0, (44)



which implies that the event tSn : Sn´1 P t`,´uu occurs in-
finitely many times as nÑ8 and

ř

nÑ8 Pr pSn´1 P t`,´uq
diverges. Consequently, and by using the first Borel Contelli
lemma [7, p. 36] we conclude that

lim
nÑ8

PrpJn P t0, 1uq “ 1.

One to one correspondence between Jn and In implies

lim
nÑ8

PrpIn P t0, 1uq “ 1,

and having ErIns “ IpW q results in

lim
nÑ8

PrpIn “ 1q “ IpW q,

and

lim
nÑ8

PrpIn “ 0q “ 1´ IpW q.

which completes the proof.

C. A Typicality Result

In this section we use the Method of Types to investigate the
state vectors, sn, obtained from the realizations of the process
tSnu. We let s P t`,´,‹u and write P psqsn , P psqsn P r0, 1s, to
denote the type (frequency) of s in sn as

P
psq
sn “ #psn|sq{n,

where #psn|sq denotes the number times the symbol s occurs
in sn. Investigating the state transition diagram of Fig. 3 we
inspect that, as n gets large, P p‹qsn “ pm ´ 1qP

p´q
sn holds

because each ´ state in sn is followed by m´1 occurrences of
state ‹. As the remaining states in sn will be `, we must have
P
p`q
sn “ 1 ´mP

p´q
sn indicating P

p`q
sn P r0, 1s, P p´qsn P r0, 1

m s,
and P p‹qsn P r0, m´1

m s. As it tuns out, depending on P psqsn , not
all realizations of tSnu are observed with the same probability.
This is explained with the following theorem.

Theorem 2. As n gets large, except for a vanishing fraction
of sn P Sn, and for some ε P p0, 1q we have

|P
p´q
sn ´ p´| ď ε,

|P
p`q
sn ´ p`| ď ε,

|P
p‹q
sn ´ p‹| ď ε,

where p´ “ φ´1
1`mpφ´1q , p

‹ “ pm´1qp´ and p` “ 1´mp´.

Therefore we can consider p`, p´ and p‹ as the frequencies
of states `, ´, and ‹, in sn, respectively, that one typically
observes as n gets large.

Proof of Theorem 2 : The proof is based on the Method
of Types [8]. We let q P r0, 1{ms and define

T pqqn “ tsn : P
p´q
sn “ qu. (45)

T pqqn is a type class and it consists of sn having nq P r0, n{ms
occurrences of state ´. For all m ě 1, there are at most
n` 1 different such type classes. However, the number of all
possible sn, |Sn|, increases exponentially in n as |Sn| “ N “

Opφnq. The Method of Types ensures the existence of a type
class with exponentially many elements. Our aim is to find this
type class. Recalling that each sn is observed with probability
1{N , the probability of observing a given sn in T pqqn is

Pr
`

sn P T n
q

˘

“
|T n
q |

N
.

Lemma 3.

|T n
q | ă 2npGpm,qq`op1qq. (46)

where

Gpm, qq “ p1´ pm´ 1qqqqH

ˆ

q

1´ pm´ 1qq

˙

,

and H is the binary entropy function.

Investigating Gpm, qq we observe that it is a concave
function of q P r0, 1{ms. We establish a similarity between
BGpm,qq
Bq and F pm, ρq in (35). The following proposition is a

direct consequence of this result.

Lemma 4. The function Gpm, qq attains its maximum when
q “ p´ and its maximum value is

Gpm, p´q “ log φ.

Consequently, for every T pqqn with |q´p´| ą 0 there exists
a Dpq, p´q ą 0 such that

Dpq, p´q
∆
“ Gpm, p´q ´Gpm, qq,

“ log φ´Gpm, qq.

Using the above fact in (46) results in

|T pqqn | ď φn2np´Dpq,p
´
q`op1qq.

From the above result and the fact that N “ Opφnq we obtain

Prpsn P T pqqn q ď 2´npDpq,p
´
q`op1qq, (47)

The above result shows that depending on Dpq, p´q, and in
turn q, the probabilities of some type classes decay exponen-
tially in n. The following proposition results from this fact.

Proposition 8. As n tends to infinity Dpq, p´q converges to 0
with probability 1.

The above proposition implies the convergence of q to p´

as well, because Dpq, p´q is 0 only if q “ p´. Therefore
among all T pqqn , one observes the ones with |q´ p´| ď ε with
probability 1.

D. Rate of Polarization

We define the Bhattacharyya process tZnu where Zn “
ZpKnq is the Bhattacharyya parameter of the random channel
Kn. By using the channel evolution model in (37), this process
can be expressed as

Zn

$

’

&

’

%

“ Zn´1Zn´m if Sn “ `,
ď Zn´1 ` Zn´m ´ Zn´1Zn´m if Sn “ ´,
“ Zn´1 otherwise,

(48)



where Zn “ ZpW q for n ă 1.

Theorem 3. For any ε P p0, 1q there exists an n such that for
β ă p` we have

Pr
´

Zn ď 2´φ
nβ
¯

ě IpW q ´ ε, (49)

Proof: We consider another process tẐnu, driven by
tSnu, so that for i “ 1, 2, . . . , n0, n0 ă n, we have Ẑi “ Zi
and for i ą n0, Ẑi obeys

Ẑi “

$

’

&

’

%

Ẑi´1Ẑi´m if Sn “ `,
Ẑi´1 ` Ẑi´m ´ Ẑi´1Ẑi´m if Sn “ ´,
Ẑi´1 otherwise.

(50)

Comparing (48) and (50) we observe that Zn is stochastically
dominated by Ẑn in the sense that for some fn P p0, 1q,
PrpZn ď fnq ě PrpẐn ď fnq. For the proof it will suffice to
show that PrpẐn ď fnq ě IpW q ´ ε holds for fn “ 2´φ

nβ

and β ă p`.
In [9, Lemma 1] authors derive an upper bound on Ẑn, for

the case m “ 1, by using the frequency of state ` in the
realizations of tSn0`1, Sn0`2, . . . , Snu and the fact that Zn0

gets arbitrarily close to 0, with probability IpW q, when n0

is large enough. Following lemma is a generalization of this
approach for arbitrary m ě 1.

Lemma 5. For some ζ P p0, 1q and γ P p0, 1q define the events

Cn0pζq “ tZn0 ď ζu,

Dn
n0
pγq “ t#

`

pSn0`1, . . . , Snq| `
˘

ě γpn´ n0qu.

We have

Ẑn ď 2´φ
pγ´εqpn´n0q

, Cn0
pζq XDn

n0
pγq.

From the convergence of Zn to Z8 with probability
PrpZ8 “ 0q “ IpW q we know that for any ε P p0, 1q there
exist a fixed n0 such that

PrpCn0
pζqq ě IpW q ´ ε.

Next, from Theorem 2, we infer that when m ! n´ n0

PrpDn
n0
pγqq ě 1´ ε, γ ě p` ´ ε (51)

holds. This results from the fact that the probability of observ-
ing ` in tSn0`1, . . . , Sn0

u approaches to p` when n´ n0 is
much larger than the memory, m, of the process tSnu.

Choosing n0 “ nε and using the above results in lemma 5
gives

Pr

ˆ

Ẑn ď 2´φ
npp`´2εqp1´εq

˙

ě p1´ εqpIpW q ´ εq

ě IpW q ´ ε

Since ε P p0, 1q can be chosen arbtirarily close to 0, the above
result indicates that

Pr
´

Ẑn ď 2´φ
nβ
¯

ě IpW q ´ ε

holds for β ă p`.

Let us analyze the implications of Theorem 3 on the block-
decoding error probability, Pe, of tCpmqn u. It states that for
IpW q ´ ε fraction of W piq

n the corresponding Bhattacharyya
parameters will be bounded as Zpiqn ď 2´φ

nβ

for β ă p`.
We have Pe ď

řN
i“1 Z

piq
n ď N2´φ

nβ

“ Op2´φ
nβ

q. Since the
code-length of tCpmqn u scales as N “ Opφnq we also see that
Pe “ Op2´N

β

q holds for β ă p`.
The term p` is plotted in Fig. 6 as a m increases from 1

to 50. Investigating this figure we see that p` equals to 0.5
when m “ 1 which coincides with the bound for the exponent
of polar codes presented by Arıkan and Telatar in [3]. As m
increases from 1 to 50, p` and thus the achievable exponent
decreases. The decrease is more steep for small values of m
and it becomes more monotone as m increases.

In order to fully characterize the asymptotic performance
of tCpmqn u one needs to provide a converse bound on β which
may be a difficult task. We believe that for the case m ą 1,
the achievable β for tCpmqn u may show a dependency on the
rate, R P r0, 1s, chosen for the code; a phenomenon that
does not exist when m “ 1 (see [10]). In order explain our
conjecture, consider the process tẐnu in (50) which we use
to obtain an achievable bound on β as β ă p`. Our proof is
based on the observation that once the realizations of Ẑn0

are sufficiently close to 0, which happens with probability
IpW q, the scaling of Zn is mostly determined by the number
of occurrences of state ` in tSn0`1, Sn0`2, . . . , Snu. From
Theorem 2 we know that one typically observes pn ´ n0qp

`

occurrences of ` in tSn0`1, Sn0`2, . . . , Snu, therefore the
value of logZn decreases pn ´ n0qp

` times with the same
speed as the code-length, log Ẑn “ log Ẑn´1 ` log Ẑn´m,
scaling as logZn “ ´φ

pn´n0qp
`

“ ´φnp1´εqp
`

. This result
in the achievable exponent β ă p`. However, when m ą 1
the value of log Ẑn may also decrease with a faster rate
compared to that of the code-length. To see this, consider
the case pSn´1, Sn´2, . . . , Sn´pm´1qq “ p‹,‹, . . . ,‹qu and
Sn “ `, where we have Ẑn´1 “ Ẑn´2 “ . . . “ Ẑn´pm´1q

and log Ẑn “ log Ẑn´1 ` log Ẑn´m “ log Ẑ2
n´1. Therefore,

there may be times where logZn decreases with a faster rate as
log Ẑn “ logZ2

n´1 instead of log Ẑn “ log Ẑn´1` log Ẑn´m
and this may result in a higher achievable β. In order to
quantify this we need to know not only the number of times
state ` occurs in tSnu, but also the number of times a state `
in tSnu is preceded by ‹ states. Therefore, we need to refine
Theorem 2 in terms of the number of transitions between states
`, ´ and ‹, as well. This might be a difficult but important
problem whose solution will provide a full characterization
of the asymptotic polarization performance of tCpmqn u and we
leave it as a future work.

V. COMPLEXITY AND SPARSITY

A. Encoding and Decoding Complexity

We consider a single core processor with random access
memory and investigate the time complexity of encoding
and decoding of tCpmqn u. Let χEn denote the complexity for
encoding the information vector uN to encoded bits xN .



Fig. 6: Achievable exponent, β ă p`, as scaled with m.

We take complexity of each XOR operation as 1 unit. By
inspection of Fig 1, we have

χEn “ χEn´1 ` χ
E
n´m `Nn´m n,m ě 1, (52)

where χE1 “ 1 and χE0 “ χE´1 “ . . . “ χE1´m “ 0.
Similarly, let χDn denote the complexity for decoding the

inputs of W piq
n channels, where SCD is the decoding method.

We take the complexity of computing the LR. relations in (32)
as 1 unit. We observe that one does not make any operations
to calculate the LR in (33). By inspection of Fig 1, we have

χDn “ χDn´1 ` χ
D
n´m ` 2Nn´m n,m ě 1, (53)

where χD0 “ χD´1 “ . . . “ χD1´m “ 0.
The recursions in (52) and (53) are cumbersome to deal

with. To observe the scaling behavior of χEn and χDn in m, we
define

ηE
∆
“

χEn
N logN

, ηD
∆
“

χDn
N logN

, (54)

and demonstrate the scaling of ηE and ηD in Fig .7, where we
have numerically calculated χEn and χDn as in (52) and (53)
by choosing N “ Opφnq to be the code-length closest to 104

and 106. From Fig. 7 we observe that, there exist a decrease
in ηEn and ηDn as m increases, where the decrease is more
steep for small values of m and it becomes more monotone as
m increases. This decrease in complexity, although not being
orders of magnitude, is promising in showing the existence
of polar codes requiring lower complexity. For example, from
Fig. 7 we observe that ηDn is around 1{2 when m “ 12. This
indicates that the decoding complexity of tCp12q

n u is reduced
by half compared to tCp1qn u which is the polar code presented
by Arıkan in [1].

B. Sparsity

As we have explained in Section II, there exist a spar-
sity in the channel combining process in the sense that at
each combining level, the vector channel Wn is obtained
by combining Wn´1 and Ŵn´m which are obtained from
Npn ´ 1q and Npn ´ mq uses of underlying B-DMC, W ,
respectively. From Proposition 5 we observe that the overall

Fig. 7: Scaling of encoding and decoding complexities as m
increases where N is chosen to be the code-length closest to
1ˆ 104, 1ˆ 106.

effect of channel combining and splitting is that, at each level
n, there exist Npn ´mq bit-channel pairs that participate in
‘ and a transforms. As m increases Npn ´ mq decreases
with respect to Npn´1q implying the fraction of bit-channels
participating in ‘ and a transforms also decreases. On the
other hand, as m increases, the code-length increases less
rapidly in n because N “ Opφnq and φ is decreasing in m,
thus one can fit more channel combining and splitting levels
within fixed code-length. A natural question is to understand
the overall effect of increasing m on the total number of ‘

and a transforms that one can obtain when the number of
uses of W channels is fixed. The importance of χDn in (53)
comes to play at this point because it gives us the total number
of ‘ and a transformation that are recursively applied to
independent uses of W channels to obtain the bit-channels
in Wn. Consequently, one can view ηD as a packing ratio in
the sense that one can pack ηDn N logN recursive applications
of ‘ and a transformation to N independent uses of W .
Inspecting the scaling of ηD in Fig. 7 we observe that this
packing ratio is 1 when m “ 1 and it decreases with increasing
m, and this decrease manifests itself as a reduction in the
decoding complexity of tCpmqn u.

VI. CONCLUSION AND FUTURE WORK

We have introduced a method to design a class of code
sequences tCpmqn ;n ě 1,m ě 1u with code-length N “

Opφnq, φ P p1, 2s, and memory order m. The design of
tC
pmq
n u is based on the channel polarization idea of Arıkan

[1] and tCpmqn u coincides with the polar codes presented by
Arıkan when m “ 1. We showed that tCpmqn u achieves the
symmetric capacity of arbitrary BDMCs for arbitrary but fixed
m. We have obtained an achievable bound on the asymptotic
polarization of performance of tCpmqn u as scaled with m and
showed that the encoding and decoding complexities of tCpmqn u

decrease with increasing m. Our introduction of tCpmqn u com-
plements Arıkan’s conjecture that channel polarization is a
general phenomenon and it shows the existence of polar codes
requiring lower complexity. Future work will include a rate



dependent analysis and a converse result on the asymptotic
polarization performance of tCpmqn u.
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VII. APPENDIX

A. Proof of Proposition 1

We have JpW´q “ 2
1`ZpW´q

and JpW`q “ 2
1`ZpW`q

. By
using (17) and (16) we obtain

JpW`q ` JpW´q ě log
2

1` ZpW 1qZpW 2q
`

log
2

1` ZpW 1q ` ZpW 2q ´ ZpW 1qZpW 2q
(55)

“ log
2

1̀ ZpW 1q̀ ZpW 2q ` wpW 1,W 2qZpW 1qZpW 2q

where wpW 1,W 2q “ ZpW 1q ` ZpW 2q ´ ZpW 1qZpW 2q ď 1
indicating

JpW`q `JpW´qě log
2

1` ZpW 1q
`log

2

1` ZpW 2q
(56)

“ JpW 1q ` JpW 2q.

In order to have JpW`q ` JpW´q “ JpW 1q ` JpW 2q, the
equalities in (55) and (56) must be achieved. From (17) we
know that the equality in (55) is achieved only if ZpW 1q P

t0, 1u or ZpW 2q P t0, 1u or if W 1 and W 2 are BECs. When
pZpW 1q, ZpW 2qq P p0, 1q2 we have wpW 1,W 2q ă 1 and the
inequality in (56) is always strict, whether or not W 1 and W 2

being BECs. Consider the case ZpW 1q “ 1 or ZpW 2q “ 1,
then we have wpW 1,W 2q “ 1 and the equalities in (55) and
(56) are achieved. When ZpW 1q “ 0 we have JpW 1q “ 1,
wpW 1,W 2q “ 0 and JpW`q ` JpW´q “ JpW 1q ` JpW 2q,
and the case JpW 1q “ 1 follows from the symmetry in (55)
and (56). Hence the equalities in (55) and (56) are both
achieved only if ZpW 1q P t0, 1u or ZpW 2q P t0, 1u, or
alternatively only if JpW 1q P t0, 1u or JpW 2q P t0, 1u.

B. Proof of Proposition 3

From the operation of ϕn in Defn. 1 we obtain S1 “ t`,´u

such that sp1q1 “ p`q and sp2q1 “ p´q, indicating sp1q1 and sp2q1

are unique. Proof is by induction, assume that spjqn´1 P Sn´1

are unique. Let j P Nn´m and consider spjqn´1 to whom
by appending ` and ´ one obtains spjqn and spj`Npn´1qq

n ,
respectively, indicating spj`Npn´1qq

n and spjqn are different from
each other. Next, let j P Nn´1zNn´m then spjqn are obtained
by appending ‹ to spjqn´1 which, by assumption, are unique.
Combining the result we see that for all j P Nn the vectors
s
pjq
n P Sn are different from each other.

C. Proof of Proposition 4

Investigating Fig 2 consider the operation of ϕn´1 where
s
pkq
n´2 “ ps1, s2, . . . , sn´2q, k P Nn´2, holds at level n ´ 1.

Next, consider the operation of ϕn´2 where one has spkqn´3 “

ps1, s2, . . . , sn´3q for k P Nn´3. In turn and by induction
through ϕn´2, ϕn´3, . . . , ϕn´pm´1q we conclude that spjqn´m “
ps1, s2, . . . , sn´mq, j P Nn´m.

D. Proof of Proposition 6

i) For m ą 1 we have F pm, 1q “ ´1 ă 0 and F pm, 2q “
2m´1 ´ 1 ě 0 so that there exists at least one real root in
(1,2]. Proof is by contradiction, let ρ1, ρ2 P p1, 2s be two real
roots of F pm, ρq then from (35) we have

ρm´1
1 pρ1 ´ 1q “ 1, (57)

ρm´1
2 pρ2 ´ 1q “ 1. (58)

Let ρ1 ă ρ2, then ρm´1
2 ą ρm´1

1 and ρ2 ´ 1 ą ρ1 ´ 1 ą 0
implying ρm´1

2 pρ2 ´ 1q ą 1 if ρm´1
1 pρ1 ´ 1q “ 1 which

contradicts (58), carrying a similar analysis for ρ1 ă ρ2 also
contradicts (58), which indicates ρ1 “ ρ2 “ φ.

ii) Assume that ρ is a complex root of F pm, ρq, with
?
ρρ˚ “ σ ą 1 where ˚ denotes the conjugate operation.

Since the coefficients of F pm, ρq are real, its complex roots
must be in conjugate pairs. From (35)

ρm´1pρ´ 1q “ 1,

ρ˚
m´1

pρ˚ ´ 1q “ 1.

Multiplying the above equations we obtain

σ2pm´1qpσ2 ´ 2Repρq ` 1q “ 1,

σ2pm´1qpσ2 ´ 2σα` 1q “ 1, (59)

where 0 ď α ă 1. In turn for any ρ, σ must be a root of

gpσ, αq “ σ2pm´1qpσ2 ´ 2σα` 1q ´ 1, (60)

Observe that when σ is fixed gpσ, αq is decreasing in α. We
also have

Bgpσ, αq

Bσ
“ 2pm´ 1qσ2pm´1q´1pσ2 ´ 2σα` 1q

` σ2pm´1qp2σ ´ 2αq

From (59) observe that pσ2 ´ 2σα` 1q ą 0, and since p2σ´
2αq ą 0 for σ ą 1 we have Bgpσ,αq

Bσ ą 0. This indicates that



gpσ, αq is increasing with σ. But φ is a root of gpσ, αq with
α “ 1 and thus gpφ, 1q “ 0. Since gpσ, αq is decreasing in
α we have gpφ, αq ě 0 and gpσ, αq “ 0 is only achieved if
σ ă φ because gpσ, αq is increasing with σ.

iii) Observe that for some ρ P p1, 2s we have BF pm,ρq
Bρ ą 0

so that F pm, ρq is increasing in ρ and when ρ is fixed
F pm, ρq is also increasing in m. Assume that ρ1, ρ2 P p1, 2s
are real roots of F pm1, ρq and F pm2, ρq, respectively, where
m1,m2 ě 1. Then fpm1, ρ1q ă fpm2, ρ1q holds if m2 ą m1

and fpm1, ρ1q “ fpm2, ρ2q “ 0 is satisfied only if ρ1 ă ρ2.

E. Proof of Lemma 1

Let J piqn “ JpW
piq
n q denote symmetric cut-off rate of W piq

n .
From Proposition 5 we know that for j P Nn´m we have
W
pjq
n “W

pjq
n´1‘W

pjq
n´m and W pj`Npn´1qq

n “W
pjq
n´1aW

pjq
n´m.

Proposition 1 indicates that these transforms increase the sum
cut-off rate as J pjqn ` J

pj`Npn´1qq
n ě J

pjq
n´1 ` J

pjq
n´1 where the

equality is achieved only if J pjqn´1 P t0, 1u or J pjqn´m P t0, 1u
holds. For j P Nn´1zNn´m, from Proposition 5, we have
J
pjq
n “ γpnqJ

pjq
n´1 which implies J pjqn “ J

pjq
n´1. Combining the

above results gives
ÿ

iPNn

J piqn ě
ÿ

jPNn´1

J pjqn `
ÿ

kPNn´m

J pkqn ,

where the equality is achieved only of if J pjqn´1 P t0, 1u or
J
pjq
n´m P t0, 1u holds for all j P Nn´m. In the probabilistic

domain of SectionIV the above result is equivalent to
ÿ

snPSn

Jn ě
ÿ

sn´1PSn´1

Jn´1 `
ÿ

sn´mPSn´m

Jn´m,

where the equality is achieved only of if Jn´1 P t0, 1u
or Jn´m P t0, 1u holds for all Sn P t`,´u. Dividing
both sides of the above inequality by 1{Npnq and using
ErJns “

1
Npnq

ř

snPSn Jn we obtain

ErJns ě
Npn´ 1q

Npnq
ErJn´1s `

Npn´mq

Npnq
ErJn´ms.

Noticing Npn´1q
Npnq “ µpnq and Npn´mq

Npnq “ 1´ µpnq completes
the proof.

F. Proof of Lemma 2

From (38) we have

ErJns ě µErJn´1s ` p1´ µqErJn´ms,

ě mintErJn´1s, ErJn´msu, (61)

Let us define the set

Epmqk
∆
“ tEkm, Ekm´1, . . . , Ekm´pm´1qu.

By definition in (39) we have we have ErĴks “ min Epmqk .
Proof is by induction. We use (61) to upper bound the elements
of Epmqk with respect to min Epmqk´1 “ ErĴk´1s. Let n “ km´
pm´ 1q and use (61) to obtain

Ekm´pm´1q ě mintEpk´1qm, Epk´1qm´pm´1qu,

ě min Epmqk´1

For i “ 2, 3, . . . ,m´ 1 assume

Ekm´pm´iq ě min Epmqk´1

holds. Next, let n “ km´ pm´ pi` 1qq in (61) to write

Ekm´pm´pi`1qq ě mintEkm´pm´iq, Epk´1qm´pm´pi`1qqu.

By assumption Ekm´pm´iq ě min Epmqk´1 and by definition
Epk´1qm´pm´pi`1qq ě min Epmqk´1 holds, indicating

Ekm´pm´pi`1qq ě min Epmqk´1.

Combining the above results tells us for i “ 1, 2, . . . ,m we
have Ekm´pm´iq ě min Epmqk´1 “ ErĴk´1s which indicates
ErĴks ě ErĴk´1s.

G. Proof of Lemma 3

In order to bound |T pqqn | we decompose T pqqn it into two
different sets

T pa,qqn
∆
“

!

sn : P
p´q
sn “ q, sn “ `

)

,

T pb,qqn
∆
“

!

sn : P
p´q
sn “ q, sn ‰ `

)

and we have T pqqn “ T pa,qqn YT pb,qqn . Recall that each state ´ in
sn is followed by m´1 occurrences of state ‹. In turn, T pa,qqn

consists of sn having k “ nq, 0 ď k ď n{m, occurrences of
the vector a “ p´,‹,‹, . . . ,‹

looooomooooon

m´1 times

q and n ´ km occurrences of

state `. By combinatorial analysis we have

|T pa,qqn | “

ˆ

n´ pm´ 1qk

k

˙

.

T pb,qqn consists of k ´ 1 occurrences of the vector a, an
occurrence of b “ p´, 0, 0, . . . , 0

loooomoooon

p times

q, 1 ď p ă m ´ 1, and

n´mk´pp`1q occurrences of state `. The vector b can only
occur in the last p`1 entries in sn and it will be completed to a
vector a if we had prolonged the channel combining operation
m´ 1´ p ď m more levels. Therefore

|T pb,qqn | ď

ˆ

n`m´ pm´ 1qk

k

˙

.

For some c P Z and d P Z with c ă d we have
`

d
c

˘

“
d
d´c

`

d´1
c

˘

ď d
`

d´1
c

˘

, using this fact we obtain
ˆ

n`m´ pm´ 1qk

k

˙

ď pn`mq

ˆ

n` pm´ 1q ´ pm´ 1qk

k

˙

,

ă pn`mq2
ˆ

n` pm´ 2q ´ pm´ 1qk

k

˙

...

ă pn`mqm
ˆ

n´ pm´ 1qk

k

˙



Then we have

|T pqqn | “ |T pa,qqn | ` |T pb,qqn |,

ă p1` pn`mqmq

ˆ

n´ pm´ 1qk

k

˙

,

ă p1` pn`mqq
m

ˆ

n´ pm´ 1qk

k

˙

,

“ 2nBpm,nq
ˆ

n´ pm´ 1qk

k

˙

, (62)

where Bpm,nq “ m logp1`n`mq
n “ op1q. Next, we use

the upper bound
`

n
k

˘

ď 2nHpk{nq in [8] to upper bound
`

n´pm´1qk
k

˘

as
ˆ

n´ pm´ 1qk

k

˙

ď 2np1´pm´1qpk{nqqHp
pk{nq

1´pm´1qpk{nq ,

“ 2nGpm,qq. (63)

Combining (62) and (63)we obtain the desired bound as
|T
pqq
n | ă 2npGpm,qq`Bpm,nqq “ 2npGpm,qq`op1qq.

H. Proof of Lemma 4

We have

Gpm, qq “ p1´ pm´ 1qqqH

ˆ

pqq

1´ pm´ 1qq

˙

.

We know that, for q P r0, 1{ms, Hp q
1´pm´1qq q is concave in q

and p1´pm´1qqq is linear in q indicating Gpm, qq is concave
in q. Let q˚ denote the maximizer of Gpm, qq. The maximum
of Hp q

1´pm´1qq q occurs when q
1´pm´1qq “

1
2 or equivalently

when q “ 1
m`1 and since p1´ pm´ 1qqq is decreasing in q,

we have q˚ P r0, 1
m`1 s. We next evaluate BGpm,qq

Bq

BGpm, qq

Bq
“ pm´ 1q logp1´ pm´ 1qqq

` log q ´m logp1´mqq.

setting BGpm,qq
Bq |q“q˚ “ 0 gives

pm´ 1q logp1´ pm´ 1qq˚q l̀og q˚ “ m logp1´mq˚q. (64)

Re-arranging the above equation we obtain

m log
p1´ pm´ 1qq˚q

1´mq˚
` log

q˚

1´mq˚

“ log
p1´ pm´ 1qq˚q

1´mq˚
.

(65)

Let us use the following substitutions

η “
1´ pm´ 1qq˚

1´mq˚
, η ´ 1 “

q˚

1´mq˚
.

For q˚ P r0, 1
m`1 s we have η P r1, 2s. Using the above

substitutions in (65) we obtain

m log η ` logpη ´ 1q “ log η,

or alternatively

ηmpη ´ 1q “ η.

Dividing both sides of the above relation by η and re-arranging
the terms we obtain

ηm ´ ηm´1 ´ 1 “ 0. (66)

But the above polynomial is same as 35. Consequently from
part i of Proposition. 6 we conclude that η “ φ which indicates
that 1´pm´1qq˚

1´mq˚ “ φ and hence q˚ “ 1
1`mpφ´1q “ p´. Next

we evaluate the maximum of Gpm, qq attained at q “ q˚.

Gpm, q˚q “ ´q˚ log
q˚

1´ pm´ 1qq˚
`

pmq˚ ´ 1q log
1´mq˚

1´ pm´ 1qq˚
(67)

Re-arranging (64) we observe that

log
q˚

1´ pm´ 1qq˚
“ m log

1´mq˚

1´ pm´ 1qq˚

Using the above relation in (67) gives

Gpm, q˚q “ log
1´ pm´ 1qq˚

1´mq˚
“ log φ.

I. Proof of Proposition 8

We define a typical set T pq,εqn as

T pq,εqn “ tsn : P
p´q
sn “ q,Dpq, p´q ď εu.

The probability that T pqqn is not typical is

1´ PrpT pq,εqn q “
ÿ

PrpDpq,p´qąεq

PrpT pqqn q,

a
ď

ÿ

PrpDpq,p´qąεq

2´npDpq,s´q`op1qq,

ď
ÿ

PrpDpq,p´qąεq

2´npε`op1qq,

b
ď pn` 1q2´npε`op1qq,

“ 2´npε`op1qq, (68)

In the above derivation (a) follows from (47) and (b) follows
from the fact that there exist at most n ` 1 different type
classes having PrpDpq, s´q ą εq. The above result indicates
that

ř

nÑ8 PrpDpq, s´q ě εq converges, thus the expected
number of the occurrences of the event Dpq, s´q ą ε for all
n is finite. By using the first Borel Cantelli Lemma [7, p. 59]
we conclude that Dpq, s´q converges to 0 with probability 1.

J. Proof of Lemma 5
Conditioned on the event Dn

n0
pγq “ #

`

psn0`1, . . . , snq| `
˘

ě γpn ´ n0q there exists at least γpn ´ n0q occurrences
of state ` in tSn0`1, Sn0`2, . . . , Snu. Investigating (50), we
have Ẑn ď Ẑn´1 when Sn “ ` and Zn ě Zn´1 when Sn ‰
`. Moreover, Zn is increasing in Zn´1 when Sn is fixed.
Consequently, if we fix Ẑm, the largest value of Ẑn will occur
if tSn0`1, Sn0`2, . . . Snu has the following realization

t

p1´γqpn´n0q{m times
hkkkkikkkkj

a, a, . . . , a, `,`, . . . ,`
looooomooooon

γpn´n0q times

u.



where a “ p´,‹,‹, . . . ,‹
looooomooooon

m´1 times

q. In order to upper bound

Ẑn we assume that the above realization has occured for
tSn0`1, Sn0`2, . . . Snu. During consecutive runs of `, the
value of log Ẑn increases with the same recursion as the code-
length in (1) as log Ẑn “ log Ẑn´1`log Ẑn´m. This recursion
happens γpn´mq times and since the code-legth obeying the
same recursion scales as φγpn´mq, φ P p1, 2s, we have

log Ẑn “ φγpn´n0q log Ẑk, (69)

where k “ n0 ` p1´ γqpn´mq. During consecutive runs of
a the value of Ẑi does not change with respect to Ẑi´1 when
Si “ ‹ and it increases as Ẑi “ Ẑi´1 ` Ẑi´m ´ Ẑn´1Ẑi´m
when Si “ ´. By construction of tSn0`1, Sn0`2, . . . Snu each
state ´ is preceed by m ´ 1 occurances of ‹ therefore if
Si “ ´ we have pSi´1, Si´2, . . . , Si´pm´1qq “ p‹,‹, . . . ,‹q

indicating Ẑi´1 “ Ẑi´2 “ . . . “ Ẑi´pm´1q. Therefore
during each occurance of state ´ in a we see the recursion
Ẑi´1 ` Ẑi´m ´ Ẑi´1Ẑi´m “ 2Ẑi´1 ´ Ẑ

piq
i or equvalently

1´ Ẑi “ p1´ Ẑ
piq
i q

2. This recursion occurs p1´ γqpn´ n0q

times resulting in 1 ´ Ẑk “ p1 ´ Ẑn0q
2p1´γqpn´n0q and

Ẑk “ 1´p1´ Ẑn0
q2p1´γqpn´n0q. Next, employ the inequality

log x ď x´ 1, x P r0, 1s, by letting x “ Ẑk to obtain

log Ẑk ď ´p1´ Ẑn0
q2p1´γqpn´n0q. (70)

Using (70) in (69) gives

log Ẑn “ ´φ
γpn´n0qp1´ Zn0

q2p1´γqpn´n0q,

ď ´φγpn´n0qp1´ Zn0
q2pn´n0q

“ ´φpγ´εqpn´n0q
`

p1´ Zn0q
2φε

˘pn´n0q
.

Choose ζ P p0, 1q so that ζ ď 1´ φ
´ε
2 holds. Conditioned on

Cn0
pζq “ tZn0

ď ζu we have p1´Zn0
q2φε ě 1, resulting in

log2 Ẑn ď ´φ
pγ´εqpn´mq, Cn0

pζq XDn
n0
pγq,

which proves the lemma.
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